蓝藻别藻蓝蛋白的生物合成及组装的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝藻是地球上分布最广泛、最原始的放氧光合作用原核生物,其光合作用是从藻胆蛋白组成的藻胆体结构吸收光能开始的。藻胆蛋白是一个多亚基组成的蛋白复合物,每个亚基上结合不同的开环四吡咯色素分子(色基),使得它们可以吸收不同波长的光能。能量在藻胆蛋白之间几乎以100%的效率传递到光反应中心。
     别藻蓝蛋白(APC)位于藻胆体核心,具有特殊的光谱特征。APC由α和β亚基组成,每个亚基只结合一个色基PCB,但由单体(αβ)聚集为三聚体(αβ)3后,其光谱性质发生了巨大的变化。APC是以三聚体形式参与光能传递的,因此,研究其合成和组装能使我们更好的理解其功能,即光能传递的基础,并为人工组装藻胆体提供根据。
     本文以集胞藻PCC 6803 APC为研究对象,首先研究了APC的生物合成,即色基PCB是如何共价结合到脱辅基亚基上的过程。我们在大肠杆菌体内重组了荧光APCα和β亚基生物合成的完整通路。利用双表达载体,将APC脱辅基亚基ApcA或ApcB、合成色基的血红素氧化酶HO1、胆绿素还原酶PcyA及催化PCB结合到脱辅基亚基上的裂合酶CpcS/U在大肠杆菌中共同表达。通过诱导,大肠杆菌能够利用自身的亚铁血红素合成具有与天然APC亚基一致的特征吸收和荧光光谱的重组色素蛋白,holo-ApcA和holo-ApcB。研究还证实,只有在裂合酶CpcS/U同时表达时才能完成色基PCB与脱辅基亚基的正确连接。
     我们对APCα亚基与PCB进行了体外重组研究,并提出了裂合酶可能的作用机理。裂合酶CpcS/U之间存在相互作用,共同存在时使它们的溶解性和稳定提高。在体外实验中,裂合酶CpcS/U可以与色基迅速的以非共价方式结合,在APC脱辅基亚基存在的条件下,酶还可以将色基转移至脱辅亚基上,并帮助其以正确的构型与蛋白共价结合,获得与天然APC亚基一致的光谱特性。在体外条件下,脱辅亚基能与色素PCB自发结合,但该过程非常缓慢,并且无法获得正确的光谱特征。APC亚基的体内组建和体外重组实验为阐明APC在蓝藻中的生物合成过程提供了理论依据。
     在确定了集胞藻PCC 6803 APC亚基的生物合成途径的基础上,我们在大肠杆菌体内对APC组装为三聚体(αβ)3进行了研究。利用双表达载体,将APC脱辅基亚基ApcA和ApcB、裂合酶CpcS/U、色素合成酶Ho1和PcyA在大肠杆菌中共同表达。通过多步分离的方法,包括亲和色谱柱、分子排阻凝胶色谱柱等方法,获得与天然别藻蓝蛋白光谱一致的蛋白。根据光谱特征分析、荧光量子产率等显示了重组蛋白具有天然APC相似的性质。胰蛋白酶消化实验证实重组三聚体与天然APC三聚体水解色基多肽的HPLC图谱相近,可以证明利用大肠杆菌体内重组所得到的色素蛋白与天然APC色基结合位点一致。这是首次报道了在大肠杆菌体内重组的APCα和β亚基组装成具有天然APC结构特性的三聚体。以前有报道脱辅基亚基在大肠杆菌的共表达只能获得异二聚体,与该结果相比较,我们认为色基在三聚体组装中起重要作用。
     LCM是APC重要的连接蛋白,是藻胆体能量传递的终端受体,并对其组装和锚定起重要作用。LCM也是藻胆体中最大的色素分子,由于其本身溶解性很差,关于其生化性质和生物合成的研究不多。我们在大肠杆菌体内重组了LCM(1-240)生物合成的通路。LCM(1-240)在大肠杆菌体内主要以包涵体的形式存在,溶于4M尿素后获得与报道的LCM基本一致的光谱特性。为了提高其溶解性,得到天然状态的表达蛋白,在LCM(1-240)的N端引入了大肠杆菌麦芽糖结合蛋白MBP,得到了光谱特征一致的可溶性的LCM(1-240),这为下一步对其生化性质进行深入的研究提供了基础。
     对APC的生物合成及组装的研究,有助于我们探讨其结构组成对光谱特性的影响,理解其在蓝藻光传递系统的功能,并有利于进一步阐明别藻蓝蛋白多亚基组装的机理,为下一步人工合成藻胆体提供理论依据。另外,天然别藻蓝蛋白作为荧光标志物在生物学和临床领域应用广泛,通过重组方式获得别藻蓝蛋白,将可以使我们通过分子设计的方法获得功能改进的蛋白,具有一定的应用价值。
Cyanobacterium is one of the primitive species with the capacity of oxygenic photosynthesis. The process of photosynthesis is initiated by the absorption of light energy through phycobiliproteins. Phycobiliproteins are multi-subunit complex that covalently bind a variety of linear tetrapyrolle pigments called bilins, enabling them to harvest light in the visible region of the spectrum. The absorbed energy can be transferred at almost 100% efficiency to the reaction center.
