具有温控两相性质的聚乙二醇型双子离子液体及其在有机合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化剂的高效分离和回收利用问题一直以来是绿色化学研究的重点内容之一。而具有“高温均相、低温两相”性质的催化体系,因其能有效结合均相催化体系反应高效与非均相催化体系催化剂易回收的优点已成为研究热点。因具有“高温均相、低温两相”功能的离子液体温控两相体系具有相间传质效果好、产品易分离等优点,相对于其它离子液体而言,是一种更为理想的反应体系,因此,加强此方面的研究必将为离子液体的深入研究和绿色化学的进一步发展提供重要参考。
     本论文设计并合成了7种新型的聚乙二醇型双子离子液体,其中包括5种聚乙二醇型中性双子离子液体(PEG_(200)-DIL、PEG_(400)-DIL、PEG_(1000)-DIL、PEG_(2000)-DIL、PEG_(4000)-DIL)和2种聚乙二醇型酸性双子离子液体(PEG_(200)-DAIL、PEG_(1000)-DAIL),同时还得到了两种优良的温控两相体系:PEG_(1000)-DAIL/甲苯温控两相体系和PEG_(1000)-DIL/甲苯温控两相体系。并详细考察了其中部分离子液体以及所得到的两种温控两相体系在一些有机单元反应中的应用情况。
     研究发现,PEG_(1000)-DIL和PEG_(1000)-DAIL均可作为溶剂使用,而PEG_(1000)-DAIL在反应中不但可以作为溶剂,还可作为催化剂使用。本研究工作分别将PEG_(1000)-DAIL/甲苯温控两相体系应用于芳香醛的缩醛反应、芳香酸的酯化反应、芳香醛的三组分缩合反应及Biginelli反应和将PEG_(1000)-DIL/甲苯温控两相体系应用于对甲苯磺酸催化的缩醛反应及氢氧化氧铁催化的硝基还原反应。并分别考察了温度、时间、原料配比以及催化剂重复使用等因素对上述反应的影响。研究结果表明,两种体系对上述反应具有广泛的适用性,且具有反应时间短、产率高、产品分离简单、催化剂重复使用性能优良、离子液体流失量小等优点。其中PEG_(1000)-DAIL/甲苯体系还克服了因离子液体黏度高而造成的与固体产品难分离的缺点,分离过程中避免了使用大量有机溶剂,同时还简化了固体产品与高黏度离子液体的分离步骤。本论文还考察了PEG_(200)-DAIL在甲苯硝化与DPT硝解反应中的应用情况。研究结果表明,加入PEG_(200)-DAIL,能使甲苯硝化的o/p值降至1.12,且在N_2O_5与PEG_(200)-DAIL的协同作用下,大量减少了DPT硝解反应中浓硝酸的用量,并使产率提高到64%。另外,研究中也发现PEG_(1000)-DIL还能与水形成“高温分相、低温均相”的温控体系,将该体系在常温条件下应用于Knoevenagel缩合反应中,只需几分钟就能得到60%-99%的产率,且PEG_(1000)-DIL可以通过简单分液而不是蒸馏的方式回收,操作简单且能耗低。
     总之,本论文合成的这类聚乙二醇型双子离子液体,合成简单,且能与甲苯和水形成温控两相体系,离子液体可同时作为溶剂和催化剂使用,并能有效回收,多次重复使用后还能有效保持催化活性,损失量小。实现了均相催化和非均相催化优点的有效结合,为有机化学提供了一种新的温控两相催化反应一分离耦合体系。
Separation and recovery of catalyst with high efficiency plays an important role in green chemistry. New catalytic system possess the thermoregulated biphasic behavior of "mono-phase under high temperature, bi-phase under room temperature" have been attracted much attention due to their advantages of both homogeneous and heterogeneous catalysis with high product yield and the easy separation of product from catalytic system. ILs, as environmental friendly reaction media or catalysis, have attracted increasing attention. And, ionic liquids based on the thermoregulated biphasic behavior have been proposed because of their obvious advantages. In this paper, PEG-DIL and PEG-DAIL have been studied. PEG-1000-based dicationic ionic liquid (PEG_(1000)-DAIL, PEG_(1000)-DIL) exhibiting temperature-dependent phase behavior with toluene (water) and their applications in different organic reactions were studied.
     Five new neutral PEG-based dicationic ionic liquids (PEG_(200)-DIL, PEG_(400)-DIL, PEG_(1000)-DIL, PEG_(2000)-DIL, PEG_(4000)-DIL) and two new acidic PEG-based dicationic ionic liquids (PEG_(200)-DAIL, PEG_(1000)-DAIL) were synthesized. It was found that PEG_(1000)-DAIL/ toluene system and PEG_(1000)-DIL/toluene system could be formed excellent thermoregulated biphasic system. And PEG_(1000)-DIL/water could be formed "mono-phase under room temperature, bi-phase under high temperature" system. Moreover, PEG_(1000)-DAIL could be used as both solvent and catalyst. Applications of PEG_(1000)-DAIL/toluene thermoregulated system in acetalizations, esterifications, one-pot three-component condensations and Biginelli reactions were investigated. PEG_(1000)-DIL acted as solvent for acetalizations (p-toluenesulfonic acid as catalyst) and nitro-group reduction (FeOOH as catalyst) in PEG_(1000)-DIL/toluene system. And applications of PEG_(1000)-DIL/water system in Knoevenagel reaction and PEG_(200)-DAIL in nitration of toluene and nitrolysis of DPT were investigated also. Efects of reaction temperature, reaction time, amount of calalyst, and ratio of raw materials on these reactions were investigated. It was found that these reactions had advantages such as, short reaction time, high yields, easy separation without any apparent loss of catalytic activity and little loss of weight even after more times recycling.
     PEG-based ionic liquids were developed. Novel "mono-phase under high temperature, bi-phase under room temperature" systems (PEG_(1000)-DAIL/toluene system and PEG_(1000)-DIL/toluene system) and "mono-phase under room temperature, bi-phase under high temperature" system (PEG_(1000)-DIL/water system) have been found highly effective for some organic reactions.
引文
[1] Cornils B, Herrmann W A. Aqueous-Phase Organometallic Chemistry [M]. Wiley-VCH, 1998
    [2] Horvath I T, Rabai J. Catalyst Separation Without Water: Fluorous Biphase Hydroformylation of Olefins [J]. Science, 1994,266: 72-73
    [3] Vogt D, Cornils B, Herrmann W A, et al. (Eds) in: Multiphase Homogeneous Catalysis [M], Wiley-VCH, 2005: 311-337
    [4] Bergbreiter D E. Using Soluble Polymers To Recover Catalysts and Ligands [J]. Chem Rev. 2002,102: 3345-3384
    [5] Wang Y H, Jiang J Y, Wu X W, et al. Thermoregulated Phase-Separable Phosphine Rhodium Complex for Hydroformylation of Cyclohexene [J]. Catal Lett, 2002, 79(1-4): 55-57
    [6] 魏莉.温控聚醚型离子液体合成及应用[D].博士学位论文.大连:大连理工大学,2004
    [7] Dupont J, de Souza R F, Suarez P A Z. Chem Rev Ionic Liquid (Molten Salt) Phase [J]. Organometallic Catalysis, 2002,102:3667-3692
    [8] Poliakoff M, Fitzpartrick J M, Farren T R, et al. Green Chemistry: Science and Politics of Change[J]. Science, 2002,297: 807-808
    [9] Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO_2 [J]. Nature, 1999, 399: 28-29
    [10] Wasserscheid P, Keim W. Ionic Liquids-New "Solutions” for Transition Metal Catalysis [J]. Angew Chem Int Ed, 2000, 39: 3772-3789
    [11] Earle M J, Esperan(?)a JMSS, Gilea M A, et al. The distillation and volatility of ionic liquids [J]. Nature, 2006,439: 831-834
    [12] Rogers R D, seddon K. Ionic Liquids-Solvents of the Future [J]. Science, 2003, 302: 792-793
    [13] Lee S G. Functionalized imidazolium salts for task-specific ionics liquids and their applications [J]. Chem Commun, 2006: 1049-1063
    [14] Horvath I T, Kiss G , Cook R A, et al. Molecular Engineering in Homogeneous Catalysis: One-Phase Catalysis Coupled with Biphase Catalyst Separation The Fluorous-Soluble HRh(CO){P[CH_2CH_2(CF_2)_5CF_3]_3}_3Hydroformylation System [J]. J Am Chem Soc, 1998,120: 3133-3143
    [15] Horvath I T .Fluorous Biphase Chemistry [J]. Acc Chem Res, 1998, 31: 641-650
    [16]易文斌.氟两相体系中的有机合成反应[D].博士学位论文.南京:南京理工大学,2006
    [17]鲍其鼐,严瑞瑄.水溶性高分子[M].北京:化学工业出版社.2000:225-226
    [18] da Rosa R G, Martinelli L, da Silva L H M, et al. Easy and efficient processes for catalyst recycling and product recovery in organic biphase systems tested in the hydrogenation of hex-1-ene [J]. Chem Commun, 2000: 33-34
    [19] da Silva L H M, Loh,W. Polymer induced multiphase generation in water/organic solvent mixtures. Strategies towards the design of triphasic and tetraphasic liquid systems [J]. Chem Commun, 1998: 787-788
    [20] Behr A, Miao Q. A new temperature-dependent solvent system based on polyethylene glycol 1000 and its use in rhodium catalyzed cooligomerization [J]. J Mol Catal A: Chem, 2004, 222(1-2): 127-132
    [21]蒋景阳,杨玉川,王艳华,等.聚乙二醇两相体系及应用[P].CN1559685,2004-02-19
    [22] Feng C, Wang Y, Jiang J, et al. Using thermoregulated PEG biphase system to effect the hydroformylation of p-isobutylstyrene catalyzed by Rh/OPGPP complex [J]. J Mol Catal A: Chem, 2006,248(1-2):159-162
    [23] Yang Y C, Jiang J Y, Wang Y H, et al. A new thermoregulated PEG biphasic system and its application for hydroformylation of 1-dodecene [J]. J Mol Catal A: Chem,2007,261:288-292
    [24]金子林,赵玉亮,王艳华.温控配体与液/液两相催化[J].催化学报,2003,24(5):391-399
    [25]金子林,梅建庭,蒋景阳.温控相转移催化-水/有机两相催化新进展[J].高等学校化学学报,2000,21(6):941-946
    [26] Dyson P J, Ellis D J, Welton T A. Temperature-controlled reversible ionic liquid-water two phase-single phase protocol for hydrogenation catalysis [J]. Can J Chem, 2001, 79: 705-708
    [27] van den Broeke J, Winter F, Deelman B J, et al. Highly Fluorous Room-Temperature Ionic Liquid Exhibiting FluorousBiphasic Behavior and Its Use in Catalyst Recycling[J]. Org Lett, 2002,4(22): 3851-3854
    [28] Wei L, Jiang J Y, Wang Y H, et al. Selective hydrogenation of SBS catalyzed by Ru/TPPTS complex in polyether modified ammonium salt ionic liquid [J]. J Mol Catal A: Chem, 2004,221: 47-50
    [29] Gladysz J A. Introduction: Recoverable Catalysts and Reagents - Perspective and Prospective. Chem Rev, 2002,102(10): 3215-3216
    [30] Bai Z F, He Y Y, Lodge T P. Block Copolymer Micelle Shuttles with Tunable Transfer Temperatures between Ionic Liquids and Aqueous Solutions. Langmuir, 2008,24 (10): 5284-5290
    [31] Zeng Z, Phillips B S, Xiao J C, et al. Polyfluoroalkyl, Polyethylene Glycol, 1,4-Bismethylenebenzene, or l,4-Bismethylene-2,3,5,6-Tetrafluorobenzene Bridged Functionalized Dicationic Ionic Liquids: Synthesis and Properties as High Temperature Lubricants. Chem Mater, 2008,20(8): 2719-2726
