生物质选择性热解液化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质快速热解液化是一种高效的生物质转化利用技术,获得了广泛的关注,但目前还没有实现产业化应用:此外生物质热解液化技术的推广应用还面临着一大难题:常规生物油没有成熟的应用市场,作为液体燃料使用时,品质较差,作为化工原料使用时,分离提取困难。基于此背景,本文的研究内容包括以下两个方面:
     1.生物质选择性热解液化制备高品位液体燃料以及高附加值化学品的初步研究
     通过Py-GC/MS实验,研究了生物质的快速热解反应途径和机理。纤维素快速热解的反应途径主要包括:解聚形成左旋葡聚糖和脱水低聚糖等产物、解聚并脱水形成多种脱水糖衍生物、吡喃环开环而后缩醛形成呋喃类产物、吡喃环开裂形成小分子物质;木聚糖和纤维素具有较为相似的热解机理,但具体的热解反应途径则有很大的差别;生物质快速热解的产物分布受其化学组成以及灰分催化的影响。
     以生物质常规热解产物在线催化裂解获得高品位液体燃料为目标,通过Py-GC/MS实验考察了多种催化剂的催化效果,成功筛选出了Pd/Ce02-TiO2(金红石型)催化剂。该催化剂能够促进木质素热解低聚物的二次裂解而形成挥发性酚类产物,同时降低醛类和糖类产物,增加酮类和环戊酮类产物,但却略微增加了酸类产物,由此可知催化生物油的燃料品质(除了酸度)将会得到改善。
     针对生物质热解产物中最难处理的低聚物,以各种改性的介孔SBA-15为催化剂进行催化裂解研究,成功筛选出了Pd/SBA-15催化剂。该催化剂就能够极大地促进木质素热解低聚物发生裂解形成挥发性酚类产物,脱除酚类物质侧链上的羰基,并对侧链上的C=C进行加氢,同时还能大幅降低或完全脱除糖类产物、醛类产物以及含羟基的酮类产物,促进呋喃类产物的脱羰形成轻质呋喃,降低酸类产物,并增加甲醇、不含羟基的酮类物质以及烃类物质,由此可以显著提高催化生物油的燃料品质。
     提出了氯化锌催化热解生物质联产制备糠醛和活性炭的技术:对生物质浸渍负载ZnC12后进行快速热解时,ZnCl2的催化能够抑制木质素的热解液化以及综纤维素的开环断裂,同时促进综纤维素的解聚及脱水而主要形成糠醛和三种脱水糖衍生物(左旋葡萄糖酮、1,4:3,6-双脱水-a-D-吡喃葡萄糖和1-羟基-3,6-二氧二环[3.2.1]2-辛酮),其中脱水糖衍生物经ZnC12二次裂解后都转化为糠醛;以玉米芯为原料,在不低于15 wt%的ZnCl2负载量和340℃的热解温度下,糠醛的最高产率可达8 wt%以上;将剩余的固体产物进一步加热到500℃活化即可获得活性炭。
     进一步提出了生物质选择性热解液化制备其他化学品的技术:将固体超强酸和纤维素(或生物质)机械混合后进行快速热解,从而可获得高产率高纯度的左旋葡萄糖酮;在纤维素上浸渍负载KCl和CaCl2后快速热解,可以提高羟基乙醛和羟基丙酮的产率;利用固体超强酸对纤维素快速热解产物进行催化裂解,可以制备呋喃和5-甲基糠醛;等等。
     2.自热式生物质热解液化装置的研制以及常规生物油的分析和应用研究
     针对常规快速热解液化的技术要求,基于流化床式热解液化反应器,并采用两级螺旋进料系统以及喷雾与降膜复合式冷凝装置,参与研制了生物质热解液化小试装置;随后以热解副产物焦炭为热源,不可冷凝气体为流化载气,参与研制了处理量为120 kg/h的自热式热解液化中试装置;大量的热解液化试验证实了不同生物质原料热解制备生物油的产率都可达50 wt%或60 wt%以上,热值可达16~18 MJ/kg。
     以稻壳为原料制取的生物油,具有较高的氮和金属元素含量,并且呈现出了一些非牛顿流体特性;它的热安定性较差,这可以通过添加甲醇进行改善;腐蚀测试表明,生物油对碳钢和铝有强烈的腐蚀,对黄铜有轻微腐蚀,而对奥氏体不锈钢基本没有影响,当和柴油乳化后,乳化油的腐蚀性能大幅下降;此外,四球机摩擦磨损试验表明,生物油具有一定的润滑性能,其极压、抗磨和减摩性能都优于0#柴油。
     利用生物油富含羰基类、羧酸类和酚类物质的特性,将其和尿素混合后通过简单的程序加热至140℃就能够制得缓释氮肥;此外,生物油可以作为一种初级液体燃料燃烧使用,其雾化燃烧的一大技术难题是点火,通过合理的燃烧技术,能够有效地控制CO和NOx的排放。
Fast pyrolysis is a promising technique to convert lignocellulosic biomass mainly into a liquid product known as bio-oil. It has received extensive attentions in recent years, but not industrially utilized at present. The commercialization of the biomass fast pyrolysis technique will encounter the poor marketability problem of bio-oils, since crude bio-oils are hard to be used as liquid fuels due to the poor fuel properties, and also difficult for chemical recovery owing to the complex chemical composition. Based on this background, the work performed in this thesis can be divided into two sections.
     1. Preliminary research on selective fast pyrolysis of biomass to produce high-grade liquid fuels and valued-added chemicals
     According to the Py-GC/MS experiments, the fast pyrolytic pathways of the cellulose mainly include the depolymerization to form levoglucosan and anhydro-oligosaccharides, the depolymerization and dehydration to form various sugar derivatives, the ring-opening and acetalization to form various furan products, as well as the ring fragmentation to form various light products. Xylan has the similar reaction mechanisms as cellulose in its pyrolysis, but its detailed pyrolytic pathways differ greatly from those of cellulose. The pyrolytic product distribution of biomass materials is influenced by their component composition and the ash catalysis.
     On-line catalytic cracking of biomass fast pyrolysis vapors is a common upgrading way to obtain high-grade liquid fuels. Among the various catalysts tested in the Py-GC/MS. experiments, the Pd/CeO2-TiO2(Rutile) shows promising catalytic effects. The catalytic cracking by it will cause the conversion of the lignin-derived oligomers to monomeric phenolic compounds, decrease the aldehydes and sugars, increase the ketones and cyclopentanones, but also slightly increase the acids. According to these catalytic effects, the fuel properties of the catalytic bio-oil will be improved except the acidity.
     Various modified mesoporous SBA-15 catalysts are prepared for catalytic cracking of biomass fast pyrolysis vapors, mainly aiming at the oligomers which are difficult to upgrade. The Pd/SBA-15 catalysts show excellent catalytic capability. After catalysis, the lignin-derived oligomers will be cracked to monomeric phenols which are further decarbonylated and hydrotreated to form phenols without carbonyl group and unsaturated C-C bond on the side-chain. Moreover, the anhydrosugars are almost completely eliminated, and the furans are decarbonylated to form light ones. The linear aldehydes are significantly decreased, while the acids were slightly decreased. The linear ketones without the hydroxyl group, methanol and hydrocarbons are all increased. These catalytic effects will improve the fuel properties of the catalytic bio-oils considerably.
     A new technique is developed for the co-production of furfural and activated carbon from pyrolysis of biomass materials impregnated with ZnCl2. During the fast pyrolysis process, the catalysis of ZnCl2 will inhibit the devolatilization of lignin and pyrolytic ring scission of holocellulose, while promote the formation of furfural and three anhydrosugars (levoglucosenone, 1,4:3,6-dianhydro-a-D-glucopyranose). These anhydrosugars can be converted to furfural through the secondary catalysis by ZnCl2. Fast pyrolysis of the corncob impregnated with at least 15 wt% ZnCl2 at around 340℃could obtain the furfural yield over 8 wt%. The solid residues from the fast pyrolysis process can be further activated at 500℃to produce activated carbons.
     Several other selective fast pyrolysis techniques are developed for the production of different chemicals. Fast pyrolysis of cellulose (or biomass) mixed with solid super acids (sulfated metal oxides) allows the production of levoglucosenone with high yield and purity. Fast pyrolysis of cellulose impregnated with KCl and CaCl2 can promote the formation of hydroxyacetaldehyde and acetol. In addition, fast pyrolysis of pure cellulose followed with catalytic cracking of the vapors by using solid super acids will increase the yields of furan and 5-methyl furfural.