     Allophycocyanin (APC), located in the core of phycobilisome, has the special spectroscopic characteristics. APC is tightly associatedαβheterodimer, with only one bilin covalently attached to each subunit. One of the prominent spectroscopic characteristics of APC is the strong red-shift of the absorption and fluorescent emission maxima when monomers assembling into trimers. APC participates in the energy transfer in higher aggregates, i.e. APC trimer. Therefore, the researches on the biosynthesis and assembly of APC will provide insight into its function, i.e. the basis of the energy transfer. Further, these will also help us in the reconstitution of the giant complex phycobilisome.
     In this study, the entire pathway for the biosynthesis of holo-αandβsubunits of APC from Synechocystis sp. PCC 6803 was reconstituted in Escherichia coli (E. coli). The genes for apo-proteins (apo-ApcA or apo-ApcB) biosythesis, the genes ho1 and pcyA encoding the enzymes for PCB production and the genes cpeS-1 and cpcU for the attachment of PCB to apo-proteins were co-expressed in E. coli by a dual vector system. Upon induction, holo-αandβsubunits of APC were acquired with spectroscopic properties similar to those of the same protein produced in cyanobacteria. The results were also shown that CpcS/U is the bilin lyase which responsible for attachment of PCB to both ApcA and ApcB.
     In addition, the reconstitution of holo-ApcA was performed in vitro and the possible catalysis mechanism for the attachment of PCB to apo-ApcA was also suggested. The results demonstrated that CpcS/U can form a heterodimer so as to improve their solubility and stability. Lyases CpcS/U can bind rapidly to PCB in a non-covalent way, and transfer it to apo-ApcA slowly under the appropriated conditions. The reconstituted products have the characteristics identical to that of native APC holo-αsubunit. PCB can spontaneously attach to apo-ApcA in a much slower way, however, complex with correct absorption maxima could not be acquired in the absence of lyases CpcS/U. Both the reconstitution of APCsubunits in vivo in E. coli and in vitro will provide insight into the biosynthetic process of APC in cyanobacteria.