    [32] Breure B, Bottini S B, Witkamp G J, et al. Thermodynamic Modeling of the Phase Behavior of Binary Systems of Ionic Liquids and Carbon Dioxide with the Group Contribution Equation of State. J Phys Chem B, 2007,111(51): 14265-14270
    [33] Kumar A, Dubin P L, Hernon M J, et al. Temperature-Dependent Phase Behavior of Polyelectrolyte-Mixed Micelle Systems. J Phys Chem B, 2007, 111(29): 8468 -8476
    [34] Doma(?)ska U, Zolek-Tryznowska Z, Kr(?)likowski M. Thermodynamic Phase Behavior of Ionic Liquids. J Chem Eng Data, 2007, 52(5): 1872-1880
    [35] Ortega J, Vreekamp R, Marrero E, et al. Thermodynamic Properties of 1-Butyl-3-methylpyridinium Tetrafluoroborate and Its Mixtures with Water and Alkanols. J Chem Eng Data, 2007, 52(6): 2269-2276
    [36] Nockemann P, Binnemans K, Thijs B, et al. Temperature-Driven Mixing-Demixing Behavior of Binary Mixtures of the Ionic Liquid Choline Bis(trifluoromethylsulfonyl)imide and Water. J Phys Chem B, 2009, 113 (5): 1429-1437
    [37] Yadav G D, Motirale B G. Ionic Liquid as Catalyst for Solid-Liquid Phase Transfer Catalyzed Synthesis of p-Nitrodiphenyl Ether. Ind Eng Chem Res, 2008, 47(23): 9081-9089
    [38] Leng Y, Wang J, Zhu D R, et al. Heteropolyanion-Based Ionic Liquids: Reaction-Induced Self-Separation Catalysts for Esterification. Angew Chem Int Ed, 2009,48:168-171
    [39] Chauvin Y, Gilbert B, Guibard I. Mobile Phase Effects in Rh-Sulfonated Phosphine-Molten Salts Catalysed the Biphasic Hydroformylation of Heavy Olefins [J]. J Chem Soc Chem Commun, 1990: 1715-1976
    [40] Carlin R T, Osteryoung R A. Complexation of CP_2MCl_2 in a chloroaluminate molten salt: relevance to homogeneous Ziegler-Natta catalysis [J]. J Mol Catal, 1990,63(1): 125-129
    [41] Fonseca G S, de Souza R F, Dupont J. Biphasic telomerization of 1,3-butadiene with HNEt_2 catalyzed by palladium/sulphonated-phosphine complexes [J]. Catal Comm, 2002, 3: 377-380
    [42] Bernardo-Gusmao K, Queiroz L F T, de Souza R F, et al. Biphasic oligomerization of ethylene withnickel-l,2-diiminophosphorane complexes immobilized in 1-n-butyl-3-methylimidazoliu morganochloro aluminate [J]. J Catal, 2003, 219: 59-62
    [43] Wasserscheid P, Hilgers C, Keim W. Ionic liquids-weakly-coordinating solvents for the biphasic ethylene oligomerization to olefins using cationic Ni-complexes [J]. J Mol Catal A: Chem, 2004,214: 83-90
    [44] Wasserscheid P, Eichmannl M. Selective dimerisation of 1-butene in biphasic mode using buffered chloroaluminate ionic liquid solvents-design and application of a continuous loop reactor [J]. Catal Today, 2001,66: 309-316
    [45] Thiele D, de Souza R F. The role of aluminum species in biphasic butene dimerization catalyzed by nickel complexes [J]. J Mol Catal A: Chem, 2006, 264: 293-298
    [46] de Souza R F, Thiele D, Monteiro A L. Effect of phosphine-CS_2 adducts on the nickel-catalyzed butanes oligomerization in organochloroaluminate imidazolium ionic liquids [J]. J Catal, 2006,241: 232-234
    [47] Wolfson A, Vankelecom I F J, Jacobs P A. Beneficial effect of water as second solvent in ionic liquid biphasic catalytic hydrogenations [J]. Tetrahedron Lett, 2005, 46(14): 2513-2516
    [48] Paun C, Barklie J, Goodrich P, et al. Supported and liquid phase task specific ionic liquids for base catalysed Knoevenagel reactions [J]. J Mol Catal A: Chem, 2007, 269(2): 64-71
    [49] Hu Y, Wei P, Zhou H, et al. Organic Synthesis in Ionic Liquids:Condensation of 3- Methyl-1-phenyl-5-pyrazolone with Carbonyl Compounds Catalyzed by Ethylene -diammonium Diacetate [J]. Chin Chem Lett, 2006,17(3): 299-301
    [50] Kiado A, co-published with Springer Science Business Media BV, Formerly Kluwer Academic Publishers BV Alkylation of benzene with 1-hexene in acidic ionic liquid systems: Et_3NHCl-FeCl_3 and Et_3NHCl-AlCl_3ionic liquids [J]. React Kinet Catal Lett, 2005, 86(2): 267-273
    [51] Wang Bo, Kang Y R, Yang L M, et al. Epoxidation of -unsaturated carbonyl compoundsin ionic liquid/water biphasic system undermild conditions [J]. J Mol Catal A: Chem 2003,203(1-2): 29-36
    [52] Wu C T, Marsh K N, Deev A V, et al. Liquid-Liquid Equilibria of Room-Temperature Ionic Liquids and Butan-1-ol [J]. J Chem Eng Data, 2003, 48 (3): 486-491
    [53] Crosthwaite J M, Muldoon M J, Aki S N V K, et al. Liquid Phase Behavior of Ionic Liquids with Alcohols: Experimental Studies and Modeling [J]. J Phys Chem B, 2006,110 (18): 9354-9361
    [54] Karodia N, Guise S, Newlands C, et al. Clean catalysis with ionic solvents phosphonium tosylates for hydroformylation [J]. Chem Commun, 1998, 21: 2341 -2342
    [55] Dupont J, Silva S M, de Souza R F. Mobile phase effects in Rh/sulfonated phosphine/molten salts catalysed the biphasic hydroformylation of heavy oleflns [J]. Catal Lett, 2001, 77(1-3): 131-133
    [56] Brauer D J, Kottsieper K W, Liek C, et al. Phosphines with 2-imidazolium and para-phenyl-2-imidazoliummoieties-synthesis and application in two-phase catalysis [J]. J Organoet Chem, 2001, 630: 177-184
    [57] Kottsieper K W, Stelzer O, Wasserscheid P. 1-Vinylimidazole-a versatile building block for the synthesis of cationic phosphines useful in ionic liquid biphasic catalysis [J]. J Mol Catal A: Chem, 2001,175: 285-288
    [58] Mehnert C P, Cook R A, Dispenziere N C, et al. Biphasic hydroformylation catalysis in ionic liquid media [J]. Polyhedron, 2004,23(17): 2679-2688
    [59] Yang Y, Deng C X, Yuan Y Z. Characterization and hydroformylation performance of mesoporous MCM-41-supported water-soluble Rh complex dissolved in ionic liquids [J]. J Catal, 2005,232(1): 108-116
    [60] Peng Q R, Deng C X, Yang Y, et al. Recycle and Recovery of Rhodium Complexes With Water-Soluble and Amphiphilic Phosphines in Ionic Liquids for Hydroformylation of 1-Hexene [J]. React Kinet Catal Lett, 2007, 90(1): 53-60
    [61] Lin Q, Fu H Y, Yuan M L, et al. Carbonylation of Aryl Halide Catalyzed by Active-carbon Supported Ionic Liquid-phase Palladium Catalyst [J]. Acta Phy- Chim Sin, 2006,22(10): 1272-1276
    [62] Rahman M T, Fukuyama T, Naoya K, et al. Low pressure Pd-catalyzed in ionic liquid using a multiphase microflow system [J]. Chem Commun, 2006: 2236-2238
    [63] Stenzell O, Br(?)ll R, Wahner U M, et al. Oligomerization of olefins in a chloroaluminate ionic liquid [J]. J Mol Catal A: Chem, 2003,192: 217-222
    [64] Dupont J, Fonseca G S, Umpierre A P, et al. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions [J]. J Am Chem Soc, 2002,124: 4228-4229
    [65] Wolfson A, Vankelecom I F J, Jacobs P A. Co-immobilization of transition-metal complexes and ionic liquids in a polymeric support for liquid-phase hydrogenations [J]. Tetrahedron Lett, 2003,44: 1195-1198
    [66] Geldbach T J, Dyson P J A. Versatile Ruthenium Precursor for Biphasic Catalysis and Its Application in Ionic Liquid Biphasic Transfer Hydrogenation: Conventional vs Task-Specific Catalysts [J]. J Am Chem Soc, 2004,126: 8114-8115
    [67] Geldbach T J, Dyson P J. Searching for molecular arene hydrogenation catalysis in ionic liquids [J]. J Organomet Chem, 2005,690: 3552-3557
    [68] Zhao D B, Dysona P J, Laurenczy G, et al. On the catalytic activity of cluster anions in styrene hydrogenation:considerable enhancements in ionic liquids compared to molecular solvents[J]. J Mol Catal A: Chem, 2004,1214:19-25
    [69] Geldbach T J, Zhao D B, Castillo N C, et al. Biphasic Hydrosilylation in Ionic Liquids: A Process Set for Industrial Implementation [J]. J Am Chem Soc, 2006, 128: 9773-9780
    [70] Maciejewski H, Wawrzy'nczak A, Dutkiewicz M, et al. Silicone waxes-synthesis via hydrosilylationin homo- and heterogeneous systems [J]. J Mol Catal A: Chem, 2006,257:141-148
    [71] Zou G, Wang Z Y, Zhu J R et al.. Developing an ionic medium for ligandless-palladium-catalysed Suzuki and Heck couplings [J]. J Mol Catal A: Chem, 2003,206:193-198
    [72] Cassol C C, Umpierre A P, Machado G, et al. The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction [J]. J Am Chem Soc, 2005,127: 3298-3299
    [73] de Bellefon C, Pollet E, Grenouillet P. Molten salts ionic liquids/to improve the activity, selectivity andstability of the palladium catalysed Trost-Tsuji C-C coupling in biphasic media[J]. J Mol Catal A: Chem,1999,145: 121-126
    [74] Lee J K, Kim M J. Ionic Liquid-Coated Enzyme for Biocatalysis in Organic Solvent [J]. J Org Chem, 2002,67: 6845-6847
    [75] Dell'Anna M M, Gallo V, Mastrorilli P, et al. Metal catalysed Michaeladditions in ionic liquids [J]. Chem Commun, 2002, (5): 434-435