     2. Development of auto-thermal biomass fast pyrolysis sets together with analysis and application studies on the rice husk bio-oil
     Based on the principles of the fast pyrolysis technique, a lab-scale biomass fast pyrolysis set is firstly developed, by using fluidized bed pyrolysis reactor, two screw feeding system, as well as the combined spray and falling film condenser. Afterwards, an intermediate auto-thermal biomass fast pyrolysis set with the capacity of 120 kg/h is successfully established, by using the char product as the heat source and the non-condensable gas as the carrier gas. A large number of pyrolysis experiments indicate that the bio-oil yield from different biomass materials will be over 50 wt% or 60 wt%, and the heating value of the bio-oils is between 16 and 18 MJ/kg.
     Rice husk is employed to produce bio-oil on the intermediate pyrolysis set. The rice husk bio-oil contains high amounts of nitrogen and inorganic elements which are feedstock dependent, and exhibits a little non-Newtonian fluid behavior. It has poor thermal stability which can be improved by the addition of methanol. The bio-oil is very corrosive to mild steel and aluminum, slightly corrosive to brass, and non-corrosive to stainless steel. The corrosion properties will be reduced after emulsification of the bio-oil with diesel oil. Moreover, the tribological tests on a four-ball machine indicate that the bio-oil possesses some lubricity, with better extreme pressure, anti-wear and friction-reducing properties than the 0# diesel oil.
     The rice husk bio-oil contains abundant carbonyl, phenolic and carboxyl groups, and can react with urea to produce the slow-release organic nitrogen fertilizers very conveniently by programmed heating of the bio-oil/urea mixtures to a final temperature of 140℃. Moreover, the bio-oil can be used a low-grade liquid fuel for spray combustion, with a major problem of ignition. With the proper combustion technique, the CO and NOx emissions can be well controlled.
引文
[1]Bridgwater A V. Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis 1999,51, (1-2),3-22.
    [2]Bridgwater A V, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Organic Geochemistry 1999,30, (12),1479-1493.
    [3]Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy & Fuels 2006,20, (3),848-889.
    [4]Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass. Renewable & Sustainable Energy Reviews 2000,4, (1),1-73.
    [5]Bridgwater A V. Biomass fast pyrolysis. Thermal Science 2004,8,21-49.
    [6]何芳,易维明,徐梁,蔡均猛,王丽红.应用同步热分析仪确定小麦秸秆热解需热量.农业工程学报2005,21,(8),122-125.
    [7]Morris K W. Fast pyrolysis of bagasse to produce biooil fuel for power generation. International Sugar Journal 2001,103,259-263.
    [8]Milne T A, Agblevor F, Davis M, Deutch S, Johnson D, A review of chemical composition of fast pyrolysis oils. In Devolopments in thermochemical biomass conversion Bridgwater, A. V, Ed. Blackie Academic & Professional:London,1997; pp 409-424.
    [9]Oasmaa A, Kuoppala E, Gust S, Solantausta Y. Fast pyrolysis of forestry residue.1. Effect of extractives on phase separation of pyrolysis liquids. Energy & Fuels 2003,17, (1),1-12.
    [10]Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C. Vacuum pyrolysis of softwood and hardwood biomass-Comparison between product yields and bio-oil properties. Journal of Analytical and Applied Pyrolysis 2007,78, (1),104-116.
    [11]Harinen S. Analysis of the top phase fraction of wood pyrolysis liquids. University of Jyvaskyla,2004.
    [12]Radlein D. Study of levoglucosan production-A review. CPL Press:2002.
    [13]Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C. Multiphase structure of bio-oils. Energy & Fuels 2006,20, (1),364-375.
    [14]Fratini E, Bonini M, Oasmaa A, Solantausta Y, Teixeira J, Baglioni P. SANS analysis of the microstructural evolution during the aging of pyrolysis oils from biomass. Langmuir 2006,22, (1), 306-312.
    [15]Calabria R, Chiariello F, Massoli P. Combustion fundamentals of pyrolysis oil based fuels. Experimental Thermal and Fluid Science 2007,31, (5),413-420.
    [16]Oasmaa A, Leppamaki E, Koponen P, Levander J, Tapola E Physical characterization of biomass-based pyrolysis liquids. Application of standard fuel oil analyses; Technical Research Centre of Finland:1997.
    [17]Ba T Y, Chaala A, Garcia-Perez M, Rodrigue D, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energy & Fuels 2004,18, (3),704-712.
    [18]Ba T Y, Chaala A, Garcia-Perez M, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Storage stability. Energy & Fuels 2004,18, (1),188-201.
    [19]Oasmaa A, Meier D. Norms and standards for fast pyrolysis liquids-1. Round robin test. Journal of Analytical and Applied Pyrolysis 2005,73, (2),323-334.
    [20]Oasmaa A, Czernik S. Fuel oil quality of biomass pyrolysis oils-State of the art for the end user. Energy& Fuels 1999,13, (4),914-921.
    [21]Hallett W L H, Clark N A. A model for the evaporation of biomass pyrolysis oil droplets. Fuel 2006,85, (4),532-544.
    [22]Darmstadt H, Garcia-Perez M, Adnot A, Chaala A, Kretschmer D, Roy C. Corrosion of metals by bio-oil obtained by vacuum pyrolysis of softwood bark residues. An X-ray photoelectron spectroscopy and auger electron spectroscopy study. Energy & Fuels 2004,18,(5), 1291-1301.
    [23]Lu Q, Zhang J, Zhu X F. Corrosion properties of bio-oil and its emulsions with diesel. Chinese Science Bulletin 2008,53, (23),3726-3734.
    [24]Oasmaa A, Kuoppala E. Fast pyrolysis of forestry residue.3. Storage stability of liquid fuel. Energy & Fuels 2003,17, (4),1075-1084.
    [25]Diebold J P A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils; National Renewable Energy Laboratory, NREL/SR-570-27613:1999.
    [26]Oasmaa A, Peacocke C A guide to physical property characterisation of biomass-derived fast pyrolysis liquids; Technical Research Centre of Finland:2001.
    [27]Boucher M E, Chaala A, Pakdel H, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part Ⅱ:Stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass & Bioenergy 2000,19, (5), 351-361.
    [28]Chaala A, Ba T, Garcia-Perez M, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark:Aging and thermal stability. Energy & Fuels 2004,18, (5), 1535-1542.
    [29]Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C. Evaluation of the influence of stainless steel and copper on the aging process of bio-oil. Energy & Fuels 2006,20, (2),786-795.
    [30]Gratson D A, Results of toxicological testing of whole wood oils derived from the fast pyrolysis biomass. In Biomass Pyrolysis Oil Properties and Combustion Meeting, Colorado,1994; pp 203-211.
    [31]Diebold J P A review of the toxicity of biomass pyrolysis liquids formed at low temperatures; National Renewable Energy Laboratory, NREL/TP-430-22739:1997.
    [32]Girard P, Blin J, Environmental, health and safety PyNe working Group:Assessment of bio-oil toxicity for safe handling and transportation. In Pyrolysis and gasification of biomass and waste Bridgwater, A. V., Ed. Newbury:CPL Press:2003; pp 155-160.
    [33]Blin J, Girard P. Biotox-Bio-oil toxicity assessment. PyNe newsletter 2006,19,9.
    [34]Piskorz J, Radlein D, Determination of biodegradation rates of bio-oil by respiromerty. In Fast pyrolysis of biomass:a handbook, CPL Press:1999.
    [35]Blin J, Volle G, Girard P, Bridgwater T, Meier D. Biodegradability of biomass pyrolysis oils: Comparison to conventional petroleum fuels and alternatives fuels in current use. Fuel 2007,86, (17-18),2679-2686.
    [36]Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysis liquids from biomass. Renewable & Sustainable Energy Reviews 2007,11, (6),1056-1086.
    [37]Scahill J W, Diebold J P, Feik C, Removal of residual char fines from pyrolysis vapors by hot gas filtration. In Developments in Thermochemical Biomass Conversion, Blackie Academic & Professional:London,1997.
    [38]Oasmaa A, Sipila K, Solantausta Y, Kuoppala E. Quality improvement of pyrolysis liquid: Effect of light volatiles on the stability of pyrolysis liquids. Energy & Fuels 2005,19, (6), 2556-2561.
    [39]Diebold J P, Czernik S. Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy & Fuels 1997,11, (5),1081-1091.
    [40]Oasmaa A, Kuoppala E, Selin J F, Gust S, Solantausta Y. Fast pyrolysis of forestry residue and pine.4. Improvement of the product quality by solvent addition. Energy & Fuels 2004,18, (5), 1578-1583.
    [41]Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater A V, Grimm H P, Soldaini I, Webster A, Baglioni P. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part 1:emulsion production. Biomass & Bioenergy 2003,25, (1), 85-99.
    [42]郭晓亚,颜涌捷,任铮伟.生物质油精制中催化剂的应用及进展.太阳能学报2003,24,(2),206-212.
    [43]Bridgwater A. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catalysis Today 1996,29,285-295.
    [44]Elliott D C. Historical developments in hydroprocessing bio-oils. Energy & Fuels 2007,21, (3),1792-1815.