     In this study, the fluorescent APC trimer was successfully synthesized from Synechocystis sp. PCC 6803 in E. coli. Genes encoding APC apo-α,βsubunits and enzymes for phycocyanobilin (PCB) biosynthesis and covalent attachment to apo-proteins were co-expressed in E. coli using a dual plasmid system. The recombinant APC trimer (rAPC) was purified by using metal affinity and size exclusion chromatography and showed the characteristic absorption and emission spectra identical to those of the native APC, suggesting that rAPC was in its native conformation. Tryptic digestion analysis confirms the rAPC has the same components as the native APC. The molecular weight analysis (by HPLC) results clearly show that rAPC is in a trimeric state. This is the first study on the assembly of recombinant ApcA and ApcB to a trimer with the native structure.When compared to the study in which only monomer was formed, our results indicate that the synthesis of bilins and the subsequent attachment to apo-subunits are very important for the successful assembly of APC trimers.
     LCM is a multifunction linker serving as a terminal energy acceptor and a membrane anchor. Information on their biochemical properties and biosynthesis is scare due to their insolubility. In this study, the pathway for the synthesis of LCM(1-240) was reconstituted in E. coli. The recombinant LCM(1-240) is prone to aggregation as inclusive body. These insoluble products were dissolved in 4 M urea to acquire the spectroscopic properties similar to those of the reported proteins. The solubility of LCM(1-240) is improved when it is expressed as a MBP fusion, without the changes of the spectroscopic properties. This study will facilitate the biochemical analysis of LCM(1-240), and allow further understanding of their functions.
     Our studies focus on the biosynthesis and assembly of APC, which would help us to understand the relationship between the structure and the functions, reflecting on the change of its spectra. These would also facilitate the interaction analysis of multi-subunits of APC, which leads to the assembly of trimers. Additionally, as APC is a widely used fluorescent tags with numerous applications in biological and clinical fields, this study will provide a promising way to produce better fluorescent tags by molecular design.
引文
Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15-32
    Ajlani G, Vernotte C (2001) Deletion of the PB-loop in the LCM subunit does not affect phycobilisome assembly or energy transfer functions in the cyanobacterium Synechocystis sp. PCC6714. Eur J Biochem 257:154-159
    Anderson LK, Toole CM (1998) A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Mol Microbiol 30:467-474
    Arciero DM, Bryant DA, Glazer AN (1988) In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J Biol Chem 263:18343-18349
    Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43-73
    Beale SI, Cornejo J (1991) Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. J Biol Chem 266:22328-22332
    Bennett A, Bogorad L (1971) Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry 10:3625-3634
    Brejc K, Ficner R, Huber R, Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 ? resolution. J Mol Biol 249:424-440
    Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. J Gen Microbiol 128:835-844
    Bryant DA, Glazer AN, Eiserling FA (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110:61-75
    Bryant DA, Guglielmi G, Marsac NT, Castets AM, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113-127
    Capuano V, Braux AS, Tandeau de Marsac N, Houmard J (1991) The" anchor polypeptide" of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apce gene. J Biol Chem 266:7239-7247
    Chauvat F, Vries L, Ende A, Arkel GA (1986) A host-vector system for gene cloning in the cyanobacterium Synechocystis PCC 6803. Mol Gen Genet 204:185-191
    Cobley JG, Clark AC, Weerasurya S, Queseda FA, Xiao JY, Bandrapali N, D'Silva I, Thounaojam M, Oda JF, Sumiyoshi T (2002) CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR). Mol Microbiol 44:1517-1531
    Davis SJ, Kurepa J, Vierstra RD (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci U S A 96:6541-6546
