高速波导声光调制器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速波导声光调制器以其开关速度快、体积小、插入损耗小、驱动功率低、机械稳定度高、设计灵活方便、便于集成等优点,在调制器的研究中具有很广的应用前景,并且这种调制器可用在高速光通信领域中。
     本文对高速波导声光调制器的理论和实验分别进行了研究。对声波导和光波导进行了理论分析,尝试了调制器的第一步试制,并做了实验研究。论文的主要内容包括以下几个方面:
     1.回顾和介绍了当今波导声光调制器的国内外研究进展和趋势;
     2.研究了波导声光调制器的基本理论,包括:声表面波原理、光波导中的导波、表面波声光效应、波导声光调制原理等;
     3.通过理论分析,从耦合波方程和压电方程出发,利用边界条件,通过声表面波波速的求解原理,在解耦的情况下,综合考虑声表面波的波速和机电耦合系数,提出了一种设计声波导厚度的方法,并且通过计算机仿真。
     4.选择光束传播法(BPM法)对光波导进行分析。利用OptiBPM软件,对原设计的高速波导声光调制器的光波导部分进行了模拟和分析。分析影响锥形波导性能的三个主要设计参数,并在此基础上重新进行了锥形波导的优化设计。
     5.高速波导声光调制器的试制和实验研究。完成器件第一步——光波导部分的试制。实验研究主要是测试试制的器件,并对测试结果进行了分析,提出改进意见。
High-speed guided-wave acousto-optic modulator is one of the best switching devices because of its advantages, such as high speed, compact size, low insertion loss, excellent design flexibility, high mechanical stability, low driver power requirement, good integration, etc. It also can be used in the high-speed optical communication field.
     In this paper, some theoretic and laboratorial research on the high-speed guided-wave acousto-optic modulator has been done. The acoustical waveguide and optical waveguide are studied in theory. The first step pilot production of the new-style modulator is finished. Some experimental researches about testing the modulator are also included in the paper.
     The main contents of the paper are listed as follows:
     1. The development and trends of guided-wave acousto-optic modulator in China and overseas have been reviewed and introduced.
     2. The basic theories about guided-wave acousto-optic modulator have been researched, including the theories about surface acoustic wave (SAW), guided wave in the optical waveguide, acousto-optic effect of surface wave, the principle of waveguide acousto-optic modulation, and so on.
     3. By using the boundary and decoupled qualifications, the coupled wave and the piezoelectric equations are solved. Then the optimum thickness of the acoustical waveguide can be designed, considering both the wave velocity of the SAW and the electromechanical coupling coefficient which have been solved. The results are simulated by Matlab.
     4. Beam Propagation Method (BPM) is chosen to analyze the optical waveguide. The optical waveguide of the modulator, which is designed before, is simulated and analyzed by the software OptiBPM and the results point out the problems existing in the design. The three main factors which influence the performance of the taper waveguide in design are analyzed. Based on the analytic results, the taper waveguide is re-designed and the optimum design is gained.
     5. The pilot production of the optical waveguide, which is the first step of completing the high-speed guided-wave acousto-optic modulator, has been finished. Then we conduct the experimental research on testing the optical waveguide. According to the results, the ideas for improving the modulator are provided.