    [45]Gagnon J, Kaliaguine S. Catalytic hydrotreatment of vacuum pyrolysis oils from wood. Industrial & Engineering Chemistry Research 1988,27,1783-1788.
    [46]Samolada M C, Baldauf W, Vasalos I A. Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel 1998,77,1667-1675.
    [47]Elliott D C, Neuenschwander G G, Liquid fuels by low-severity hydrotreating of biocrude. In Developments in thermochemical biomass conversion Bridgwater, A. V.; Boocock, D. G. B., Eds. Black Academic & Professional:London,1996; pp 611-621.
    [48]Elliott D C, Baker E G, Piskorz J, Scott D S, Solantausta Y. Production of liquid hydrocarbons fuels from peat. Energy & Fuels 1988,2,234-235.
    [49]Piskorz J, Majerski P, Radlein D, Scott D S. Conversion of lignins to hydrocarbon fuels. Energy & Fuels 1989,3,723-726.
    [50]Zhang S P, Yan Y J, Li T C, Ren Z W. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresource Technology 2005,96, (5),545-550.
    [51]Mahfud F H, Ghijsen F, Heeres H J. Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts.' Journal of Molecular Catalysis a-Chemical 2007,264, (1-2),227-236.
    [52]Peng J, Chen P, Lou H, Zheng X M. Catalytic upgrading of bio-oil by HZSM-5 in sub-and super-critical ethanol. Bioresource Technology 2009,100, (13),3415-3418.
    [53]Tang Z, Lu Q, Zhang Y, Zhu X F, Guo Q X. One Step Bio-Oil Upgrading through Hydrotreatment, Esterification, and Cracking. Industrial & Engineering Chemistry Research 2009, 48, (15),6923-6929.
    [54]Fisk C A, Morgan T, Ji Y Y, Crocker M, Crofcheck C, Lewis S A. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Applied Catalysis a-General 2009,358, (2), 150-156.
    [55]Rocha J D, Luengo C A, Snape C, E. The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis. Organic Geochemistry 1999,30,1527-1534.
    [56]Putun A E, Gercel H F, Kockar 0 M, Ege O, Snape C, E., Putun E. Oil production from an arid-land plant:fxied-bed pyrolysis and hydropyrolysis of Euphorbia rigida. Fuel 1996,11, 1307-1312.
    [57]Zhang Q, Chang J, Wang T J, Xu Y. Upgrading bio-oil over different solid catalysts. Energy & Fuels 2006,20, (6),2717-2720.
    [58]Zhang Q, Chang J, Wang T J, Xu Y. Preparation of solid acid SO42-/SiO2-TiO2 and its catalytic activity for esterification. Chinese Journal of Catalysis 2006,27, (11),1033-1038.
    [59]Xu J M, Jiang J C, Sun Y J, Lu Y J. Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass & Bioenergy 2008,32, (11),1056-1061.
    [60]徐莹,常杰,张琦,王铁军,王晨光.固体碱催化剂上生物油催化酯化改质.石油化工2006,35,(7),615-618.
    [61]Xiong W M, Zhu M Z, Deng L, Fu Y, Guo Q X. Esterification of Organic Acid in Bio-Oil using Acidic Ionic Liquid Catalysts. Energy & Fuels 2009,23,2278-2283.
    [62]Garham R G, Underwood G L Method of using fast pyrolysis liquids as liquid smoke.1993.
    [63]Himmelblau A Method and apparatus for producing water-soluble resin and resin product made by that method.1991.
    [64]Chum H L, Kreibich R E Process for preparing phenolic formaldehyde resole resin products derived from fractionated fast-pyrolysis oils 1992.
    [65]Roy C, Lu X, Pakdel H Process for the production of phenolic-rich pyrolysis oils for use in making phenol-formaldehyde resole resins.2000.
    [66]Giroux R, Freel B, Graham R Novel natural resin formulations.2001.
    [67]Achladas G E. Analysis of Biomass Pyrolysis Liquids-Separation and Characterization of Phenols. Journal of Chromatography 1991,542, (2),263-275.
    [68]Amen-Chen C, Pakdel H, Roy C. Separation of phenols from Eucalyptus wood tar. Biomass & Bioenergy 1997,13, (1-2),25-37.
    [69]Deng L, Yan Z, Fu Y, Guo Q X. Green Solvent for Flash Pyrolysis Oil Separation. Energy & Fuels 2009,23,3337-3338.
    [70]Stradal J A, Underwood G L Process for producing hydroxyacetaldehyde.1995.
    [71]Bennett N M, Helle S S, Duff S J B. Extraction and hydrolysis of levoglucosan from pyrolysis oil. Bioresource Technology 2009,100, (23),6059-6063.
    [72]Moens L. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint. WO9405704 1994.
    [73]S.Scott D, Piskorz J, Radlein D, Majerski P Process for the production of anhydrosugars from lignin and cellulose containing biomass by pyrolysis.1996.
    [74]Freel B, Graham R G Bio-oil preservatives.2002.
    [75]Radlein D, Piskorz J, Majerski P Method of producing slow-release nitrogenous organic fertilizer from biomass.1997.
    [76]Radlein D. Chemicals and materials from biomass—part 2. PyNe newsletter 1998, (5),12.
    [77]Oehr K H, Simons G A, Zhou J Reduction of acid rain and ozone depletion precursors. 1997.
    [78]Oehr K H, Scott D S, Czernik S Method of producing calcium salts from biomass.1993.
    [79]朱锡锋,Venderbosch R H.生物质热解油气化试验研究.燃料化学学报2004,32,(4),·510-512.
    [80]李理,阴秀丽,吴创之,马隆龙,周肇秋.生物质热解油气化制备合成气的研究.可再生能源2007,25,(1),40-43.
    [81]Panigrahi S, Chaudhari S T, Bakhshi N N, Dalai A K. Production of synthesis gas/high-Btu gaseous fuel from pyrolysis of biomass-derived oil. Energy & Fuels 2002,16, (6),1392-1397.
    [82]Panigrahi S, Dalai A K, Chaudhari S T, Bakhshi N N. Synthesis gas production from steam gasification of biomass-derived oil. Energy & Fuels 2003,17, (3),637-642.
    [83]van Rossum G, Kersten S R A, van Swaaij W P M. Catalytic and noncatalytic gasification of pyrolysis oil. Industrial & Engineering Chemistry Research 2007,46, (12),3959-3967.
    [84]Wang D, Czernik S, Montane D, Mann M, Chornet E. Biomass to hydrogen vai fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Industrial & Engineering Chemistry Research 1997,36,1507-1518.
    [85]Wang D, Czernik S, Chornet E. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy & Fuels 1998,12,19-24.
    [86]Czernik S, French R, Feik C, Chornet E. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Industrial & Engineering Chemistry Research 2002,41,4209-4215.
    [87]Czernik S, Evans R, French R. Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catalysis Today 2007,129, (3-4),265-268.
    [88]Roiche C, Kulkarni S, Meunier F C, Breen J P, Burch R. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Applied Catalysis B: Environmental 2005,61,130-139.
    [89]Basagiannis A C, Verykios X E. Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 catalysts. Catalysis Today 2007,127, (1-4),256-264.
    [90]Pan Y, Wang Z X, Kan T, Zhu X F, Li Q X. Hydrogen production by catalytic steam reforming of bio-oil, naphtha and CH4 over C12A7-Mg catalyst. Chinese Journal of Chemical Physics 2006,19, (3),190-192.
    [91]Wang Z X, Pan Y, Dong T, Zhu X F, Kan T, Yuan L X, Torimoto Y, Sadakata M, Li Q X. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O-based catalysts. Applied Catalysis a-General 2007,320,24-34.
    [92]Domine M E, Iojoiu E E, Davidian T, Guilhaume N, Mirodatos C. Hydrogen production from biomass-derived oil over monolithic Pt-and Rh-based catalysts using steam reforming and sequential cracking processes. Catalysis Today 2008,133,565-573.
    [93]Iojoiu E E, Domine M E, Davidian T, Guilhaume N, Mirodatos C. Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia. Applied Catalysis a-General 2007,323,147-161.
    [94]Iordanidis A A, Kechagiopoulos P N, Voutetakis S S, Lemonidou A A, Vasalos I A. Autothermal sorption-enhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells:Concept analysis and process simulation. International Journal of Hydrogen Energy 2006,31,(8),1058-1065.
    [95]Kinoshita C M, Turn S Q. Production of hydrogen from bio-oil using CaO as a CO2 sorbent. International Journal of Hydrogen Energy 2003,28,1065-1071.
    [96]Yuan L X, Chen Y Q, Song C F, Ye T Q, Guo Q X, Zhu Q S, Torimoto Y, Li Q X. Electrochemical catalytic reforming of oxygenated-organic compounds:a highly efficient method for production of hydrogen from bio-oil. Chemical Communications 2008, (41),5215-5217.