    de Lorimier R, Bryant DA, Stevens Jr SE (1990) Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochimica et Biophysica Acta 1019:29-41
    De Marsac NT, Cohen-Bazire G (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A 74:1635-1639
    Ducret A, Muller SA, Goldie KN, Hefti A, Sidler WA, Zuber H, Engel A (1998) Reconstitution, Characterisation and Mass Analysis of the Pentacylindrical Allophycocyanin Core Complex from the Cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 278:369-388
    Ducret A, Sidler W, Wehrli E, Frank G, Zuber H (2004) Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. Eur J Biochem 236:1010-1024
    Duerring M, Schmidt GB, Huber R (1991) Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 ? resolution. J Mol Biol 217:577-592
    Edwards MR, Gantt E (1971) Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus. J Cell Biol 50:896-900
    Emlyn-Jones D, Ashby MK, Mullineaux CW (1999) A gene required for the regulation of photosynthetic light harvesting in the cyanobacterium Synechocystis 6803. Mol Microbiol 33:1050-1058
    Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA, Glazer AN (1992) Phycocyanin alpha-subunit phycocyanobilin lyase. Proc Natl Acad Sci U S A 89:7017-21
    Ficner R, Lobeck K, Schmidt G, Huber R (1992) Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 ? resolution. J Mol Biol 228:935-950
    Fischer R, Scheer H (1992) Dissociating effect of chromophore modifications on C-phycocyanin heterohexamers. J Photoch Photobiol B 15:91-103
    Frankenberg N, Lagarias JC (2003) Biosynthesis and biological functions of bilins. The Porphyrin Handbook 13:211-235
    Gambetta GA, Lagarias JC (2001) Genetic engineering of phytochrome biosynthesis in bacteria. Proc Natl Acad Sci U S A 98:10566-10571
    Gantt E (1975) Phycobilisomes: Light-harvesting pigment complexes. Bioscience 25:781-788
    Gantt E, Conti SF (1965) The ultrastructure of Porphyridium cruentum. J Cell Biol 26:365-381
    Gantt E, Conti SF (1966a) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29:423-434
    Gantt E, Conti SF (1966b) Phycobiliprotein localization in algae. Brookhaven Symp Biol 19: 393-405
    Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486
    Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, Zuber H (2005) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem 205:907-915
    Glauser M, Sidler W, Zuber H (1993) Isolation, characterization and reconstitution of phycobiliprotein rod-core linker polypeptide complexes from the phycobilisome of Mastigocladus laminosus. Photochem photobiol 57:344-351
    Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14:47-77
    Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1-4
    Glazer AN, Cohen-Bazire G (1971) Subunit structure of the phycobiliproteins of blue-green algae. Proc Natl Acad Sci U S A 68:1398-401
    Glazer AN, Williams RC, Yamanaka G, Schachman HK (1979) Characterization of cyanobacterial phycobilisomes in zwitterionic detergents. Proc Natl Acad Sci U S A 76:6162-6166
    Gomez-Lojero C, Perez-Gomez B, Prado-Flores G, Krogmann DW, Carabez-Trejo A, Pena-Diaz A (1997)The phycobilisomes of the cyanobacterium Arthrospira (Spirulina) maxima. Int J Biochem Cell B 29:1191-1205
    Guan X, Qin S, Su Z, Zhao F, Ge B, Li F, Tang X (2007) Combinational biosynthesis of a fluorescent cyanobacterial holo-alpha-phycocyanin in Escherichia coli by using one expression vector. Appl Biochem Biotechnol 142:52-9
    Gysi J, Zuber H (1974) Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn. FEBS letters 48:209-213
    Houmard J, Capuano V, Colombano MV, Coursin T, Tandeau de Marsac N (1990) Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A 87:2152-2156
    Kahn K, Mazel D, Houmard J, Tandeau de Marsac N, Schaefer MR (1997) A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis. J Bacteriol 179:998-1006
    Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research 3:109
    Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13:425-436
    Kufer W, H gner A, Eberlein M, Mayer K, Buchner A, Gottschalk L (1991) Structure and molecular evolution of the gene cluster encoding proteins of the rod substructure of the phycobilisome from the cyanobacterium Mastigocladus laminosus. Gene Bank 75599