引文
[1]K. C. Kao, G. A. Hockham, Dielectric-fibre surface wave-guides for optical frequencies, IEE Proc. J., 1986, 133: 191~198
    [2]蓝信钜,激光技术,武昌:华中科技大学出版社,1995
    [3] T. Yeon, K. Law, and A. Goldenberg, IEEE. Commun. Mag., ,2001,39:158~163
    [4]Cao Zhonghui, Bao Junfeng, Yuan Ye, et al., Acta Optica Sinica, 23(9) ,2003,1041~1044
    [5]Hirochika Nakajima,IEICE Trans. Electron., 1999, E82-C(2):297~304
    [6]N.Goto and Y.Miyazaki, Jpn. J. Appl. Phys., 1998, 37:2947~2955
    [7]F. Wehrmann, C. Harizi, H. Herrmann, et al., IEEE J. Sel. Top. Quantum Electron., 1996,2(7):263~269
    [8]F. Tian and H. Herrmann, J. Lightw. Techn., 1995, 13:146~154
    [9] Y. Miyazaki and N. Goto, IEEE Ultrasonics Symposium, 2002, 605~608
    [10]F. Wehrmann, et al., IEEE Journal of Selected Topics in Quan. Electron., 1996, 20(2):263~269
    [11]N. Grote and H. Venghaus, Eds., Fiber Optic Communication Devices, New York: Springer-Verlag, 2001,296~307
    [12]N. Goto and Y. Miyazaki, Jpn. J. Appl.Phys., 2003,42(5B):3041~3047
    [13]A. Kar-Roy and C.S. Tsai, IEEE Photonics Technology Lett., 1992,4(7):731~735
    [14]D.A. Smith, et al., Optics Lett., 1994,19(2):99~101
    [15]D.A. Smith, et al, Journal of Lightwave Technology, 1996, 14(9):2044~2052
    [16]肖立峰、刘迎等,中国激光,2005,32(8):1073~1076
    [17]朱德彬,二氧化硅光波导声光器件技术的研究,硕士学位论文,长春理工大学,2006
    [18]陈强,肖定全,吴家刚,Pechini法制备铌酸锂陶瓷的结晶性能研究,功能材料,2004,35(04):477~482
    [19]苏伟,数字线性声光调制器的应用,硕士学位论文,杭州:浙江大学,2001
    [20]霍玉晶,王宇鹏,危学彪等,LD泵浦的声光调Q腔内倍频激光器,激光与红外,1996,20(1):16 ~19
    [21]A. Sliwinski, Acousto-optics and its perspective in research and applications, Ultrasonics, 1990, 28(4):195~203
    [22] PaI Maa,k. OPtimization of transducer configuration for bulk acousto-optic tunable filters, Optics Communication, 2004,241:87~92。
    [23] N. Uchida and N. Niizeki, Proc. IEEE, 1973, 61(8):1073
    [24]E.G. Lean et al., Proc. IEEE, 1976, 64:779
    [25]R.V. Schmidt, IEEE Trans. Sonics and Ultrasoncis, 1976, SU-23:22
    [26]C.S.Tsai, Guided-wave acousto-optic interaction, devices and application, Berlin: Springer-Verlag, 1990
    [27]N. Goto, Y. Miyazaki, Improvement of switching speed in acoustooptic switches for multiple optical wavelength using gigahertz surface acoustic waves, Jpn. J. Appl. Phys., 1998,37, Part 1(5B): 2947-2955
    [28]Shoji KAKIO, Shinji UOTANI, Yasuhiko NAKAGAWA, Diffraction Properties and Beam-Propagation Analysis of Waveguide-Type Acoustooptic Modulator Driven by Surface Acoustic Wave, Japanese Journal of Applied Physics, 2005, 44(6B):4472~4476
    [29]Shoji KAKIO, Shinji UOTANI, Yasuhiko NAKAGAWA, Improvement of Diffraction Properties in Waveguide-Type Acoustooptic Modulator Driven by Surface Acoustic Wave, Japanese Journal of Applied Physics, 2007, 46(2):669~674
    [30]Shoji KAKIO, Shinji UOTANI, Motoki KITAMURA, et al., Monolithically Integrated Tandem Waveguide-Type Acoustooptic Modulator Driven by Surface Acoustic Waves, 2007, Japanese Journal of Applied Physics, 46(7B):4608~4612
    [1]M.Bron and E.Wolf, Principles of optics, 4-th ed., 14.5, Pergamon Press, Oxford, 1970
    [2]徐介平,声光器件的原理、设计和应用,北京:科学出版社,1982
    [3]E. G. Lean, J. M. White and C. D. W. Wilkinson, Thin Film Acousto-Optic Devices, Proc. IEEE, 1976, 64: 779~781