    [97]Ye T Q, Yuan L X, Chen Y Q, Kan T, Tu J, Zhu X F, Torimoto Y, Yamamoto M, Li Q X. High Efficient Production of Hydrogen from Bio-oil Using Low-temperature Electrochemical Catalytic Reforming Approach Over NiCuZn-Al2O3 Catalyst. Catalysis Letters 2009,127, (3-4), 323-333.
    [98]Davidian T, Guilhaume N, Iojoiu E, Provendier H, Mirodatos C. Hydrogen production from crude pyrolysis oil by a sequential catalytic process. Applied Catalysis B-Environmental 2007,73, (1-2),116-127.
    [99]Shaddix C R, Hardesty D R Combustion properties of biomass flash pyrolysis oils:Final project report; SAND99-8238:1999.
    [100]Ikura M, Stanciulescu M, Hogan E. Emulsification of pyrolysis derived bio-oil in diesel fuel. Biomass & Bioenergy 2003,24, (3),221-232.
    [101]Stamatov V, Honnery D, Soria J. Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species. Renewable Energy 2006,31, (13),2108-2121.
    [102]Wickboldt P, Strenziok R, Hansen U, Investigation of flame characteristics and emissions of pyrolysis oil in a modified flame tunnel. In 4th Biomass Conference of the Americas,1999.
    [103]朱锡锋,郭涛,陆强,郭庆祥.生物油雾化燃烧特性试验.中国科学技术大学学报2005,35,(6),856-860.
    [104]Sturzl R The commercial co-firing of RTP bio-oil at the Minitowoc Public Utilities power generating station; Ensyn Technical Information:2001.
    [105]Wagenaar B M, Gansekoele E, Florijn J H, Bio-oil as natural gas substitute in a 350MWe power station. In 2nd World Conference on Biomass for Energy, Industry and Climate Protection, Rome,2004.
    [106]Venderbosch R H, Wagenaar B M, Gansekoele E, Co-firing of bio-oil with simultaneous SOx and NOx reduction. In Conference on Thermochemical Biomass Conversion Technologies, Tyrol,2000.
    [107]Brammer J G, Lauer M, Bridgwater A. Opportunities for biomass-derived "bio-oil" in European heat and power markets. Energy Policy 2006,34,2871-2880.
    [108]Shihadeh A, Lewis P, Manurung R, Combustion characterization of wood-derived flash pyrolysis oils in industrial-scale turbulent diffusion flmaes. In Biomass Pyrolysis Oil Properties and Combustion Meeting, Estes Park,1994.
    [109]Oasmaa A, Kyto M, Pyrolysis oil combustion test in an industrial boiler. In Progress in Thermochemical Biomass Conversion, Blackwell Science:Oxford,2001.
    [110]Solantausta Y, Nylund N O, Westerholm M, Koljonen T, Oasmaa A. Wood-pyrolysis oil as fuel in a diesel-power plant. Bioresource Technology 1993,46,177-188.
    [111]Jay D C, Rantanen O A, Sipila K, Wood pyrolysis oil for diesel engines. In 1995 fall technical conference, Milwaukee,1995.
    [112]Suppes G J, Natarajan V P, Chen Z, Autoignition of select oxygenated fuels in a simulated diesel engine environment. In AIChE National Meeting, New-Orleans,1996.
    [113]Bertoli C, Alessio J, Giacomo N. Running light-duty diesel engines with wood pyrolysis oil. Journal of Fuels & Lubricants 2001,109,3090-3096.
    [114]Shihadeh A, Hochgreb S. Diesel engine combustion of biomass pyrolysis oils. Energy & Fuels 2000,14,260-274.
    [115]Shihadeh A, Hochgreb S. Impact of Biomass pyrolysis oil process conditions on ignition delay in compression ignition engines. Energy & Fuels 2002,16, (3),552-561.
    [116]Ormrod D, Webster A. Progress in utilization of bio-oil in diesel engines. PyNe newsletter 2000,10,15.
    [117]Andrews R G, Fuleki D, Zukowski S, Results of industrial gas turbine tests using a biomass-derived fuel. In Making a Business from Biomass in Energy, Environment, Chemicals, Fibers, and Materials, New York,1997.
    [118]Strenziok R, Hansen U, Kunstner H, Combustion of bio-oil in a gas turbine. In Progress in Thermochemical Biomass Conversion, Oxford,2001.
    [119]Juste G L, Monfort J J S. Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor. Biomass & Bioenergy 2000,19,119-128.
    [1]Shafizadeh F. Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis 1982,3, (4),283-305.
    [2]Shafizadeh F, Pyrolytic reactions and products of biomass. In Fundamental of Thermochemical Biomass Conversion, Overend, R. P.; Milne, T. A.; Mudge, L. K., Eds. Elsevier Applied Science Publishers:New York,1985; pp 182-218.
    [3]Evans R J, Milne T A. Molecular characterization of the pyrolysis of biomass.1. fundamentals. Energy & Fuels 1987,1,123-137.
    [4]Soltes E J, Wiley A T, Lin S C K. Biomass pyrolysis—towards an understanding of its versatibility and potentials. Biotech & Bioengineering symposium 1981,11,125-136.
    [5]Boutin O, Ferrer M, Lede J. Radiant flash pyrolysis of cellulose-Evidence for the formation of short life time intermediate liquid species. Journal of Analytical and Applied Pyrolysis 1998,47, (1),13-31.
    [6]刘倩,王琦,王健,王树荣,骆仲泱,岑可法.纤维素热解过程中活性纤维素的生成研究.工程热物理学报2007,28,(5),897-899.
    [7]Piskorz J, Radlein D, S.Scott D. On the mechanism of the rapid pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis 1986,9, (12),121-137.
    [8]Richards G N. Glycoaldehyde from pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis 1987,10, (3),251-255.
    [9]Radlein D, Piskorz J, Scott D S. Fast pyrolysis of natural polysaccharides as a potential Industrial-process. Journal of Analytical and Applied Pyrolysis 1991,19,41-63.
    [10]王树荣,廖艳芬,谭洪,骆仲泱,岑可法.纤维素快速热裂解机理试验研究Ⅱ.机理分析.燃料化学学报2003,31,(4),317-321.
    [11]Shen D K, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology 2009,100, (24),6496-6504.
    [12]Alen R, Kuoppala E, Oesch P. Formation of the main degradation compound groups from wood and its components during pyrolysis. Journal of Analytical and Applied Pyrolysis 1996,36, (2),137-148.
    [13]Ponder G R, Richards G N. Thermal synthesis and pyrolysis of a xylan. Carbohydrate Research 1991,218,143-155.
    [14]Shen D K, Gu S, Bridgwater A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR.2010.
    [15]Sipila K, Kuoppala E, Fagernas L, Oasmaa A. Characterization of biomass-based flash pyrolysis oils. Biomass & Bioenergy 1998,14, (2),103-113.
    [16]Oasmaa A, Kuoppala E, Solantausta Y. Fast pyrolysis of forestry residue.2. Physicochemical composition of product liquid. Energy & Fuels 2003,17, (2),433-443.
    [17]Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C. Characterization of bio-oils in chemical families. Biomass & Bioenergy 2007,31, (4),222-242.
    [18]Garcia-Perez M, Wang S, Shen J, Rhodes M, Lee W J, Li C Z. Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass. Energy & Fuels 2008,22, (3),2022-2032.
    [19]Scholze B, Meier D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part Ⅰ. PY-GC/MS, FTIR, and functional groups. Journal of Analytical and Applied Pyrolysis 2001,60, (1),41-54.
    [20]Scholze B, Hanser C, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part Ⅱ. GPC, carbonyl goups, and C-13-NMR. Journal of Analytical and Applied Pyrolysis 2001,58,387-400.
    [21]Bayerbach R, Nguyen V D, Schurr U, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin)-Part Ⅲ. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS, and Py-FIMS. Journal of Analytical and Applied Pyrolysis 2006, 77, (2),95-101.
    [22]Bayerbach R, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part Ⅳ:Structure elucidation of oligomeric molecules. Journal of Analytical and Applied Pyrolysis 2009,85,98-107.
    [23]Wu S, Argyropoulos D S. An improved method for isolating lignin in high yield and purity. Journal of Pulp and Paper Science 2003,29, (7),235-240.
    [24]罗渊,李云雁,甘济勇.从稻草中分离乙二醇木质素的研究.湖北农业科学2009,48,(1),168-171.
    [25]Ranganathan S, Macdonald D G, Bakhshi N N. Kinetic studies of wheat straw hydrolysis using sulphuric acid. Canadian Journal of Chemical Engineering 1985,63, (5),840-844.
    [26]Piskorz J, Majerski P, Radlein D, Vladars-Usas A, Scott D S. Flash pyrolysis of cellulose for production of anhydro-oligomers. Journal of Analytical and Applied Pyrolysis 2000,56, (2), 145-166.