    [76] Vallee C, Valerio C, Chauvin Y, et al. The catalytic isomerization reactions of 2-methyl-3-butenenitrile into 3-pentenenitrile in ionic liquids [J]. J Mol Catal A: Chem, 2004,214(1): 71-81
    [77] Valente A A, Petrovski Z, Branco L C, et al. Epoxidation of cyclooctene catalyzed by dioxomolybdenum(VI) complexes in ionic liquids [J]. J Mol Catal A: Chem, 2004,218:5-11
    [78] Han X X, Daniel W. Ionic Liquids in Separations [J]. Acc Chem Res, 2007,40(11): 1079-1086
    [79] Jairton D, Roberto F, Suarez P. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis [J]. Chem Rev, 2002,102: 3667-3692
    [80] Bara J E, Hatakeyama E S, Gabriel C J, et al. Synthesis and light gas separations in cross-linked Gemini room tempertature ionic liquid polymer membranes [J]. J Membrane Science, 2008, 316(1-2): 186-191
    [81] Jared L, Ding R F, Ellern A, et al. Structure and Properties of High Stability Geminal Dicationic Ionic Liquids [J]. J Am Chem Soc, 2005,127: 593-604
    [82] Xiao J C, Shreeve J M. Synthesis of 2,2-Biimidazolium-Based Ionic Liquids: Use as a New Reaction Medium and Liqand for Palladium-Catalyzed Suzuki Cross-Coupling Reactions [J]. J Org Chem, 2005, 70: 3072-3078
    [83] Park S B, Alper H. Highly Efficient, Recyclable Pd(Ⅱ) Catalysts with Bisimidazole Ligands for the Heck Reaction in Ionic Liquids [J]. Org Lett, 2003, 5: 3209-3212
    [84] Xiao J C, Twamley B, Shreeve J M. An Ionic Liquid-Coordinated Palladium Complex: A Highly Efficient and Recyclable Catalyst for the Heck Reaction [J]. Org Lett, 2004,6: 3845-3847
    [85] Xiao J C, Ye C F, Shreeve J M. Bipyridinium Ionic Liquid-Promoted Cross-Coupling Reactions Between Perfluoroalkyl or Pentafluorophenyl Halides and Aryl Iodides [J]. Org Lett, 2005, 7: 1963-1965
    [86] Han X X, Armstrong D W. Using Geminal Dicationic Ionic Liquids as Solvents for High-Temperature Organic Reactions [J]. Org Lett, 2005, 7: 4205-4208
    [87] Franciso A, Irina P, Miguel Y. Non-conventional methodologies for transition-metal catalysed catbon-carbon coupling: a critical overview Part 1: The Heck reaction [J]. Tetrahedron, 2005,61: 11771-11835
    [1] Pedersen C J. Polyethers and Their Complexes with Metal Salts [J]. J Am Chem Soc, 1967, 89(26): 7017-7036
    [2] Gibson H W, Yamaguchi N, Jones J W. Spramolecular Pseuorotaxane Polymers from Complementary Parirs of Homoditopic Molecules [J]. J Am Chem Soc, 2003,125(12): 3522-3533
    [3] Nuzzo R G, Haynie S L, Wilson M E, et al. Synthesis of Functional Chelating Diphosphines Containing the Bis(2-(diphenylphosphino)ethyl7)amino Moiety and the Use of These Materials in the Prearation of Water-Soluble Diphosphie Complexes of Transition Metals [J]. J Org Chem, 1981,46(14): 2861-2867
    [4] 方东.离子液体的制备及其在精细有机合成中的应用研究[D].博士学位论文.南京:南京理工大学,2008
    [1] Meskens F A J. Methods for the Preparation of Acetals from Alcohols or Oxiranes and Carbonyl Compounds [J]. Synthesis, 1981, (7): 501-505
    [2] Clerici A, Pastori N, Porta O. Efficient acetalisation of aldehydes catalyzed by titanium tetrachloride in a basic medium [J].Tetrahedron, 1998, 54(51): 15679-15690
    [3] Smith B M, Graham A E. Indium triflate mediated acetalization of aldehydes and ketones [J]. Tetrahedron Lett, 2006,47(52): 9317-9319
    [4] Srivastava N, Dasgupta S K, Banik B K. A remarkable bismuth nitrate-catalyzed protection of carbonyl compounds [J]. Tetrahedron Lett, 2003, 44(6): 1191-1193
    [5] Kodama Y, Yamane H, Okumura M, et al. Lewis acid catalyzed aldol-type reaction of 1,1-difluorovinyl methyl ether derivatives [J]. Tetrahedron, 1995, 51(45): 12217- 12228
    [6] Cramarossa M R, Forti L, Ghelfi F. Acetals by AlFe-pillared montmorillonite catalysis [J]. Tetrahedron, 1997, 53(46): 15889-15894
    [7] Robinson M W C, Graham A E. Mesoporous aluminosilicate promoted protection and deprotection of carbonyl compounds [J]. Tetrahedron Lett, 2007,48(27): 4727-4731
    [8] Jermy B R, Pandurangan A. Al-MCM-41 as an efficient heterogeneous catalyst in the acetalization of cyclohexanone with methanol, ethylene glycol and pentaerythritol [J]. J Mol Catal A: Chem, 2006,256(1-2): 184-192
    [9] Karimi B, Ghoreishi-Nezhad M. Highly chemoselective acetalization of carbonyl compounds catalyzed by a novel recyclable ammonium triflate-functionalized silica [J]. J Mol Catal A: Chem, 2007,277(1-2): 262-265
    [10] Zhang F M, Yuan C S, Wang J, et al. Synthesis of fructone over dealmuinated USY supported heteropoly acid and its salt catalysts [J]. J Mol Catal A: Chem, 2006, 247(1-2): 130-137
    [11] Jermy B R, Pandurangan A. H_3PW_(12)O_(40) supported on MCM-41 molecular sieves: An effective catalyst for acetal formation [J]. Appl Catal A: Gen, 2005,295(2): 185-192
    [12] Ali B E, Tijani J, Fettouhi M. Rh(Ⅰ) or Rh(Ⅲ) supported on MCM-41-catalyzed selective hydroformylation-acetalization of aryl alkenes: Effect of the additives [J]. Appl Catal A: Gen, 2006, 303(2): 213-220
    [13] Bueno A C, Goncalves J A, Gusevskaya E V. Palladium-catalyzed oxidation of primary alcohols: Highly selective direct synthesis of acetals [J]. Appl Catal A: Gen, 2007, 329:1-6
    [14] Smith B M, Graham A E. Sequential and tandem oxidation/acetalization procedures for the direct generation of acetals from alcohols [J]. Tetrahedron Lett, 2007, 48(2): 4891-4894
    [15] Wang Z Y, Jiang H F, Ouyang X Y, et al. Pd(Ⅱ)-catalyzed acetalization of terminal olefins with electron-withdrawing groups in supercritical carbon dioxide: selective control and mechanism [J]. Tetrahedron, 2006, 62(42): 9846-9854
    [16] Muschalek B, Weidner I, Butenschon H. Synthesis of tricarbonyl(N-methylisatin) chromium(0) and an unanticipated transformation of a N-MEM to a N-MOM group [J]. J Organomet Chem, 2007, 692(12): 2415-2424
    [17] Dakka J, Goris H. Clean process for propanal oxidation to lactic acid [J]. Catal Today, 2006,117(1-3): 265-270
    [18] Yoshimura Y, Inoue J, Yamazaki N, et al. Synthesis of the 11-membered ring of the marine alkaloids, madangamines [J]. Tetrahedron Lett, 2006,47(20): 3489-3492
    [19] Zhou W, Xu L W, Yang L, et al. Novel br(?)nsted acid-catalyzed Michael-type Friedel-Crafts reactions of indoles and acetalization of aldehydes [J]. J Mol Catal A: Chem, 2006,249(1-2): 129-134
    [20] Gu K, Bi L, Zhao M, et al. Stereoselective synthesis and anti-inflammatory activities of 6- and 7-membered dioxacycloalkanes [J]. Bioorg Med Chem, 2006, 14(5): 1339 -1347
    [21] Kotke M, Schreiner P R. Acid-free organocatalytic acetalization [J]. Tetrahedron, 2006, 62(2-3): 434-439
    [22] Dauben W G, Gerdes J M, Look G C. Organic reactions at high pressure. Conversion of cyclic alkanones and enones to 1,3-dioxolanes [J]. J Org Chem, 1986, 51(25): 4964-4970
    [23] Li D, Shi F, Peng J, et al. Application of Functional Ionic Liquids Possessing Two Adjacent Acid Sites for Acetalization of Aldehydes [J]. J Org Chem, 2004, 69(10): 3582-3585
    [24]张帆,许丹倩,罗书平,等.离子液体催化醛与醇的缩醛化反应[J].化工学报,2004,55(12):2047-2050
    [25] Fang D, Gong K, Shi Q R, et al. A green procedure for the protection of carbonyls catalyzed by novel task-specific room-temperature ionic liquid [J]. Catal Commun, 2007, 8(10): 1463-1466
    [26] Neeraj Gupta, Sonu, Goverdhan L Kad, Singh J. Acidic ionic liquid [Bmim] [HSO_4]: An efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection [J]. Catal Commun, 2007, 8(9): 1323-1328
    [27] Sugimura R, Qiao K, Tomida D, et al. Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation [J]. Catal Commun, 2007, 8(5): 770-772
    [28] Augusti R, Chen H, Eberlin L S, Nefliu M, Cooks R G Atmospheric pressure Eberlin transacetalization reactions in the heterogeneous liquid/gas phase [J]. Int J Mass Spectrom, 2006,253(3): 281-287
    [29] Pilli R A, Robello L G, Camilo N S, et al. Addition of activated olefins to cyclic N-acyliminium ions in ionic liquids [J]. Tetrahedron Lett, 2006,47(10): 1669-1672
    [30] Kim Y J, Varma R S. Microwave-assisted preparation of 1-butyl-3-methylimi- dazolium tetrachlorogallate and its catalytic use in acetal formation under mild conditions [J]. Tetrahedron Lett, 2005,46(43): 7447-7449
    [31] Wu H H, Yang F, Cui P, et al. An efficient procedure for protection of carbonyls in Br(?)nsted acidic ionic liquid [Hmim][BF_4] [J]. Tetrahedron Lett, 2004, 45(25): 4963-4965
    [32] Chen S L, Ji S J, Loh T P. Mukaiyama aldol reaction using ketene silyl acetals with carbonyl compounds in ionic liquids [J]. Tetrahedron Lett, 2004,45(2): 375-377
    [33] 杜玉英,田福利.在离子液体介质中三氯化铟催化缩醛和缩酮反应的研究[J].内蒙古大学学报(自然科学版),2005,36(4):397-401.