    [4]R. V. Schmidt, Acoustooptic Interactions between guided optical waves and acoustic surface waves, IEEE Trans. Sonics and Ultrasonics, 1976, 23: 22~24
    [5]N. Uchida and N. Niizeki, Acousto-optic deflection materials and techniques, Proc. IEEE, 1973, 61(8): 1073
    [6]西原浩等[日],梁瑞林译,集成光路,北京:科学出版社,2002
    [7]许昌昆,孟秀林等译,声表面波器件及其应用,日本电子材料工业会,1984
    [8]Lord Rayleigh, On waves propagated along the plane surface of an elastic body, Proc. Math. Soc. London, 1885, 17, 4
    [9]A. E. H. Love, Some problems of geodynamics, Ch. 176, Cambridge Univ. Press, 1911
    [10]J. L. Bleustein, A new surface wave in piezoelectric material, Appl. Phys. Lett., 1968, 13, 412
    [11]Y. V. Gulyaev, Surface electroacoustic waves in solids, Soviet JETP Lett. 1969, 9, 63
    [12]R. M. White, et al., Direct piezoelectric coupling to surface elastic waves, Appl. Phys. Lett., 1965, 7, 314
    [13]Theodor Tamir, Integrated optics: theory and technology, 2-th, Berlin: Springer- Verlag, 1984
    [14]D. Marcuse, Theory of dielectric optical waveguides, New York and London: Academic Press, 1974
    [15]E. G. H. Lean, Acousto-Optical Interactions, Introduction to integrated optics, New York: Plenum Press, 1974
    [16]夏纪真,超声波无损检测技术工艺,(原南昌航空工业学院无损检测本科教材修订的电子版),超声波无损检测技术工艺第二章2.1.3节
    [17]王佐卿,周素华,汪承灏,在YZ-LiNbO3金属化表面上弧形叉指换能器激励的声表面波聚焦,声学学报,1986, 11(3): 184~188
    [1]李良儿,吉小军,诗文康等,声表面波波速快速求解策略,上海交通大学学报,2005,39(4),656~660
    [2]武以立,邓盛刚,王永德,声表面波原理及其在电子技术中的应用,北京:国防工业出版社,1983,6~31
    [3]水永安,声表面波与声表面波器件讲义,南京:南京大学声学所,1998
    [4]李良儿,俞红杰,沈晓群等,解耦的声表面波波动方程的求解,传感技术学报,2005,18(1),205~211
    [5] Jiping Ning, Jing Liu, et al,A new theoretical analysis model about the design of acoustical waveguide in the guided acousto-optic devices,Asia Photonics Proc. SPIE, Nov. 2007
    [1]秦自楷等,压电石英晶体,北京:国防工业出版社,1980
    [2]http://www.teraxtal.com/chi/products_ln.htm兆晶科技股份有限公司
    [3] Raegan Lynn Johnson, Characterization of piezoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers
    [1]Tsai C. S., Guided-wave Acousto-optic Interaction, Devices and Application, Springer- Verlag, Berlin, 1990
    [2]Robert G Hunsperger, Integrated Optics: Theory and Technology, Springer–Verlag, New York, 2002
    [3]Kenji Kawano and Tsutomu Kitoh, Introduction to Optical Waveguide Analysis:Solving Maxwell' S Equation and the Schr? Dinger Equation Summary, Wiley, New York, 2001
    [4] Yeh C, et a1., Single-mode Optical Waveguides, Appl. Opt., 1979,18(6): 1490~1504
    [5] Koch T B, et at., Finite element/finite difference propagation Algorithm for integrated optical Device, Electron Lett., 1989, 25(2): 514~516
    [6]吴涛,光波导器件的计算机仿真与BPM算法的研究:[硕士学位论文],济南:山东大学,2003
    [7]Felt M. D., Fleck Jr. J. A., Light propagation in graded-index optical fibers, App. Opt., l978, 17(11)3990~3998
    [8]刘淑平等,GeSi/Si异质结平面光波导中的光场分析,计算物理,1996,l3(3):355~358
    [9]Henry C. H., Analysis of Mode Propagation in Optical Wavegulde Devices by Fourier Expansion, IEEE J Quantum Electron, 1991, 27(3): 523~530
    [10] http://baike.baidu.com/view/163327.htm
    [11]Koshiba M. Hayata K, and Suzuki M., Finite-element formulation in term of the electric-field vector for electromagnetic waveguide problems, IEEE Trans Microwave Theory & Techniques, 1985, MTT-33(10): 900~905