    Landgraf FT, Forreiter C, Hurtado Pico A, Lamparter T, Hughes J (2001) Recombinant holophytochrome in Escherichia coli. FEBS Lett 508:459-62
    Liu JY, Jiang T, Zhang JP, Liang DC (1999) Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-? resolution. J Biol Chem 274:16945-52
    Liu LN, Chen XL, Zhang YZ, Zhou BC (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochimica et Biophysica Acta 1708:133-142
    Lundell DJ, Yamanaka G, Glazer AN (1981) A terminal energy acceptor of the phycobilisome: the 75,000-dalton polypeptide of Synechococcus 6301 phycobilisomes--a new biliprotein. J Cell Biol 91:315-319
    MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311-34
    MacColl R, Eisele LE, Menikh A (2003) Allophycocyanin: trimers, monomers, subunits, and homodimers. Biopolymers 72:352-65
    McGregor A, Klartag M, David L, Adir N (2008) Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J Mol Biol 384:406-421
    Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophorebiosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335-348
    Pizarro SA, Sauer K (2001) Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides. Photochem Photobiol 73:556-563
    Rakhimberdieva MG, Vavilin DV, Vermaas WFJ, Elanskaya IV, Karapetyan NV (2007) Phycobilin/chlorophyll excitation equilibration upon carotenoid-induced non-photochemical fluorescence quenching in phycobilisomes of the cyanobacterium Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta 1767:757-765
    Redlinger T, Gantt E (1982) A Mr 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc Natl Acad Sci U S A 79:5542-5546
    Reuter W, Wiegand G, Huber R, Than ME (1999) Structural analysis at 2.2 ? of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci U S A 96:1363-1368
    Ritter S, Hiller RG, Wrench PM, Welte W, Diederichs K (1999) Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-? resolution. J Struct Biol 126:86-97
    Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837-858
    Rowan KS (1989) Photosynthetic pigments of algae. Cambridge Univ Pr Saunee NA, Williams SR, Bryant DA, Schluchter WM (2008) Biogenesis of phycobiliproteins: II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to CYS-82 OF beta-phycocyanin and CYS-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. J Biol Chem 283:7513-7522
    Scheer H, Zhao KH (2008) Biliprotein maturation: the chromophore attachment. MolMicrobiol 68:263-276
    Schirmer T, Bode W, Huber R (1987) Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 ? resolution. A common principle of phycobilin-protein interaction. J Mol Biol 196:677-695
    Schirmer T, Bode W, HuberWalter R, Zuber H (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184:257-277
    Schirmer T, Huber R, Schneider M, Bode W, Miller M, Hackert ML (1986) Crystal structure analysis and refinement at 2·5 of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum: The molecular model and its implications for light-harvesting. J Mol Biol 188:651-676
    Shen G, Boussiba S, Vermaas WFJ (1993) Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function. Plant Cell 5:1853-1863
    Shen G, Saunee NA, Gallo E, Begovic Z, Schluchter WM, Bryant DA (2004) Identification of novel phycobiliprotein lyases in cyanobacteria: in PS 2004 Light-Harvesting Systems Workshop, eds Niederman RA, Blankenship RE,Frank H, Robert B, van Grondelle R , pp 14–15
    Shen G, Saunee NA, Williams SR, Gallo EF, Schluchter WM, Bryant DA (2006) Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta subunit of phycocyanin in Synechococcus sp. PCC 7002. J Biol Chem 281:17768-17778
    Shen G, Schluchter WM, Bryant DA (2008) Biogenesis of phycobiliproteins: I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for beta-phycocyanin and allophycocyanin subunits. J Biol Chem 283:7503-7512
    Shestakov SV, Reaston J (1987) Gene transfer and host-vector systems of cyanobacteria. Plant Mol. Cell Biol 4:137-166
    Sidler WA (1994) Phycobilisome and phycobiliprotein structures. The molecularbiology of cyanobacteria.139-216
    Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171-205.