    [27]Patwardhan P R, Satrio J A, Brown R C, Shanks B H. Product distribution from fast pyrolysis of glucose-based carbohydrates. Journal of Analytical and Applied Pyrolysis 2009,86, (2),323-330.
    [28]Radlein D, Grinshpun A, Piskorz J, Scott D S. On the presence of anhydro-oligosaccharides in the sirups from the fast pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis 1987, 12,39-49.
    [29]Pouwels A D, Eijkel G B, Arisz P W, Boon J J. Evidence for oligomers in pyrolysates of microcrystalline cellulose. Journal of Analytical and Applied Pyrolysis 1989,15,71-84.
    [30]Lomax J A, Commandeur J M, Arisz P W, Boon J J. Characterization of oligomers and sugar ring-cleavage products in the pyrolysate of cellulose. Journal of Analytical and Applied Pyrolysis 1991,19,65-79.
    [31]许洁,颜涌捷,李文志,王君,陈明强.生物质裂解机理和模型(Ⅰ)—生物质裂解机理和工艺模式.化学与生物工程2007,24,(12),1-4.
    [32]吴逸民,赵增立,李海滨,何方.生物质主要组分低温热解研究.燃料化学学报2009,37,(4),427-432.
    [33]Ohnishi A, Kato K, Takagi E. Curie-Point Pyrolysis of Cellulose. Polymer Journal 1975,7, (4),431-437.
    [34]Furneaux R H, M.Mason J, J.Miller I. A novel hydroxylactone from the Lewis acid catalyzed pyrolysis of cellulose. Journal of the Chemical Society, Perkin Transactions 1 1988, (1), 49-51.
    [35]Fabbri D, Torri C, Mancini I. Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block. Green Chemistry 2007,9, (12),1374-1379.
    [36]Shafizadeh F, Fu Y L. Pyrolysis of cellulose. Carbohydrate Research 1973,29, (1),113-122.
    [37]Shafizadeh F, Furneaux R H, Stevenson T T, Cochran T G. Acid-catalyzed pyrolytic synthesis and decomposition of 1,4:3,6-dianhydro-a-d-glucopyranose. Carbohydrate Research 1978,61,(1),519-528.
    [38]Ferretti A, Flanagan V P. Characterization of volatile constituents of an N.alpha.-formyl-L-lysine-D-lactose browning system. Journal of Agricultural and Food Chemistry 1973,21,(1),35-37.
    [39]Mills F D, Hodge J E. Amadori compounds:vacuum thermolysis of 1-deoxy-1-l-prolino-d-fructose Carbohydrate Research 1976,51, (1),9-21.
    [40]Shafizadeh F, Lai Y Z. Thermal degradation of 1,6-anhydro-βD-glucopyranose. Journal of Organic Chemistry 1972,37,278-284.
    [41]Paine J B, Pithawalla Y B, Naworal J D. Carbohydrate pyrolysis mechanisms from isotopic labeling Part 4. The pyrolysis Of D-glucose:The formation of furans. Journal of Analytical and Applied Pyrolysis 2008,83, (1),37-63.
    [42]Shin E J, Nimlos M R, Evans R J. Kinetic analysis of the gas-phase pyrolysis of carbohydrates. Fuel 2001,80, (12),1697-1709.
    [43]Paine J B, Pithawalla Y B, Naworal J D. Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 2. The pyrolysis of D-glucose:General disconnective analysis and the formation of C-1 and C-2 carbonyl compounds by electrocyclic fragmentation mechanisms. Journal of
    Analytical and Applied Pyrolysis 2008,82, (1),10-41. [44] Paine J B, Pithawalla Y B, Naworal J D. Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 3. The Pyrolysis of D-glucose:Formation of C-3 and C-4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms. Journal of Analytical and Applied Pyrolysis 2008,82, (1),42-69.
    [45]Pouwels A D, Tom A, Eijkel G B, Boon J J. Characterisation of beech wood and its holocellulose and xylan fractions by pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis 1987,11,417-436.
    [46]Helleur R J. Characterization of the saccharide composition of heteropolysaccharides by pyrolysis-capillary gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis 1987,11,297-311.
    [47]Pouwels A D, Boon J J. Analysis of beech wood samples, its milled wood lignin and polysaccharide fractions by curie-point and platinum filament pyrolysis-mass spectrometry. Journal of Analytical and Applied Pyrolysis 1990,17,97-126.
    [48]Antal M J, Leesomboon T, Mok W S, Richards G N. Mechanism of formation of 2-furaldehyde from-xylose. Carbohydrate Research 1991,217,71-85.
    [49]Pan W P, Richards G N. Influence of metal ions on volatile products of pyrolysis of wood. Journal of Analytical and Applied Pyrolysis 1989,16, (2),117-126.
    [50]NikAzar M, Hajaligol M R, Sohrabi M, Dabir B. Mineral matter effects in rapid pyrolysis of beech wood. Fuel Processing Technology 1997,51, (1-2),7-17.
    [1]Lu Q, Li W Z, Zhu X F. Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management 2009,50, (5),1376-1383.
    [2]Oasmaa A, Czernik S. Fuel oil quality of biomass pyrolysis oils-State of the art for the end user. Energy & Fuels 1999,13, (4),914-921.
    [3]张琦,常杰,王铁军,徐莹.生物质裂解油的性质及精制研究进展.石油化工2006,36,(5),493-498.
    [4]Zhang Q, Chang J, Wang T J, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management 2007,48,87-92.
    [5]Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysis liquids from biomass. Renewable & Sustainable Energy Reviews 2007,11, (6),1056-1086.
    [6]Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 2004,18, (2),590-598.
    [7]朱锡锋,郑冀鲁,郭庆祥,朱清时.生物质热解油的性质精制与利用.中国工程科学2005,7,(9),83-88.
    [8]Bridgwater A V In Production of high grade fuels and chemicals from catalytic pyrolysis of biomass,2nd Japan-EC Joint Workshop on the Frontiers of Catalytic Science and Technology for Energy, Environment and Risk Prevention (JECAT 95), Lyon-Villeurbanne, France, Apr 26-28, 1995; Lyon-Villeurbanne, France,1995; pp 285-295.
    [9]徐俊明,蒋剑春,卢言菊.生物热解油精制改性研究进展.现代化工2007,27,(7),13-17.
    [10]Home P A, Williams P T. Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst:Effect of catalyst dilution on product yields. Fuel 1996,75, (9),1043-1050.
    [11]Sharma R K, Bakhshi N N. Upgrading of Wood-Derived Bio-Oil over Hzsm-5. Bioresource Technology 1991,35, (1),57-66.
    [12]Adjaye J D, Bakhshi N N. Production of Hydrocarbons by Catalytic Upgrading of a Fast Pyrolysis Bio-Oil.1. Conversion over Various Catalysts. Fuel Processing Technology 1995,45, (3),161-183.
    [13]Vitolo S, Seggiani M, Frediani P, Ambrosini G, Politi L. Catalytic upgrading of pyrolytic oils to fuel over different zeolites. Fuel 1999,78, (10),1147-1159.
    [14]Olazar M, Aguado R, Bilbao J, Barona A. Pyrolysis of sawdust in a conical spouted-bed reactor with a HZSM-5 catalyst. Aiche Journal 2000,46, (5),1025-1033.
    [15]Zhang H Y, Xiao R, Wang D H, Zhong Z P, Song M, Pan Q W, He G Y. Catalytic Fast Pyrolysis of Biomass in a Fluidized Bed with Fresh and Spent Fluidized Catalytic Cracking (FCC) Catalysts. Energy & Fuels 2009,23,6199-6206.
    [16]Adjaye J D, Katikaneni S P R, Bakhshi N N. Catalytic conversion of a biofuel to hydrocarbons:Effect of mixtures of HZSM-5 and silica-alumina catalysts on product distribution. Fuel Processing Technology 1996,48, (2),115-143.
    [17]Samolada M C, Baldauf W, Vasalos I A. Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel 1998,77, (14), 1667-1675.
    [18]Williams P T, Home P A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. Journal of Analytical and Applied Pyrolysis 1995,31,39-61.
    [19]Williams P T, Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 2000,25,493-513.
    [20]Aho A, Kumar N, Eranen K, Salmi T, Hupa M, Murzin D Y. Catalytic pyrolysis of biomass in a fluidized bed reactor:Influence of the acidity of H-beta zeolite. Process Safety and Environmental Protection 2007,85, (B5),473-480.
    [21]Park H J, Dong J I, Jeon J K, Yoo K S, Yim J H, Sohn J M, Park Y K. Convenion of the pyrolytic vapor of radiata pine over zeolites. Journal of Industrial and Engineering Chemistry 2007,13, (2),182-189.
    [22]Aho A, Kumar N, Eranen K, Salmi T, Hupa M, Murzin D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor:Influence of the zeolite structure. Fuel 2008,87, (12), 2493-2501.