    [12]Hayata K, Eguchi M and Koshiba M, Finite element for guided-wave problems using traverse electric field component, IEEE Trans Microwave Theory & Techniques, 1989, 37(1):256~258
    [13]Femandez F. A., Lu Y., Variational finite element analysis of dielectric waveguides with no spurious solutions, Electron Lett., 1990, 26(25): 2125~2126
    [14]Abid Z E, Johnson K K, Gopinath A. Analysis of dielectric guides by vector traverse magnetic fields finite elements, J. Lightwave Technol, 1993,11(10):1543~1549
    [15]Saitoh K, Koshiba M and Tsuji Y, Stress analysis of method for elastically anisotropic material based optical waveguides and its application to strain-induced optical waveguides, J Lightwave Technol, 1999, 17(2):255~259
    [16]Schweig E and Bridges W B, Computer analysis of dielectric waveguides: a finite-difference method, IEEE Trans Microwave Theory & Techniques, 1984, MTT-32(5):531~541
    [17]Stern M S, Semivectorial polarized finite difference method for optical waveguides with arbitrary index, IEE Proc J,1988,135(1):56~63
    [18]Lusse P, Stuwe P, Schule J, et al., Analysis of vectorial mode fields in optical waveguides by a new finite difference method, J Lightwave Technol, 1994,12(3):487~493
    [19]Hadley G R, High-accuracy finite-difference equations for dielectric waveguide analysis I: uniform regions and dielectric interfaces, J Lightwave Technol, 2002,20(7):1210~1218
    [20] Hadley G R, High-accuracy finite-difference equations for dielectric waveguide analysis II: uniform regions and dielectric interfaces, J Lightwave Technol, 2002,20(8):1609~1618
    [21]K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media, "IEEE Trans. Atennas Propagat., 1966, 14: 302~307
    [22]J. A. Fleck, J. R. Morris and M. D. Feit, Time-dependent propagation of high energy laser b eams through the atmosphere, Appl. Phys., 1976, 10: 129~160
    [23]www.optiwave.com
    [1]西原浩等[日],梁瑞林译,集成光路,北京:科学出版社,2002
    [2]A. Méndez, A. García-Cabaňes, M. Carrascosa, et al., Dark developing of photorefefractive proton-exchanged LiNbO3 waveguides, Optical Material, 2001,18: 111~114
    [3]Yu. N. Korkishko, V. A. Fedorov, E. A. Baranov, et al., Characterization of phase soft proton-exchanged LiNbO3 optical waveguides, J. Opt. Soc. Am. A., 2001, 18: 1186~1191
    [4]S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, Wavelength Dispersion of Ti Induced Refractive Index Change in LiNbO3 as a Function of Diffusion Parameters, J. Lightwave Technology, 1987, 5(5): 700~708
    [5]陆樟献,980nm泵浦的Er:LiNbO3波导激光器的研究:[硕士学位论文],天津:天津大学,2000
    [6]Rubén Nevado, Ginés Lifante, Characterization of index profiles of Zn-diffused LiNbO3 waveguides, J. Opt. Soc. Am. A, 1999, 16:2574~2580
    [7]P. G. Suchoski, M. M. Abouelleil, T. K. Findarkly, et al., Low-loss proton-exchanged LiNbO3 waveguides with no electrooptic degradation integrat guide-wave Opt. Tech. Dig. Ser.1988, 5: 88~91
    [8]F. S. Ickernell, S. J. Joseph and P. S. Chung, Surface wave studies of annealed proton exchanged Lithium Niobate, Proc. 6th IEEE Intern. Symp. On Aplication of Ferroeloctrics, 1986, 8-1
    [9]日本电子材料工业会编,许昌昆,孟秀林等译,声表面波器件及其应用,科学出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700