    [34]乔焜,邓友全.氯铝酸室温离子液体中缩醛和缩酮反应[J].化学学报,2002,60(3):528-531
    [35] Cole A C, Jensen J L, Ntai I, et al. Novel Br(?)nsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts [J]. J Am Chem Soc, 2002,124(21): 5962-5963
    [36] Xing H B, Wang T, Zhou Z H, Dai Y Y. The sulfonic acid-functionalized ionic liquids with pyridinium cations: Acidities and their acidity-catalytic activity relationships [J]. J Mol Catal A: Chem, 2007,264: 53-59
    [37] Arfan A, Bazureau J P. Efficient Combination of Recyclable Task Specific Ionic Liquid and Microwave Dielectric Heating for the Synthesis of Lipophilic Esters [J]. Org Process Res Dev, 2005, 9(6): 743-748
    [38] Wang Y Y, Jiang D, Dai L Y, et al. Novel Br(?)nsted acidic ionic liquids based on benzimidazolium cation: Synthesis and catalyzed acetalization of aromatic aldehydes with diols [J]. Catal Commun, 2008,9: 2475-2480
    [39] Li X Z, Eli W, Li G Solvent-free synthesis of benzoic esters and benzyl esters in novel Br(?)nsted acidic ionic liquids under microwave irradiation [J]. Catal Commun, 2008, 9: 2264-2268
    [40] Liu S W, Xie C X, Yu S T, et al. Dimerization of rosin using Br(?)nsted-Lewis acidic ionic liquid as catalyst [J]. Catal Commun, 2008,9: 2030-2034
    [41] Fang D, Cheng J, Fei Z H, et al. Synthesis of chalcones via Claisen-Schmidt condensation reaction catalyzed by acyclic acidic ionic liquids [J]. Catal Commun, 2008,9:1924-1927
    [42] Yadav L D S, Srivastava V P, Patel R. Ionic liquid [Hmim]HSO_4-promoted one-pot oxidative conjugate addition of sulfur-centred nucleophiles to Baylis-Hillman adducts [J]. Tetrahedron Lett, 2008,49: 3142-3146;
    [43] Sunitha S, Kanjilal S, Reddy P S, et al. An efficient and chemoselective Br(?)nsted acidic ionic liquid-catalyzed N-Boc protection of amines [J]. Tetrahedron Lett, 2008, 49: 2527-2532
    [44] Cai X J, Cui S H, Qu L P, et al. Alkylation of benzene and dichloromethane to diphenylmethane with acidic ionic liquids [J]. Catal Commun, 2008,9: 1173-1177
    [45] Bao Q X, Qiao K, Tomida D, et al. Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid [J]. Catal Commun, 2008, 9(6): 1383-1388
    [46] Dabiri M, Baghbanzadeh M, Arzroomchilar E. 1-Methylimidazolium triflouroacetate ([Hmim]TFA): An efficient reusable acidic ionic liquid for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines [J]. Catal Commun, 2008, 9: 939-942
    [47] Shen J H, Wang, H, Liu H C, Sun Y, Liu Z M. Br(?)nsted acidic ionic liquids as dual catalyst and solvent for environmentally friendly synthesis of chalcone [J]. J Mol Catal A: Chem, 2008, 280: 24-28
    [48] Potewar T M, Siddiqui S A, Lahoti R J, Srinivasan K V. Efficient and rapid synthesis of l-substituted-1 H-1,2,3,4-tetrazoles in the acidic ionic liquid 1-n-butylimidazolium tetrafluoroborate [J]. Tetrahedron Lett, 2007,48: 1721-1724
    [49] Sugimura R, Qiao K, Tomida D, et al. Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation [J]. Catal Commun, 2007, 8: 770-772
    [50] Yang S D, Wu LY, Yan Z Y, et al. A novel ionic liquid supported organocatalyst of pyrrolidine amide: Synthesis and catalyzed Claisen-Schmidt reaction [J]. J Mol Catal A: Chem, 2007, 268 : 107-111
    [51] Fang D, Luo J, Zhou X L, et al. Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst [J]. Catal Lett, 2007,116: 76-80
    [52] Takabe K, Sugiura M, Asumi Y, et al. Practical optical resolution of dl-muscone using tartaric acid derivatives as a chiral auxiliary [J]. Tetrahedron Lett,2005,46: 3457-3460
    [53] Li H L, Yu S T, Liu F S, et al. Synthesis of dioctyl phthalate using acid functionalized ionic liquid as catalyst [J]. Cata Comm, 2007,8(11): 1759-1762
    [54] Sadula S, Sanjit K, Reddy P S, et al. Liquid-liquid biphasic synthesis of long chain wax esters using the Lewis acidic ionic liquid choline chloride·2ZnCl_2[J]. Tetrahedron Lett,2007,48(29):6962-6965
    [55]张帆,许丹倩,刘宝友,等.Brφensted酸性离子液体催化醛(酮)与二元醇的缩合反应[J].催化学报,2005,26(9):815-818
    [56]范学森,李艳贞,张新迎,等.离子液体介质中FeCl_3·6H_2O催化下芳香醛与5,5-二甲基-1,3-环己二酮的缩合反应[J].有机化学,2005,25(11):1482-1486
    [57] Yong J K, Rajender S V. Microwave-assisted preparation of 1-butyl-3-methyl imidazolium tetrachlorogallate and its catalytic use in acetal formation under mild conditions [J]. Tetrahedron Lett, 2005,46(23): 7447-7449
    [58] Kucherenko A S, Siyutkin D E, Muraviev V O, et al.1(R),2(R)-Bis[(S)- prolinamido]cyclohexane/[bmim][BF_4] ionic liquid as an efficient catalytic system for direct asymmetric aldol reactions [J]. Mendeleev Commun, 2007,17(5): 277-278
    [59] Kim Y J, Varma R S. Microwave-assisted preparation of 1-butyl-3- methylimidazolium tetrachlorogallate and its catalytic use in acetal formation under mild conditions [J]. Tetrahedron Lett, 2005,46: 7447-7449
    [60] Robinson M W C, Graham A E. Mesoporous aluminosilicate promoted protection and deprotection of carbonyl compounds [J].Tetrahedron Lett, 2007,48: 4727-4731
    [61] Smith B M, Graham A E. Indium triflate mediated acetalization of aldehydes and ketones [J]. Tetrahedron Lett, 2006,47: 9317-9319
    [62] Li D, Shi F, Peng J, et al. Application of Functional Ionic Liquids Possessing Two Adjacent Acid Sites for Acetalization of Aldehydes [J]. J Org Chem, 2004, 69: 3582-3585
    [63] Qiao K, Yokoyama C. Koch carbonylation of tertiary alcohols in the presence of acidic ionic liquids [J]. Catal Commun, 2006, 7(7): 450-453
    [64] Wu H, Yang F, Cui P, et al. An efficient procedure for protection of carbonyls in Br(?)nsted acidic ionic liquid [Hmim]BF_4 [J]. Tetrahedron Lett, 2004,45:4963-4965
    [65] Wang Z Y, Jiang H F, Ouyang X Y, et al. Pd(Ⅱ)-catalyzed acetalization of terminal olefins with electron-withdrawing groups in supercritical carbon dioxide: selective control and mechanism [J]. Tetrahedron, 2006,62(42): 9846-9854
    [66] Kotke M, Schreiner P R. Acid-free, organocatalytic acetalization [J]. Tetrahedron, 2006, 62(2-3): 434-439
    [67] Sugimura R, Qiao K, Tomida D, et al. Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation [J]. Catal Commun, 2007, 8(5): 770-772
    [68] Duan Z Y, Gu Y L, Deng Y Q. Green and moisture-stable Lewis acidic ionic liquids (choline chloride ? xZnCl_2) catalyzed protection of carbonyls at room temperature under solvent-free conditions [J]. Catal Commun, 2006, 7(9): 651-656
    [1]唐明明,刘葵,陈孟林.对甲苯磺酸催化合成对硝基本甲酸乙酯的研究[J].应用化工,2003,32(1):42-43
    [2]刘美艳,俞善信,管仕斌.对羟基苯甲酸丁酯合成催化剂研究进展[J].化学推进剂与高分子材料,2006,4(4):29-33
    [3]王会萍,商艳梅,王磊,等.环己酮与丙烯酸甲酯及(S)-3-(2'-氧环己基)-丙酸与醇的酯化反应[J].高等学校化学学报,2006,27(5):894-896
    [4]俞善信,管仕斌,刘美艳.催化酯化合成丁酸正丁酯的研究进展[J].化工文摘,2007,3:46-49
    [5]郑明东,陈同云,胡克良.促进SO_4~(2-)/ZrO_2固体超强酸的制备及催化反应[J].高等学校化学学报,2006,27(6):1086-1090
    [6]吴东辉,李丹.硬脂酸法制备SO_4~(2-)/Fe_2O_3-SiO_2固体酸及其催化性能的初步探讨[J].高等学校化学学报,2001,22(11):1877-1880
    [7]胡石金,许招会,陈德锴.H_3PW_(12)O_(40)TiO_2催化合成对羟基苯甲酸丁酯的研究[J].应用化工,2006,35(10):739-741
    [8]郑明东,陈同云,胡克良.V(V)促进SO_4~(2-)/ZrO_2固体超强酸的制备及催化反应[J].高等学校化学学报,2006,27(6):1086-1090
    [9]吴东辉,李丹.硬脂酸法制备SO_4~(2-)/Fe_2O_3-SiO_2固体酸及其催化性能的初步探讨[J].高等学校化学学报,2001,22(11):1877-1880
    [10]袁兴东,沈健,李国辉,等.表面含磺酸基的介孔分子筛催化剂SBA-15-SO_3H的制备及其催化性能[J].高等学校化学学报.2002,23(12):2332-2335