    [23]Adjaye J D, Bakhshi N N. Production of Hydrocarbons by Catalytic Upgrading of a Fast Pyrolysis Bio-Oil.2. Comparative Catalyst Performance and Reaction Pathways. Fuel Processing Technology 1995,45, (3),185-202.
    [24]Vitolo S, Bresci B, Seggiani M, Gallo M G. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite:behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel 2001,80,(1),17-26.
    [25]Ates F, Putun A E, Putun E. Pyrolysis of two different biomass samples in a fixed-bed reactor combined with two different catalysts. Fuel 2006,85, (12-13),1851-1859.
    [26]Onay O. Fast and catalytic pyrolysis of pistacia khinjuk seed in a well-swept fixed bed reactor. Fuel 2007,86, (10-11),1452-1460.
    [27]Chen M Q, Wang J, Zhang M X, Chen M G, Zhu X F, Min F F, Tan Z C. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis 2008,82, (1),145-150.
    [28]Demiral I, Sensoz S. The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse). Bioresource Technology 2008,99, (17),8002-8007.
    [29]Li J F, Yan R, Xiao B, Liang D T, Lee D H. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energy & Fuels 2008,22, (1),16-23.
    [30]Yorgun S, Simsek Y E. Catalytic pyrolysis of Miscanthus x giganteus over activated alumina. Bioresource Technology 2008,99, (17),8095-8100.
    [31]Khelfa A, Sharypov V, Finqueneisel G, Weber J V. Catalytic pyrolysis and gasification of Miscanthus Giganteus:Haematite (Fe2O3) a versatile catalyst. Journal of Analytical and Applied Pyrolysis 2009,84,(1),84-88.
    [32]Nokkosmaki M I, Krause A O I, Leppamaki E A, Kuoppala E T. A novel test method for catalysts in the treatment of biomass pyrolysis oil. Catalysis Today 1998,45, (1-4),405-409.
    [33]Garcia L, Salvador M L, Arauzo J, Bilbao R. Catalytic pyrolysis of biomass:influence of the catalyst pretreatment on gas yields. Journal of Analytical and Applied Pyrolysis 2001,58, 491-501.
    [34]Putun E, Uzun B B, Putun A E. Fixed-bed catalytic pyrolysis of cotton-seed cake:Effects of pyrolysis temperature, natural zeolite content and sweeping gas flow rate. Bioresource Technology 2006,97,(5),701-710.
    [35]郭耕,卢冠忠.稀土催化材料的应用及研究进展.中国稀土学报2007,25,(1),1-15.
    [36]Nokkosmaki M I, Kuoppala E T, Leppamaki E A, Krause AOI.Catalytic conversion of biomass pyrolysis vapours with zinc oxide. Journal of Analytical and Applied Pyrolysis 2000,55, (1),119-131.
    [37]Adam J, Blazso M, Meszaros E, Stocker M, Nilsen M H, Bouzga A, Hustad J E, Gronli M, Oye G.Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 2005,84, (12-13), 1494-1502.
    [38]Diebold J P. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. NRTL/SR-570-27613 2000.
    [39]Pattiya A, Titiloye J O, Bridgwater A V. Fast pyrolysis of cassava rhizome in the presence of catalysts. Journal of Analytical and Applied Pyrolysis 2008,81, (1),72-79.
    [40]Diebold J P, Czernik S. Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy & Fuels 1997,11, (5),1081-1091.
    [41]Oasmaa A, Kuoppala E, Selin J F, Gust S, Solantausta Y. Fast pyrolysis of forestry residue and pine.4. Improvement of the product quality by solvent addition. Energy & Fuels 2004,18, (5), 1578-1583.
    [1]Adam J, Blazso M, Meszaros E, Stocker M, Nilsen M H, Bouzga A, Hustad J E, Gronli M, Oye G. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 2005,84, (12-13), 1494-1502.
    [2]Adam J, Antonakou E, Lappas A, Stocker M, Nilsen M H, Bouzga A, Hustad J E, Oye G. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous and Mesoporous Materials 2006,96, (1-3),93-101.
    [3]Triantafyllidis K S, Iliopoulou E F, Antonakou E V, Lappas A A, Wang H, Pinnavaia T J. Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis. Microporous and Mesoporous Materials 2007,99, (1-2),132-139.
    [4]Blazso M. In situ modification of pyrolysis products of macromolecules in an analytical pyrolyser. Journal of Analytical and Applied Pyrolysis 2005,74, (1-2),344-352.
    [5]Antonakou E, Lappas A, Nilsen M H, Bouzga A, Stocker M. Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel 2006,85, (14-15),2202-2212.
    [6]Iliopoulou E F, Antonakou E V, Karakoulia S A, Vasalos I A, Lappas A A, Triantafyllidis K S. Catalytic conversion of biomass pyrolysis products by mesoporous materials:Effect of steam stability and acidity of Al-MCM-41 catalysts. Chemical Engineering Journal 2007,134, (1-3), 51-57.
    [7]Nilsen M H, Antonakou E, Bouzga A, Lappas A, Mathisen K, Stocker M. Investigation of the effect of metal sites in Me-Al-MCM-41 (Me= Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based biomass. Microporous and Mesoporous Materials 2007,105, (1-2), 189-203.
    [8]Pattiya A, Titiloye J O, Bridgwater A V. Fast pyrolysis of cassava rhizome in the presence of catalysts. Journal of Analytical and Applied Pyrolysis 2008,81, (1),72-79.
    [9]Torri C, Lesci I G, Fabbri D In Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials,18th International Symposium on Analytical and Applied Pyrolysis, Lanzarote, SPAIN, May 18-23,2008; Elsevier Science Bv:Lanzarote, SPAIN, 2008; pp 192-196.
    [10]Pattiya A, Titiloye J O, Bridgwater A V. Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel 2010,89, (1),244-253.
    [11]Adam J. Catalytic conversion of biomass to produce higher quality liquid bio-fuels. PhD thesis 2005.
    [12]Torri C, Lesci I G, Fabbri D. Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. Journal of Analytical and Applied Pyrolysis 2009,85, 192-196.
    [13]Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998,279, (5350),548-552.
    [14]Zhang X J, Zhang F Q, Yan X W, Zhang Z H, Sun F M, Wang Z X, Zhao D Y. Hydrocracking of heavy oil using zeolites Y/A1-SBA-15 composites as catalyst supports. Journal of Porous Materials 2008,15, (2),145-150.
    [15]Jiao L, Regalbuto J R. The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption:Ⅱ. Mesoporous silica SBA-15. Journal of Catalysis 2008,260, (2), 342-350.
    [16]Du J M, Xu H L, Shen J, Huang J J, Shen W, Zhao D Y. Catalytic dehydrogenation and cracking of industrial dipentene over M/SBA-15 (M=Al, Zn) catalysts. Applied Catalysis a-General 2005,296, (2),186-193.
    [17]Nie C, Huang L M, Zhao D Y, Li Q Z. Performance of Pt/Al-SBA-15 catalysts in hydroisomerization of n-dodecane. Catalysis Letters 2001,71, (1-2),117-125.
    [1]Achladas G E. Analysis of Biomass Pyrolysis Liquids-Separation and Characterization of Phenols. Journal of Chromatography 1991,542, (2),263-275.
    [2]Amen-Chen C, Pakdel H, Roy C. Separation of phenols from Eucalyptus wood tar. Biomass & Bioenergy 1997,13, (1-2),25-37.
    [3]Deng L, Yan Z, Fu Y, Guo Q X. Green Solvent for Flash Pyrolysis Oil Separation. Energy & Fuels 2009,23,3337-3338.
    [4]Roy C, Lu X, Pakdel H Process for the production of phenolic-rich pyrolysis oils for use in making phenol-formaldehyde resole resins.2000.
    [5]Garham R G, Underwood G L Method of using fast pyrolysis liquids as liquid smoke.1993.
    [6]Howard J, Longley C, Morrison A, Fung D. Process for isolating levoglucosan from pyrolysis liquids. CA2084906 1993.
    [7]Moens L Isolation of levoglucosan from pyrolysis oil derived from cellulose.1994.
    [8]S.Scott D, Piskorz J, Radlein D, Majerski P Process for the production of anhydrosugars from lignin and cellulose containing biomass by pyrolysis.1996.
    [9]Bennett N M, Helle S S, Duff S J B. Extraction and hydrolysis of levoglucosan from pyrolysis oil. Bioresource Technology 2009,100, (23),6059-6063.
    [10]Stradal J A, Underwood G L Process for producing hydroxyacetaldehyde.1995.
    [11]Mahfud F H, van Geel F P, Venderbosch R H, Heeres H J. Acetic acid recovery from fast pyrolysis oil. An exploratory study on liquid-liquid reactive extraction using aliphatic tertiary amines. Separation Science and Technology 2008,43, (11-12),3056-3074.
    [12]Zeitsch K J. The chemistry and technology of furfural and its many by-products. Elsevier 2000.