    Storf M, Parbel A, Meyer M, Strohmann B, Scheer H, Deng MG, Zheng M, Zhou M, Zhao KH (2001) Chromophore Attachment to Biliproteins: Specificity of PecE/PecF, a Lyase-Isomerase for the Photoactive 31-Cys-[alpha] 84-phycoviolobilin Chromophore of Phycoerythrocyanin. Biochemistry 40:12444-12456
    Sugishima M, Migita CT, Zhang X, Yoshida T, Fukuyama K (2004) Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme. Eur J Biochem 271:4517-4525
    Swanson RV, Zhou J, Leary JA, Williams T, de Lorimier R, Bryant DA, Glazer AN (1992) Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J Biol Chem 267:16146-16154
    Toole CM, Plank TL, Grossman AR, Anderson LK (1998) Bilin deletions and subunit stability in cyanobacterial light-harvesting proteins. Mol Microbiol 30:475-486
    Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host. Proc Natl Acad Sci U S A 98:10560-10565
    Wagner JR, Brunzelle JS, Forest KT, Vierstra RD (2005) A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438:325-331
    Wang XQ, Li LN, Chang WR, Zhang JP, Gui LL, Guo BJ, Liang DC (2001) Structure of C-phycocyanin from Spirulina platensis at 2.2 ? resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta Crystallographica Section D: Biological Crystallography 57:784-792
    Wilbanks SM, Glazer AN (1993) Rod structure of a phycoerythrin II-containingphycobilisome. I. Organization and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus sp. WH8020. J Biol Chem 268:1226-1235
    Wildman RB, Bowen CC (1974) Phycobilisomes in blue-green algae. J Bacteriol 117:866-881
    Wu SH, Lagarias JC (2000) Defining the Bilin Lyase Domain: Lessons from the Extended Phytochrome Superfamily. Biochemistry 39:13487-13495
    Yamanaka G, Glazer AN, Williams RC (1980) Molecular architecture of a light-harvesting antenna. Comparison of wild type and mutant Synechococcus 6301 phycobilisomes. J Biol Chem 255:11004
    Yu J, Wu Q, Mao H, Zhao N, Vermaas WFJ (1999) Effects of chlorophyll availability on phycobilisomes in Synechocystis sp. PCC 6803. IUBMB life 48:625-630
    Yu MH, Glazer AN (1982) Cyanobacterial phycobilisomes. Role of the linker polypeptides in the assembly of phycocyanin. J Biol Chem 257:3429-33
    Zhang W, Guan X, Yang Y, Ge B, Chen H, Li F, Qin S (2009) Biosynthesis of fluorescent allophycocyanin alpha-subunits by autocatalysis in Escherichia coli. Biotechnol Appl Biochem 52:135-40
    Zhao KH, Su P, B hm S, Song B, Zhou M, Bubenzer C, Scheer H (2005) Reconstitution of phycobilisome core-membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochimica Biophysica Acta 1706:81-87
    Zhao KH, Su P, Tu JM, Wang X, Liu H, Pl scher M, Eichacker L, Yang B, Zhou M, Scheer H (2007a) Phycobilin: cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc Natl Acad Sci U S A 104:14300-14305
    Zhao KH, Wu D, Wang L, Zhou M, Storf M, Bubenzer C, Strohmann B, Scheer H (2002) Characterization of phycoviolobilin phycoerythrocyanin-α84-cystein-lyase-(isomerizing) from Mastigocladus laminosus. Eur J Biochem 269:4542-4550
    Zhao KH, Zhang J, Tu JM, B hm S, Pl scher M, Eichacker L, Bubenzer C, Scheer H, Wang X, Zhou M (2007b) Lyase Activities of CpcS-and CpcT-like Proteinsfrom Nostoc PCC7120 and Sequential Reconstitution of Binding Sites of Phycoerythrocyanin and Phycocyaninβ-Subunits. J Biol Chem 282:34093-34103
    Zhou J, Gasparich GE, Stirewalt VL, De Lorimier R, Bryant DA (1992) The cpcE and cpcF genes of Synechococcus sp. PCC 7002. Construction and phenotypic characterization of interposon mutants. J Biol Chem 267:16138
    Zilinskas BA, Greenwald LS (1986) Phycobilisome structure and function. Photosynth Res 10:7-35