    [11]周志,蒋天智,刘佳佳.对-硝基苯甲酸甲酯的氟双相催化合成研究[J].化学工程师,2006,9:62-64
    [12]易文斌,蔡春.全氟辛基磺酸稀土金属盐催化氟两相酯化反应[J].有机化学,2005,25(11):1434-1436
    [13]朱建萍,史鸿鑫,项菊萍,等.在氟溶剂中的绿色酯化反应[J].化学学报,2006,64(11):1921-1924
    [14]武光,吴伟.[emim]BF4离子液体催化酯化反应研究[J].现代化工,2006,26(5):31-34
    [15]李福伟,肖林飞,夏春谷.溴化锌.离子液体复合催化体系高效催化合成环状碳酸酯[J].高等学校化学学报.2005,2(26):343-345
    [16] Xing H, Wang T, Zhou Z, et al. Novel Br(?)nsted-Acidic Ionic Liquids for Esterifications [J]. Ind Eng Chem Res, 2005,44(11): 4147-4150.
    [17]桂建舟,刘丹,张晓彤,等.质子酸离子液体催化合成乙酸乙酯的研究[J].工业催化.2006,14(4):36-38
    [18]顾彦龙,杨宏洲,邓友全.室温离子液体中乙酸钠和氯苄催化合成乙酸苄酯[J].化学学报,2002,60(9):1571-1574
    [19] Deng Y Q, Shi F, Beng J J, et al. Ionic liquid as a green catalytic reaction medium for esterifications [J]. J Mol Catal A: Chem, 2001,165( 1-2): 33-36
    [20] Fraga-Dubreuil J, Bourahla K, Rahmouni M, et al. Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media [J]. Catal Commun, 2002, 3(5): 185-190
    [21] Sadula S, Sanjit K, Reddy P S, et al. Liquid-liquid biphasic synthesis of long chain wax esters using the Lewis acidic ionic liquid choline chloride·2ZnCl_2 [J]. Tetrahedron Lett, 2007,48(39): 6962-6965
    [22] Xu J M, Liu B K, Wu W B, et al. Basic Ionic Liquid as Catalysis and Reaction Medium: A Novel and Green Protocol for the Markovnikov Addition of N-Heterocycles to Vinyl Esters, Using a Task-Specific Ionic Liquid, [bmIm]OH [J]. J Org Chem, 2006, 71(10): 3991-3993
    [23] Brinchi L, Germani R, Savelli G Ionic liquids as reaction media for esterification of carboxylate sodium salts with alkyl halides [J]. Tetrahedron Lett, 2003, 44(10): 2027-2029
    [24] Judeh Z M A, Shen H Y, Chi B C, et al. A facile and efficient nucleophilic displacement reaction at room temperature in ionic liquids [J]. Tetrahedron Lett, 2002, 43(51): 9381-9384
    [25] Yoshino T, Imori S, Togo H. Efficient esterification of carboxylic acids and phosphonic acids with trialkyl orthoacetate in ionic liquid [J]. Tetrahedron, 2006,62(6): 1309-1317
    [26] Ganske F, Bornscheuer U T. Lipase-Catalyzed Glucose Fatty Acid Ester Synthesis in Ionic Liquids [J]. Org. Lett, 2005, 7(14): 3097-3098
    [27] Ranu B C, Banerjee S. Ionic Liquid as Catalyst and Reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmIm]OH, in Michael Addition of Active Methylene Compounds to Conjugated Ketones, Carboxylic Esters, and Nitriles [J]. Org. Lett, 2005, 7(14): 3049-3052
    [28] Calo V, Nacci A, Monopoli A, et al. Pd Nanoparticles Catalyzed Stereospecific Synthesis of β-Aryl Cinnamic Esters in Ionic Liquids [J]. J Org Chem, 2003, 68(7): 2929-2933
    [29] Xie C X, Li H L, Li L, et al. Synthesis of plasticizer ester using acid-functionalized ionic liquid as catalyst [J]. J Hazar Mater, 2008,151: 847-850
    [30] Xu J M, Liu B K, Wu W B. Basic Ionic Liquid as Catalysis and Reaction Medium: A Novel and Green Protocol for the Markovnikov Addition of N-Heterocycles to Vinyl Esters, Using a Task-Specific Ionic Liquid, [bmIm]0H [J]. J Org Chem, 2006, 71(10): 3991-3993
    [31] Calo V, Nacci A, Monopoli A, et al. Pd Nanoparticles Catalyzed Stereospecific Synthesis of β-Aryl Cinnamic Esters in Ionic Liquids [J]. J Org Chem, 2003, 68(7): 2929-2933
    [32] Ganske F, Bornscheuer U T. Lipase-Catalyzed Glucose Fatty Acid Ester Synthesis in Ionic Liquids [J]. Org Lett, 2005, 7(14): 3097-3098
    [33] Ranu B C, Banerjee S. Ionic Liquid as Catalyst and Reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmim]OH, in Michael Addition of Active Methylene Compounds to Conjugated Ketones, Carboxylic Esters, and Nitriles [J]. Org Lett, 2005, 7(14): 3049-3052
    [34] 许丹倩,罗书平,刘宝友,等.室温离子液体中催化合成肉桂酸苄酯[J].有机化学,2004,24(1):99-102
    [35] Hernandez-Fernandez F J, de los R(?)os A P, Rubio M, et al. A novel application of supported liquid membranes based on ionic liquids to the selective simultaneous separation of the substrates and products of a transesterification reaction [J]. J Membr. Sci, 2007,293: 73-80
    [36]朱香芹,桂建舟,刘丹,等.功能化酸性离子液体催化合成氯乙酸异丙酯的研究[J].工业催化,2006,14(11):33-36
    [37]李桂花,张锁江,李增喜.离子液体对甲基丙烯醛氧化酯化反应的影响[J].高等学校化学学报,2004,25(6):1137-1138
    [38]张青山,刘爱霞,郭炳南,等.新型N-甲基-N-烯丙基吗啡啉季铵盐类离子液体的合成[J].高等学校化学学报,2005,2(26):340-342
    [39]陈维一,陆军,张勇.离子液体中二茂铁甲酸芳香酯的合成研究[J].有机化学,2006,26(1):87-89
    [1] Cepanec I, Litvi(?) M, Bartolin(?)i(?) A, et al. Ferric chloride/tetraethyl orthosilicate as an efficient system for synthesis of dihydropyrimidinones by Biginelli reaction [J]. Tetrahedron, 2005,61(17): 4275-4280
    [2] Martins M A P, Teixeira M V M, Cunico W, et al. Indium (Ⅲ) bromide catalyzed one-pot synthesis of trichloromethylated tetrahydropyrimidinones [J]. Tetrahedron Lett, 2004,45( 49): 8991-8994
    [3] Liu C J, Wang J, Li Y P. One-pot synthesis of 3,4-dihydro pyrimidin-2(1H)-(thio)ones using strontium(Ⅱ) nitrate as a catalyst [J]. J Mol Catal A: Chem, 2006, 258( 1-2): 367-370
    [4] Suzuki I , Suzumura Y, Takeda K. Metal triflimide as a Lewis acid catalyst for Biginelli reactions in water [J]. Tetrahedron Lett, 2006,47(45): 7861-7864
    [5] Fazaeli R, Tangestaninejad S, Aliyan H, et al. One-pot synthesis of dihydropyrimidinones using facile and reusable polyoxometalate catalysts for the Biginelli reaction [J]. Appl Catal A: Gen, 2006, 309(1): 44-51
    [6] Hojatollah S, Guo Q. A facile and efficient one-pot synthesis of dihydropyrimidinones catalyzed by magnesium bromide under solvent-free conditions [J].Synth Commun, 2004,34(1): 171-179
    [7] Zhang X L, Li Y P, Liu C J, et al. An efficient synthesis of 4-substituted pyrazolyl-3,4-dihydropyrimidin-2(1H)-(thio)ones catalyzed by Mg(ClO4)2 under ultrasound irradiation [J]. J Mol Catal A: Chem, 2006,253(1-2): 207-211
    [8] Legeay J C, Eynde J J V, Bazureau J P. Ionic liquid phase technology supported the three component synthesis of Hantzsch 1,4-dihydropyridines and Biginelli 3,4-dihydropyrimidin-2(lH)-ones under microwave dielectric heating [J]. Tetrahedron, 2005, 61( 52): 12386-12397
    [9] Joseph J K, Jain S L, Sain B. Ion exchange resins as recyclable and heterogeneous solid acid catalysts for the Biginelli condensation: An improved protocol for the synthesis of 3,4-dihydropyrimidin-2-ones [J]. J Mol Catal A: Chem, 2006, 247( 1-2): 99-102
    [10] Bose A K, Manhas M S, Pednekar S, et al. Large scale Biginelli reaction via water-based biphasic media: a green chemistry strategy [J]. Tetrahedron Lett, 2005, 46(11): 1901-1903
    [11] Salehi P, Dabiri M, Zolfigol M A, et al. Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones [J]. Tetrahedron Lett, 2003,44(14): 2889-2891
    [12] Debache A, Boumoud B, Amimour M, et al. Phenylboronic acid as a mild and efficient catalyst for Biginelli reaction [J]. Tetrahedron Lett, 2006, 47(32): 5697 -5699
    [13] Chen W Y, Qin S D, Jin J R. HBF4-catalyzed Biginelli reaction: One-pot synthesis of dihydropyrimidin-2(lH)-ones under solvent-free conditions [J]. Catal Commun, 2007, 8(2): 123-126
    [14] Tu S L, Fang F, Miao C, et al. One-pot synthesis of 3,4-dihydropyrimidin -2(1H)-ones using boric acid as catalyst [J]. Tetrahedron Lett, 2003, 44(32): 6153 -6155