    [13]Encinar J M, Beltran F J, Ramiro A, Gonzalez J F. Catalyzed pyrolysis of grape and olive bagasse. Influence of catalyst type and chemical treatment. Industrial & Engineering Chemistry Research 1997,36, (10),4176-4183.
    [14]Encinar J M, Beltran F J, Ramiro A. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives:influence of variables. Fuel Processing Technology 1998,55, (3),219-233.
    [15]Adam J, Blazso M, Meszaros E, Stocker M, Nilsen M H, Bouzga A, Hustad J E, Gronli M, Oye G. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 2005,84, (12-13), 1494-1502.
    [16]Klampfl C W, Breuer G, Schwarzinger C, Koll B. Investigations on the effect of metal ions on the products obtained from the pyrolysis of cellulose. Acta Chimica Slovenica 2006,53, (4), 437-443.
    [17]Di Blasi C, Branca C, Galgano A. Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis. Industrial & Engineering Chemistry Research 2007, 46, (2),430-438.
    [18]Chen M Q, Wang J, Zhang M X, Chen M G, Zhu X F, Min F F, Tan Z C. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis 2008,82,(1),145-150.
    [19]Shimada N, Kawamoto H, Saka S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis 2008,81, (1),80-87.
    [20]Lu Q, Li W Z, Zhang D, Zhu X F. Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) of sawdust with Al/SBA-15 catalysts. Journal of Analytical and Applied Pyrolysis 2009,84, (2),131-138.
    [21]Lu Q, Xiong W M, Li W Z, Guo Q X, Zhu X F. Catalytic pyrolysis of cellulose with sulfated metal oxides:A promising method for obtaining high yield of light furan compounds. Bioresource Technology 2009,100, (20),4871-4876.
    [22]Nowakowski D J, Woodbridge C R, Jones J M. Phosphorus catalysis in the pyrolysis behaviour of biomass. Journal of Analytical and Applied Pyrolysis 2008,83, (2),197-204.
    [23]Torri C, Lesci I G, Fabbri D. Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. Journal of Analytical and Applied Pyrolysis 2009,85, 192-196.
    [24]Ahmadpour A, Do D D. The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon 1997,35, (12),1723-1732.
    [25]Hayashi J, Kazehaya A, Muroyama K, Watkinson A P. Preparation of activated carbon from lignin by chemical activation. Carbon 2000,38, (13),1873-1878.
    [26]Timur S, Kantarli I C, Ikizoglu E, Yanik J. Preparation of activated carbons from Oreganum stalks by chemical activation. Energy & Fuels 2006,20, (6),2636-2641.
    [27]Shafizadeh F, Lai Y Z. Thermal degradation of 1,6-anhydro-β-D-glucopyranose. Journal of Organic Chemistry 1972,37,278-284.
    [28]Di Blasi C, Branca C, Galgano A. Products and global weight loss rates of wood decomposition catalyzed by zinc chloride. Energy & Fuels 2008,22, (1),663-670.
    [29]Wan Y Q, Chen P, Zhang B, Yang C Y, Liu Y H, Lin X Y, Ruan R. Microwave-assisted pyrolysis of biomass:Catalysts to improve product selectivity. Journal of Analytical and Applied Pyrolysis 2009,86, (1),161-167.
    [30]Ponder G R, Richards G N. Thermal synthesis and pyrolysis of a xylan. Carbohydrate Research 1991,218,143-155.
    [31]Shafizadeh F, Furneaux R H, Stevenson T T, Cochran T G. Acid-catalyzed pyrolytic synthesis and decomposition of 1,4:3,6-dianhydro-a-d-glucopyranose. Carbohydrate Research 1978,61,(1),519-528.
    [32]Boonamnuayvitaya V, Sae-ung S, Tanthapanichakoon W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Separation and Purification Technology 2005,42,(2),159-168.
    [1]Piskorz J, Majerski P, Radlein D, Vladars-Usas A, Scott D S. Flash pyrolysis of cellulose for production of anhydro-oligomers. Journal of Analytical and Applied Pyrolysis 2000,56, (2), 145-166.
    [2]Fabbri D, Torri C, Baravelli V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose:An analytical study. Journal of Analytical and Applied Pyrolysis 2007,80, (1),24-29.
    [3]Fabbri D, Torri C, Mancini I. Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block. Green Chemistry 2007,9, (12),1374-1379.
    [4]Torri C, Lesci I G, Fabbri D. Analytical study on the production of a hydroxylactone from catalytic pyrolysis of carbohydrates with nanopowder aluminium titanate. Journal of Analytical and Applied Pyrolysis 2009,84, (1),25-30.
    [5]Chen M Q, Wang J, Zhang M X, Chen M G, Zhu X F, Min F F, Tan Z C. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis 2008,82, (1),145-150.
    [6]Qi W Y, Hu C W, Li G Y, Guo L H, Yang Y, Luo J, Miao X, Du Y. Catalytic pyrolysis of several kinds of bamboos over zeolite NaY. Green Chemistry 2006,8, (2),183-190.
    [7]Halpern Y, Riffer R, Broido A. Levoglucosenone (1,6-Anhydro-3,4-dideoxy-△-β-D-Pyranosen-2-one). A major product of the acid-catalyzed pyrolysis of cellulose and related carbohydrates. Journal of Organic Chemistry 1973,38,204-209.
    [8]Miftakhov M S, Valeev F A, Gaisina I N. Levoglucosenone:the properties, reactions, and use in fine organic synthesis. Russian Chemical Reviews 1994,63, (10),869-882.
    [9]Shafizadeh F, Furneaux R H, Stevenson T T. Some reactions of levoglucosenone. Carbohydrate Research 1979,71, (1),1-352.
    [10]Klampfl C W, Breuer G, Schwarzinger C, Koll B. Investigations on the effect of metal ions on the products obtained from the pyrolysis of cellulose. Acta Chimica Slovenica 2006,53, (4), 437-443.
    [11]Pappa A, Mikedi K, Tzamtzis N, Statheropoulos M. TG-MS analysis for studying the effects of fire retardants on the pyrolysis of pine-needles and their components. Journal of Thermal Analysis and Calorimetry 2006,84, (3),655-661.
    [12]Di Blasi C, Branca C, Galgano A. Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis. Industrial & Engineering Chemistry Research 2007, 46, (2),430-438.
    [13]Fu Q R, Argyropoulos D S, Tilotta D C, Lucia L A. Understanding the pyrolysis of CCA-treated wood Part Ⅰ. Effect of metal ions. Journal of Analytical and Applied Pyrolysis 2008, 81,(1),60-64.
    [14]Di Blasi C, Branca C, Galgano A. Products and global weight loss rates of wood decomposition catalyzed by zinc chloride. Energy & Fuels 2008,22, (1),663-670.
    [15]Torri C, Lesci I G, Fabbri D. Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. Journal of Analytical and Applied Pyrolysis 2009,85, 192-196.
    [16]Dobele G, Meier D, Faix O, Radtke S, Rossinskaja G, Telysheva G. Volatile products of catalytic flash pyrolysis of celluloses. Journal of Analytical and Applied Pyrolysis 2001,58, 453-463.
    [17]Dobele G, Dizhbite T, Rossinskaja G, Telysheva G, Mier D, Radtke S, Faix O. Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis-A promising method for obtaining 1,6-anhydrosaccharides in high yields. Journal of Analytical and Applied Pyrolysis 2003,68-9, 197-211.
    [18]Dobele G, Rossinskaja G, Diazbite T, Telysheva G, Meier D, Faix O. Application of catalysts for obtaining 1,6-anhydrosaccharides from cellulose and wood by fast pyrolysis. Journal of Analytical and Applied Pyrolysis 2005,74,401-405.
    [19]Fu Q R, Argyropoulos D S, Tilotta D C, Lucia L A. Understanding the pyrolysis of CCA-treated wood. Part Ⅱ. Effect of phosphoric acid. Journal of Analytical and Applied Pyrolysis 2008,82, (1),140-144.
    [20]Nowakowski D J, Woodbridge C R, Jones J M. Phosphorus catalysis in the pyrolysis behaviour of biomass. Journal of Analytical and Applied Pyrolysis 2008,83, (2),197-204.
    [21]Sarotti A M, Spanevello R A, Suarez A G. An efficient microwave-assisted green transformation of cellulose into levoglucosenone. Advantages of the use of an experimental design approach. Green Chemistry 2007,9, (10),1137-1140.
    [22]Arata K. Preparation of superacids by metal oxides for reactions of butanes and pentanes. Applied Catalysis a-General 1996,146, (1),3-32.
    [23]Lu Q, Xiong W M, Li W Z, Guo Q X, Zhu X F. Catalytic pyrolysis of cellulose with sulfated metal oxides:A promising method for obtaining high yield of light furan compounds. Bioresource Technology 2009,100, (20),4871-4876.
    [24]Garham R G, Underwood G L Method of using fast pyrolysis liquids as liquid smoke.1993.
    [25]Shimada N, Kawamoto H, Saka S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis 2008,81, (1),80-87.
    [26]Raveendran K, Ganesh A, Khilar K·C. Influence of Mineral Matter on Biomass Pyrolysis Characteristics. Fuel 1995,74, (12),1812-1822.
    [27]NikAzar M, Hajaligol M R, Sohrabi M, Dabir B. Mineral matter effects in rapid pyrolysis of beech wood. Fuel Processing Technology 1997,51, (1-2),7-17.
    [28]王树荣,廖艳芬,文丽华,骆仲泱,岑可法.钾盐催化纤维素快速热裂解机理研究.燃料化学学报2004,32,(6),694-698.
    [29]廖艳芬,王树荣,骆仲泱,岑可法,马晓茜.钙盐催化纤维素快速热裂解机理试验研究.太阳能学报2005,26,(5),654-659.
    [30]杨昌炎,姚建中,吕雪松,杨学民,林伟刚.生物质中K+、Ca2+对热解的影响及机理研究.太阳能学报2006,27,(5),496-502.
    [31]王贤华,陈汉平,王静,辛芬,杨海平.无机矿物质盐对生物质热解特性的影响.燃料化学学报2008,36,(6),679-683.
    [32]王军,张春鹏,欧阳平凯.5-羟甲基糠醛制备及应用的研究进展.化工进展2008,27,(5),702-707.
    [33]陈明强,王君,陈明功,闵凡飞,张明旭,黄国胜,邵群,张学才.生物质微波催化裂解制备富含丙酮醇生物油的方法.2007,CN200610156039.8.
    [1]Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass. Renewable & Sustainable Energy Reviews 2000,4, (1),1-73.
    [2]Bridgwater A V. Biomass fast pyrolysis. Thermal Science 2004,8,21-49.
    [3]Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy & Fuels 2006,20, (3),848-889.
    [4]Scott D S, Majerski P, Piskorz J, Radlein D. A second look at fast pyrolysis of biomass-the RTI process. Journal of Analytical and Applied Pyrolysis 1999,51, (1-2),23-37.
    [5]Boateng A A, Daugaard D E, Goldberg N M, Hicks K B. Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production. Industrial & Engineering Chemistry Research 2007,46, (7), 1891-1897.
    [6]Lappas A A, Samolada M C, Iatridis D K, Voutetakis S S, Vasalos I A. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel 2002,81, (16), 2087-2095.
    [7]Boukis IP, Grammelis P, Bezergianni S, Bridgwater A V. CFB air-blown flash pyrolysis. Part Ⅰ:Engineering design and cold model performance. Fuel 2007,86, (10-11),1372-1386.
    [8]Boukis IP, Bezergianni S, Grammelis P, Bridgwater A V. CFB air-blown flash pyrolysis. Part Ⅱ:Operation and experimental results. Fuel 2007,86, (10-11),1387-1395.
    [9]Lappas A A, Dimitropoulos V S, Antonakou E V, Voutetakis S S, Vasalos I A. Design, construction, and operation of a transported fluid bed process development unit for biomass fast pyrolysis:Effect of pyrolysis temperature. Industrial & Engineering Chemistry Research 2008,47, (3),742-747.
    [10]Lee S H, Lee J G, Kim J H, Choi Y C. The production of various chemicals by pyrolysis of sawdust and rice husks in a bubbling fluidized bed. Journal of Industrial and Engineering Chemistry 2006,12, (1),39-43.
    [11]Aho A, Kumar N, Eranen K, Holmbom B, Hupa M, Salmi T, Murzin D Y. Pyrolysis of softwood carbohydrates in a fluidized bed reactor. International Journal of Molecular Sciences 2008,9,(9),1665-1675.
    [12]戴先文,周肇秋,吴创之,陈勇.循环流化床作为生物质热解液化反应器的实验研究.化学反应工程与工艺2000,16,(3),263-269.
    [13]任铮伟,徐清,陈明强,张素萍,颜涌捷,李庭琛.流化床生物质快速裂解制液体燃料.太阳能学报2002,23,(4),462-466.
    [14]陈明强,颜涌捷,任铮伟,李庭琛,郭晓亚.导向喷动流化床生物质快速裂解制液体燃料.华东理工大学学报2004,30,(2),143-147.
    [15]谭洪,王树荣,骆仲泱,岑可法.生物质整合式流化床热解制油系统试验研究.农业机械学报2005,36,(4),30-33.
    [16]米铁,陈汉平,高斌,刘德昌.生物质的流化床热解实验研究.华中科技大学学报(自 然科学版)2005,33,(9),71-73.
    [17]柳建善,易维明,柏雪源,王丽红,殷哲,吴娟.流化床生物质快速热裂解试验及生物油分析.农业工程学报2009,25,(1),203-207.
    [18]金涌,祝京旭,汪展文,俞芷青.流态化工程原理.清华大学出版社2001.
    [19]Rao T R, Bheemarasetti J V R. Minimum fluidization velocities of mixtures of biomass and sands. Energy 2001,26, (6),633-644.
    [20]朱锡锋,朱建萍.生物质热解液化技术经济分析.能源工程2004,6,32-34.
    [1]Chiaramonti D, Oasmaa A, Solantausta Y Power generation using fast pyrolysis liquids from biomass. Renewable & Sustainable Energy Reviews 2007,11, (6),1056-1086.
    [2]Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 2004,18,(2),590-598.
    [3]Oasmaa A, Kuoppala E, Gust S, Solantausta Y. Fast pyrolysis of forestry residue.1. Effect of extractives on phase separation of pyrolysis liquids. Energy & Fuels 2003,17, (1),1-12.
    [4]Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C. Vacuum pyrolysis of softwood and hardwood biomass-Comparison between product yields and bio-oil properties. Journal of Analytical and Applied Pyrolysis 2007,78, (1),104-116.
    [5]Oasmaa A, Kuoppala E, Selin J F, Gust S, Solantausta Y. Fast pyrolysis of forestry residue and pine.4. Improvement of the product quality by solvent addition. Energy & Fuels 2004,18, (5), 1578-1583.
    [6]Diebold J P, Czernik S. Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy & Fuels 1997,11, (5),1081-1091.
    [7]Ba T Y, Chaala A, Garcia-Perez M, Rodrigue D, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energy & Fuels 2004,18, (3),704-712.
    [8]Ba T Y, Chaala A, Garcia-Perez M, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Storage stability. Energy & Fuels 2004,18, (1),188-201.
    [9]Chaala A, Ba T, Garcia-Perez M, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark:Aging and thermal stability. Energy & Fuels 2004,18, (5),1535-1542.
    [10]Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C. Multiphase structure of bio-oils. Energy & Fuels 2006,20, (1),364-375.
    [11]Boucher M E, Chaala A, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part Ⅰ:Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass & Bioenergy 2000,19, (5),337-350.
    [12]张建,李文志,陆强,朱锡锋.复配乳化剂乳化生物油/柴油技术.农业机械学报2009,40,(2),103-106.
    [13]Fuleki D. Bio-fuel system materials tesing. PyNe newsletter 1999,7,5.
    [14]Darmstadt H, Garcia-Perez M, Adnot A, Chaala A, Kretschmer D, Roy C. Corrosion of metals by bio-oil obtained by vacuum pyrolysis of softwood bark residues. An X-ray photoelectron spectroscopy and auger electron spectroscopy study. Energy & Fuels 2004,18, (5), 1291-1301.
    [15]Oasmaa A, Leppamaki E, Koponen P, Levander J, Tapola E Physical characterization of biomass-based pyrolysis liquids. Application of standard fuel oil analyses; Technical Research Centre of Finland:1997.
    [16]Hua W, Jing L, Yi H L, Zeng X Q, Lv L B, Ren T H. The tribological behavior of diester-containing polysulfides as additives in mineral oil. Tribology International 2007,40, (8), 1246-1252.
    [17]Radlein D, Piskorz J, Majerski P Method of producing slow-release nitrogenous organic fertilizer from biomass.1997.
    [18]Radlein D. Chemicals and materials from biomass—part 2. PyNe newsletter 1998, (5),12.
    [19]Bridgwater A. Slow release fertilisers by pyrolytic recycling of agricultural waste. PyNe newsletter 2000,10,9.
    [20]Scholze B. Long-term stability, catalytic upgrading, and application of pyrolysis oils— Improving the properties of a petential substitute for fossil fuels. PhD thesis, University of Hamburg 2002.
    [21]郭晓亚,颜涌捷.生物质油精制前后燃烧性能比较.华东理工大学学报(自然科学版)2005,31,(4),476-479.
    [22]Shihadeh A, Hochgreb S. Diesel engine combustion of biomass pyrolysis oils. Energy & Fuels 2000,14, (2),260-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700