    [15] Maradur S P, Gokavi G S. Heteropoly acid catalyzed synthesis of 3,4-dihydro pyrimidin-2(lH)-ones [J]. Catal Commun, 2007, 8(3): 279-284
    [16] Mabry J, Ganem B. Studies on the Biginelli reaction: a mild and selective route to 3,4-dihydropyrimidin-2(1H)-ones via enamine intermediates [J]. Tetrahedron Lett, 2006,47(1): 55-56
    [17] Wipf P, Cunningham A. A solid phase protocol of the biginelli dihydropyrimidine synthesis suitable for combinatorial chemistry [J]. Tetrahedron Lett, 1995, 36(43): 7819-7822
    [18] Desai B, Dallinger D, Kappe C O. Microwave-assisted solution phase synthesis of dihydropyrimidine C_5 amides and esters [J]. Tetrahedron, 2006,62(19): 4651-4664
    [19] Byk G, Kabha E. Anomalous Regioselective Four-Member Multicomponent Biginelli Reaction Ⅱ: One-Pot Parallel Synthesis of Spiro Heterobicyclic Aliphatic Rings [J]. J Comb Chem, 2004, 6: 596-603
    [20] Huang Y J, YangF Y, Zhu C J. Highly Enantioseletive Biginelli Reaction Using a New Chiral Ytterbium Catalyst: Asymmetric Synthesis of Dihydropyrimidines [J]. J Am Chem Soc, 2005,127: 16386-16387
    [21] Chen X H, Xu X Y, Liu H, et al. Highly Enantioselective Organocatalytic Biginelli Reaction [J]. J Am Chem Soc, 2006,128: 14802-14803
    [22] Ranu B C, Alakananda H A, Jana U. Indium(Ⅲ) Chloride-Catalyzed One-Pot Synthesis of Dihydropyrimidinones by a Three-Component Coupling of 1,3-Dicar- bonyl Compounds, Aldehydes, andUrea: An Improved Procedure for the Biginelli Reaction [J]. J Org Chem, 2000,65: 6270-6272
    [23 ] Bussolari J C, McDonnell P A. A New Substrate for the Biginelli Cyclocondensation: Direct Preparation of 5-Unsubstituted 3,4-Dihydropyrimidin-2(1H)-ones from a(?)-Keto Carboxylic Acid [J]. J Org Chem, 2000, 65: 6777-6779
    [24] Kang F A, Kodah J, Guan Q Y, et al. Efficient Conversion of Biginelli. 3,4-Dihydropyrimidin-2(lH)-one to Pyrimidines via PyBroP-Mediated Coupling [J]. J Org Chem, 2005,70: 1957-1960
    [25] Singh K, Singh S, Mahajan A. Metalation of Biginelli Compounds. A General Unprecedented Route to C-6Functionalized 4-Aryl-3,4-dihydropyrimidinones [J]. J Org Chem, 2005, 70: 6114-6117
    [26] Kappe C O. A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for an N-Acyliminium Ion Intermediate [J]. J Org Chem, 1997, 62: 7201-7204
    [27] Lusch M J, Tallarico J A. Demonstration of the Feasibility of aDirect Solid-Phase Split-Pool Biginelli Synthesis of 3,4-Dihydropyrimidinones [J]. Org Lett, 2004, 6(19): 3237-3240
    [28] Zhu Y L, Huang S L, Wan J, et al. Two Novel DiastereoselectiveThree-Component Reactions of Alkenes or 3,4-Dihydro-(2H)-pyran with Urea/Thioure(?)Aldehyde Mixtures: [4+2] Cycloaddition vs Biginelli-Type Reaction [J]. Org Lett, 2006, 8(12): 2599-2602
    [29] Cohen F, Collins S K, Overman L E. Assembling Polycyclic Bisguanidine Motifs Resembling Batzelladine Alkaloids by Double Tethered Biginelli Condensations [J]. Org Lett, 2003, 5(23): 4485-4488
    [30] Zheng R W, Wang X X, Xu h, et al. Brφnsted acidic ionic liquid: An efficient and reusable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-one [J]. Synth Commun, 2006, 36(11): 1503-1513
    [31] Li M, Guo W S, Wen L R, et al. One-pot synthesis of Biginelli and Hantzsch products catalyzed by non-toxic ionic liquid (BmimSac) and structural determination of two products [J]. J Mol Catal A: Chem, 2006,258(1-2): 133-138
    [32] Shaabani A, Rahmati A. Ionic liquid promoted efficient synthesis of 3,4- dihydropyrimidin-2(1H)-ones [J]. Catal Lett, 2005, 7: 9-14
    [33] Peng J J, Deng Y Q. Ionic liquids catalyzed Biginelli reaction under solvent-free conditions [J]. Tetrahedron Lett, 42(34): 5917-5919
    [34] Fang D , Luo J , Zhou X L, et al. One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids [J]. J Mol Catal A: Chem, 2007,274(1-2): 208-211
    [35] Singh K, Singh J, Singh H. A synthetic entry into fused pyran derivatives through carbon transfer reactions of 1,3-oxazinanes and oxazolidines with carbon nucleophiles [J]. Tetrahedron, 1996, 52(45): 14273-14280
    [36] Armesto D, Horspool W M, Martin N, et al. Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl- 4H-pyrans [J]. J Org Chem, 1989, 54 (13): 3069-3072
    [37] Jin T S, Wang A Q, Wang X, et al. A Clean One-pot Synthesis of Tetrahydrobenzo[b]pyran Derivatives Catalyzed by Hexadecyltrimethyl Ammonium Bromide in Aqueous Media [J]. Synlett, 2004: 871-874
    [38] Wang L M, Shao J H, Tian H, et al. Rare earth perfluorooctanoate [RE(PFO)_3] catalyzed one-pot synthesis of benzopyran derivatives [J]. Fluorine Chem. 2006, 127: 97-100
    [39] Devi I, Bhuyan P J. Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo[b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions [J]. Tetrahedron Lett. 2004, 45(47): 8625-8627
    [40] Balalaie S, Bararjanian M, Amani A M, et al. (S)-Proline as a Neutral and Efficient Catalyst for the One-Pot Synthesis of Tetrahydrobenzo[b]pyran Derivatives in Aqueous Media [J]. Synlett, 2006: 263-267
    [41] Hekmatshoar R, Majedi S, Bakhtiari K. Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives [J]. Catal Commun, 2008,9(2): 307-310
    [42] Tu S J, Gao Y, Guo C, et al. A Convenient Synthesis of 2-Amino-5,6,7,8-Tetrahydr o-5-oxo-4-aryl-7,7-dimethyl-4H-benzo-[b]-pyran-3-Carbonitrile underMicrowave Irradiation [J]. Synth. Commun. 2002, 32: 2137-2141
    [43] Li J T, Xu W Z, Yang L C, et al. One-Pot Synthesis of 2-Amino-4-aryl-3- carbalkoxy-7,7-dimethyl-5,6,7,8-tetrahydrobenzo[b]pyranDerivatives Catalyzed by KF/Basic Al_2O_3 Under Ultrasound Irradiation [J]. Synth Commun. 2004, 34: 4565-4571
    [44] Peng Y Q, Song G H. Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans [J]. Catal. Commun. 2007, 8(2): 111-114
    [45] Balalaie S, Sheikh-Ahmadi M, Bararjanian M. Tetra-methyl ammonium hydroxide: An efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo [b]pyran derivatives in aqueous media [J]. Catal Commun, 2007, 8: 1724-1728
    [46] Dubois P, Marchand G, Gmouh S, et al. Reactions Rates as a Function of Scale within Ionic Liquids: Microscale in Droplet Microreactors versus Macroscale Reactions in the Case of the Grieco Three-Component Condensation Reaction [J]. Chem Eur J, 2007,13: 5642-5648
    [47] Ding Q P, Wu J. Lewis Acid- and Organocatalyst-Cocatalyzed Mylticomponent Reactions of 2-Alkynylbenzaldehydes, Amines, and Ketones [J]. Org Lett, 2007, 9: 4959-4962
    [48] Bourahla K, Derdour A, Rahmouni M, et al. A practical access to novel 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones via sulfur/nitrogen displacement under solvent-free microwave irradiation [J]. Tetrahedron Lett, 2007,48: 5785-5789
    [49] Ranu B C, Jana R, Sowmiah S. An Improved Procedure for the Three-Component Syntehsis of Highly Substituted Pyridines Using Ionic Liquid [J]. J Org Chem, 2007,72:3152-3154
    [50] Abdolmohammadi S, Balalaie S. Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydroprano[c]chromene derivatives in aqueous media [J]. Tetrahedron Lett, 2007,48: 3299-3303
    [51] Devi I, Bhuyan P J. Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo[b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions [J]. Tetrahedron Lett, 2004, 45: 8625-8627
    [52] Fotouchi L, Heravi M M, Fatehi A, et al. Electrogenerated base-promoted synthesis of tetrahydrobenzo[b]pyrans derivatives [J]. Tetrahedron Lett, 2007,48: 5379-5381
    [53] Balalaie S, Sheikh-Ahmadi M, Bararjanian M. Tetra-methyl ammonium hydroxide: An efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo [b]pyran derivatives in aqueous media [J]. Catal Lett, 2007, 8: 1724-1728
    [54] Hekmatshoar R, Majedi S, Bakhtiari K. Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives [J]. Catal Lett, 2008, 9: 307-310
    [1] Laali K K, Gettwert V J. Electrophilic Nitration of Aromatics in Ionic liquid Solvents [J]. J Org Chem. 2001, 66(1): 35-40
    [2] 岳彩波,魏运洋,吕敏杰.BrΦnsted酸性离子液体中芳烃硝化反应的研究[J].含 能材料.2007,15(2):118-121
    [3]马丁·约翰·厄尔,苏哈斯·普拉巴哈卡尔·凯特戴尔.离子液体催化芳烃硝化反应[P].CN1469859A,2004
    [4] Smith K, Liu S. Regioselective mononitration of simple aromatic compounds under mild condition in ionic liquids [J]. Ind Eng Chem Res. 2005,44(23): 8611-8615
    [5] Lancaster N L, Mestro V L. Aromatic nitrations in ionic liquids: the impoaance of cation choice [J]. Chem Commun. 2003: 2812-2813
    [6] Qiao K, Yokoyama C. Nitration of Aromatic Compounds with Nitric Acid Catalyzed by Ionic liquids [J].Chem Lett. 2004,33 (7): 808-809
    [7] Qiao K, Hagiwara H, Yokoyama C. Acidic ionic liquid modified silica gel as novel solid catalysts for esterification and nitration reactions [J]. J Mol Catal A: Chem, 2006, 246(1-2): 65-69
    [8] Rajagopal R, Srinivasan K V. Ultrasound promoted para-selective nitration of phenols in ionic liquid [J]. Ultra Sonochem, 2003,10(1): 41-43
    [9] Ajagopal R R, Srinivasan K V. Mono nitration of phenols with verde nitirate in room temperature ionic liquid [J]. Synth Commun. 2003,33: 961-966
    [10]方东,施群荣,巩凯等.离子液体催化甲苯绿色硝化反应研究[J].含能材料.2007,15(2):122-124
    [11]Radhakrishnan S, Talawar M B, Venugopalan S, et al. Synthesis, characterization and thermolysis studies on 3,7-dinitro-1,3,5,7-tetraazabicyclo[3,3,1]nonane (DPT): A key precursor in the synthesis of most powerful benchmark energetic materials (RDX/HMX) of today [J]. J Hazard Mater, 2008,152: 1317-1324
    [12]Agrawal J P, Hodgson R D. Organic Chemistry of Explosives , John Wiley and Sons, Ltd, Chichester, West Sussex, England, 2007
    [13]曹欣茂主编.奥克托金高性能炸药及其应用[M].北京:兵器工业出版社,1993,175-187
    [14]奚美虹.多磷酸法由DPT制备HMX研究[J].含能材料,1996,4(2):57-61
    [15]李全良,陈军,王建龙.DPT制备HMX工艺研究[J].含能材料,2007,15(5):509-510
    [16]葛忠学,李高明,洪峰,等.绿色硝化技术合成HMX的小试工艺研究[J].火炸药学报,2002,1:45-47
    [17]Gilbert E E, Siele V I. Process for preparing 1,3,5,7-tetranitro-1,3,5,7- tetraazacyclooctane [P]. US3939148,1976-02-17
    [18]Benzinger T M, Coburn M D, Davey R K, et al. Alternative Procedures for Preparing HMX [J]. Propell Explos Pyrotech, 1981,6: 67-73
    [19]齐秀芳,程广斌,段雪蕾,等.Brφnsted酸性功能离子液体存在下甲苯的硝化反应[J].火炸药学报,2007,30(5):12-15
    [20]Fang D, Shi Q R, Cheng J, et al. Regioselective mononitration of aromatic compounds using Br(?)nsted acidic ionic liquids as recoverable catalysts[J]. Appl Catal A: Gen, 2008,345:158-163
    [21] Smith K, Liu S, El-Hiti G A. Regioselective Mononitration of Simple Aromatic Compounds under Mild Conditions in Ionic Liquids [J]. Ind Eng Chem Res, 2005, 44: 8611-8615
    [22]Qian H, Ye Z W, Lv C X. Ultrasonically promoted nitrolysis of DAPT to HMX in ionic liquid [J]. Ultra Sonochem, 2008,15: 326-329
    [23]钱华.五氧化二氮在硝化反应中的应用研究[D].南京:南京理工大学,博士学位论文,2008
    [24]蔡春,吕春绪.五氧化二氮对一元取代苯的研究[J].火炸药学报,2000,23(1):25-27
    [1] Cardenas-Lizana F, G(?)mez-Quero S, Keane M A. Clean Production of Chloroanilines by Selective Gas Phase Hydrogenation over Supported Ni Catalysts [J]. Appl Catal A: Gen, 2008, 334(1-2): 199-206
    [2]舒畅,郑纯智,王日杰,等.催化转移加氢[J].化学通报,2004,67:73-82
    [3] Balcom B D, Furst A. Reduction with Hydrazine Hydrate Catalyzed by Raney Nickel. I. Aromatic Nitro Compounds to Amines [J]. J Am Chem Soc, 1953, 75: 4334-4334
    [4] Hirashima T, Manabe O. Catalytic Reduction of Aromatic Nitro Compounds With Hydrazine in the Presence of Iron(Ⅲ) Chloride and Active Carbon [J]. Chem Lett, 1975,259-260
    [5] Lauwiner M, Rys P, Wissmann J. Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate in the Presence of an Iron Oxide Hydroxide Catalyst. I. The Reduction of Monosubstituted Nitrobenzenes with Hydrazine Hydrate in the Presence of Ferrihydrite [J]. Applied Catal A: General, 1998,172: 141-148
    [6] Vasile I, Hardacre C. Catalysis in Ionic Liquids [J]. Chem Rev, 2007,107: 2615-2665
    [7] Kumelau J, Kamps A P, Tuma D, et al. Solubility of H_2 in the Ionic Liquid [Hmim][Tf_2N] [J]. J Chem Eng Data, 2006, 51: 1364-1367
    [8] Xu D Q, Hu Z Y, Li W W, et al. Hydrogenation in Ionic Liquids: an Alternative Methodology Toward Highly Selective Catalysis of Halonitrobenzenes to Corresponding Haloanilines [J]. J Mol Catal A: Chem, 2005,235:137-142
    [9] Furst A, Berlo R C, Hooton S. Hydrazine as a Reduction Agent for Organic Compounds [J]. Chem Rev, 1964, 65: 51-68
    [10] Kumarraja M, Pitchumani K. Simple and Efficient Reduction of Nitroarenes by Hydrazine in Faujasite Zeolites [J]. Applied Catal A: General, 2004,265(2): 135-139
    [1] Rao P S, Venkataratnam R V. Zinc chloride as a new catalyst for knoevenagel condensation [J]. Tetrahedron Lett, 1991, 32(41): 5821-5823
    [2] 左伯军,王远,等.酸性沸石分子筛催化Knoevenagel综合反应[J].催化学报,2002,23(6):555-558
    [3] Kwak G, Fujiki M. Colored and Luminous Aliphatic Polyester via One-Pot Intra- and Intermolecular Knoevenagel Reactions [J]. Macromolecules, 2004, 37(6): 2021-2025
    [4] Liao J, Wang Q. Ruthenium-Catalyzed Knoevenagel Condensation: A New Route toward Cyano-Substituted Poly(p-phenylenevinylene)s. Macromolecules, 2004, 37 (18): 7061-7063
    [5] Tedeschi L, Enders D. Asymmetric Synthesis of β-Phosphono Malonates via Fe_2O_3-Mediated Phospha-Michael Addition to Knoevenagel Acceptors [J]. Org Lett, 2001, 3(22): 3515-3517
    [6] Bigi F, Chesini L, Maggi R, et al. Montmorillonite KSF as an Inorganic, Water Stable, and Reusable Catalyst for the Knoevenagel Synthesis of Coumarin-3-carboxylic Acids [J]. J Org Chem,1999, 64(3): 1033-1035
    [7] Barluenga J, Riesgo L, Vicente R, et al. Rearrangement of Propargylic Esters: Metal-Based Stereospecific Synthesis of (E)- and (Z)-Knoevenagel Derivatives [J]. J Am Chem Soc, 2007,129(25): 7772-7773
    [8] Zhang X R, Chao W, Chuai Y T, et al. A New N-Type Organic Semiconductor Synthesized by Knoevenagel Condensation of Truxenone and Ethyl Cyanoacetate [J]. Org Lett, 2006, 8(12): 2563-2566
    [9] Kwak G, Fujiki M. Colored and Luminous Aliphatic Polyester via One-Pot Intra- and Intermolecular Knoevenagel Reactions [J]. Macromolecules, 2004, 37(6): 2021-2025
    [10] Fan R, Wang W, Pu D, et al. Tandem Knoevenagel-Michael Addition of Aryl Sulfonimines with Diethyl Malonate for Synthesis of Arylidene Dimalonates [J]. J Org Chem, 2007, 72(15): 5905-5907
    [11] Boucard V. Kinetic Study of the Knoevenagel Condensation Applied to the Synthesis of Poly[bicarbazolylene-alt-phenylenebis(cyanovinylene)]s [J]. Macromolecules, 2001, 34(13): 4308-4313
    [12] Chafin A, Lindsay G, Merwin L, et al. Surprising Isomer Effect in Knoevenagel Condensations: Ortho Isomer Yields Polymer and Meta Isomer Yields Cyclomer [J]. Macromolecules, 1997, 30(5): 1515-1517
    [13] Nokami J, KataokaK, ShiraishiK, et al. Convenient Formation of 4-Hydroxyalk -2-en-1-one Functionality via A Knoevenagel-type Carbon Chain Elongation Reaction of Aldehyde with 1-Arylsulfinylalkan-2-one [J]. J Org Chem, 2001, 66(4):1228-1232
    [14] Inokuchi T, Kawafuchi H. E- or Z-Selective Knoevenagel Condensation of Acetoacetic Derivatives: Effect of Acylated Substituent, that is, TEMPO and Amines, as an Auxiliary, and New Accesses to Trisubstituted E- and Z-2-Alkenals and Furans [J]. J Org Chem, 2006,71(3): 947-953
    [15] Wright M E, Sigman M S. Organometallic nonlinear optical polymers. 3. Copolymeriz ation of bridged bis(ferrocenyl) and bis(cyanoacetate) monomers via the Knoevenagel condensation [J]. Macromolecules, 1992,25(22): 6055-6058
    [16] Ramachary D B, Anebouselvy K, Chowdari N S, et al. Ⅲ Direct Organocatalytic Asymmetric Heterodomino Reactions: The Knoevenagel /Diels-Alder/Epimerization Sequence for the Highly Diastereoselective Synthesis of Symmetrical and Nonsymmetrical Synthons of Benzoannelated Centropolyquinanes [J]. J Org Chem, 2004,69(18): 5838-5849
    [17] Fuchs K, Paquette L A. Access to Protected 2-Alkylidene 1,3-diones by Modified Knoevenagel Reaction in the Presence of Thiophenol. A New Approach to Spirocyclopentanol Construction [J]. J Org Chem, 1994, 59(3): 528-532
    [18] Wirz R, Ferri D, Baiker A. ATR-IR Spectroscopy of Pendant NH_2 Groups on Silica Involved in the Knoevenagel Condensation [J]. Langmuir, 2006,22(8): 3698-3706
    [19] Wright M E, Mullick S. Organic main-chain nonlinear optical polymers. 1. Copolymer ization of bis(arenecarboxaldehydes) and bis(cyanoacetate) monomers via the Knoevenagel condensation [J]. Macromolecules, 1992,25(22): 6045-6049
    [20] Brillon D, Sauve G Silica gel-catalyzed Knoevenagel condensation of peptidyl cyanomethyl ketones with aromatic aldehydes and ketones. A novel Michael acceptor functionality for C-modified peptides: the benzylidene and alkylidene cyanomethyl ketone function [J]. J Org Chem, 1992,57(6): 1838-1842
    [21] Dressier H, GrahamJ E. beta-Cyano- and beta-carbethoxy sulfides, sulfoxide, and sulfones and their Knoevenagel condensation [J]. J Org Chem, 1967,32(4): 985-990
    [22] Ramachary D B, Kishor M. Organocatalytic Sequential One-Pot Double Cascade Asymmetric Synthesis of Wieland-Miescher Ketone Analogues from a Knoevenagel/ Hydrogenation/Robinson Annulation Sequence: Scope and Applications of Organocatalytic Biomimetic Reductions [J]. J Org Chem, 2007,72(14): 5056-5068
    [23] Friedman A R, Graber D R. Stereospecific rearrangement during the piperidine- catalyzed condensation of benzaldehyde and bis(ethylsulfonyl) methane. Abnormal Knoevenagel condensation [J]. J Org Chem, 1972, 37(12): 1902-1907
    [24] Barluenga J, Riesgo L, Vicente R, et al. Rearrangement of Propargylic Esters: Metal-Based Stereospecific Synthesis of (E)- and (Z)-Knoevenagel Derivatives [J]. J Am Chem Soc, 2007,129(25): 7772-7773
    [25] Nokami J, Kataoka K, Shiraishi K, et al. Convenient Formation of 4-Hydroxyalk-2-en -1-one Functionality via A Knoevenagel-type Carbon Chain Elongation Reaction of Aldehyde with 1-Arylsulfinylalkan-2-one [J]. J Org Chem, 2001, 66(4): 1228-1232.
    [26] Khan F A, Dash J, Satapathy R, et al. Hydrotalcite catalysis in ionic liquid medium: a recyclable reaction system for heterogeneous Knoevenagel and nitroaldol condensation [J]. Tetrahedron Lett, 2004,45(15): 3055-3058
    [27] Cabello J A, Campelo J M, Garcia A, et al. Marinas Knoevenagel condensation in the heterogeneous phase using aluminum phosphate-aluminum oxide as a new catalyst [J]. J Org Chem, 1984,49(26): 5195-5197
    [28] Paun C, Barklie J, Goodrich P, et al. Supported and liquid phase task specific ionic liquids for base catalysed Knoevenagel reactions [J]. J Mol Catal A: Chem, 2007, 269(1-2): 64-71
    [29] 边延江,秦英,肖立伟.Knoevenagel缩合反应研究的新进展[J].有机化学,2006,26(9):1165-1172
    [30] 韩雪峰,王欣会.室温离子液体介质中芳醛与丙二腈的Knoevenagel缩合反应[J].化学世界,2007,48(6):362-365
    [31] 林棋,马梦林,蒋维东,等.离子液体介质中Knoevenagel缩合反应研究[J].四川大学学报(自然科学版),2007,44(2):391-394
    [32] 厉嘉云,彭家建,邱化玉,等离子液体功能化二氧化硅催化Knoevenagel反应[J].有机化学,2007,27(4):483-487
    [33] Wang Y, Shang Z C, Wu T X, et al. Synthetic and theoretical study on proline-catalyzed Knoevenagel condensation in ionic liquid [J]. J Mol Catal A: Chem, 2007,253(1-2): 212-221
    [34]岳彩波,魏运洋.功能性离子液体催化Knoevenagel缩合反应[J].精细化工,2007,24(2):166-168
    [35]徐欣明,李毅群,周美云.功能化离子液体氯化1-(2-羟乙基)-3-甲基咪唑(?)盐催化的Knoevenagel缩合反应[J].有机化学,2004,24(10):1253-1256
    [36] Li Y Q, Xu X M, Zhou M Y. n-Butyl Pyridinium Nitrate as a Reusable Ionic Liquid Medium for Knoevenagel Condensation [J]. Chin Chem Lett, 2003, 14(5): 448-450
    [37] Paun C, Barklie J, Goodrich P, et al. Supported and liquid phase task specific ionic liquids for base catalyzed Knoevenagel reactions [J]. J Mol Catal A: Chem, 2007, 269(1-2): 64-71
    [38] Gao G H, Lu L, Zou T, et al. Basic Ionic Liquid: A Reusable Catalyst for Knoevenagel Condensation in Aqueous Media [J]. Chem Res Chinese Universities, 2007,23(2): 169-172
    [39] Xin X, Guo X, Duan H F, et al. Efficient Knoevenagel condensation catalyzed by cyclic guanidinium lactate ionic liquid as medium [J]. Catal Commun, 2007, 8(2): 115-117
    [40] Wang Y, Shang Z C, Wu T X, et al. Synthetic and theoretical study on prolinecatalyzed Knoevenagel condensation in ionic liquid [J]. J Mol Catal A: Chem, 2006, 253(1-2): 212-221
    [41] Formentin P, Garcia H, Leyva A. Assessment of the suitability of imidazolium ionic liquids as reaction medium for base-catalysed reactions: Case of Knoevenagel and Claisen-Schmidt reactions [J]. J Mol Catal A: Chem, 2004,214(1): 137-142
    [42]韩雪峰,吴海燕.微波辐射下室温离子液体介质中的Knoevenagel缩合反应[J].内蒙古大学学报(自然科学版),2007,38(3):292-295
    [43]邵国强.离子液体中微波促进的Knoevenagel缩合反应[J].合成化学,2003,11(5):440-442
    [44] Harjani J R, Nara S J, Salunkhe M M. Lewis acidic ionic liquids for the synthesis of electrophilicalkenes via the Knoevenagel condensation [J]. Tetrahedron Lett, 2002, 43(6):1127-1130
    [45] Morrison D W, Forbes D C, Davis J H. Base-promoted reactions in ionic liquid solvents.The Knoevenagel and Robinson annulation reactions [J]. Tetrahedron Lett, 2001,42(35): 6053-6055
    [46] Cai Y Q, Peng Y Q, Song G H. Amino-functionalized Ionic Liquid as an Efficient and Recyclable Catalyst for Knoevenagel Reactions in Water [J]. Catal Lett, 2006, 109(1-2): 61-64
    [47] Gao G H, Lu L, Zou T, et al. Basic Ionic Liquid A Reusable Catalyst for Knoevenagel Condensation in Aqueous Media [J]. Chem Res Chinese University, 2007, 23(2): 169-172.
    [48] Gao G H, Gao J B, Zhou W J. Aqueous Knoevenagel Condensation Catalyzed by Aminopropyl-functionalized MCM-41 [J]. Chin Chem Lett, 2006,17(10): 1293-1296
    [49]王利民,盛佳,张亮,等.无溶剂条件下Yb(OTf)_3催化的亚甲基化合物和醛的Knoevenagel反应[J].有机化学,2005,25(8):964-968
    [50]刘雄伟,姜恒,官红.室温无溶剂条件下醋酸锌催化的Knoevenagel缩合反应[J].有机化学.2007,27(1):131-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700