    Bhalerao RP, Lind LK, Gustafsson P (1994) Cloning of the cpcE and cpcF genes from Synechococcus sp. PCC 6301 and their inactivation in Synechococcus sp. PCC 7942. Plant Molecular Biology 26:313-326
    Cobley JG, Clark AC, Weerasurya S, Queseda FA, Xiao JY, Bandrapali N, D'Silva I, Thounaojam M, Oda JF, Sumiyoshi T (2002) CpeR is an activator required forexpression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR). Mol Microbiol 44:1517-1531
    Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1-4
    MacColl R (1998) Cyanobacterial Phycobilisomes. J Struct Biol 124:311-334
    Saunee NA, Williams SR, Bryant DA, Schluchter WM (2008) Biogenesis of phycobiliproteins: II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to CYS-82 OF beta-phycocyanin and CYS-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. J Biol Chem 283:7513-7522
    Shen G, Saunee NA, Gallo E, Begovic Z, Schluchter WM, Bryant DA (2004) Identification of novel phycobiliprotein lyases in cyanobacteria: 14-15
    Shen G, Schluchter WM, Bryant DA (2008) Biogenesis of phycobiliproteins: I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for beta-phycocyanin and allophycocyanin subunits. J Biol Chem 283:7503-7512
    Swanson RV, Zhou J, Leary JA, Williams T, de Lorimier R, Bryant DA, Glazer AN (1992) Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J Biol Chem 267:16146-16154
    Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host. Proc Natl Acad Sci U S A 98:10560-10565
    Zhao KH, Su P, Tu JM, Wang X, Liu H, Pl scher M, Eichacker L, Yang B, Zhou M, Scheer H (2007) Phycobilin: cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc Natl Acad Sci U S A 104:14300-14305
    Arciero DM, Bryant DA, Glazer AN (1988) In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J Biol Chem 263:18343-18349
    Fairchild CD, Glazer AN (1994) Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase. J Biol Chem 269:8686-8694
    Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA, Glazer AN (1992) Phycocyanin alpha-subunit phycocyanobilin lyase. Proc Natl Acad Sci U S A 89:7017-7021
    Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1-4
    Saunee NA, Williams SR, Bryant DA, Schluchter WM (2008) Biogenesis of phycobiliproteins: II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to CYS-82 OF beta-phycocyanin and CYS-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. J Biol Chem 283:7513-7522
    Shen G, Schluchter WM, Bryant DA (2008) Biogenesis of phycobiliproteins: I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 definea heterodimeric phyococyanobilin lyase specific for beta-phycocyanin and allophycocyanin subunits. J Biol Chem 283:7503-7512
    Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host. Proc Natl Acad Sci U S A 98:10560-10565
    Tu JM, Kupka M, B hm S, Pl scher M, Eichacker L, Zhao KH, Scheer H (2008) Intermediate binding of phycocyanobilin to the lyase, CpeS1, and transfer to apoprotein. Photosynth Res 95:163-168
    Zhao KH, Su P, Tu JM, Wang X, Liu H, Pl scher M, Eichacker L, Yang B, Zhou M, Scheer H (2007) Phycobilin: cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Natl Acad Sci U S A 104:14300-14305
    Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15-32
    Adir N, Dines M, Klartag M, McGregor A, Melamed-Frank M (2006) Assembly and disassembly of phycobilisomes. Microbiology Monographs: Inclusions in Prokaryotes 2:47-77
    Anderson LK, Toole CM (1998) A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Mol Microbiol 30:467-74
    Arciero DM, Bryant DA, Glazer AN (1988) In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J Biol Chem 263:18343-9
    Brown AS, Troxler RF (1977) Properties and N-terminal sequence of allophycocyanin from the unicellular rhodophyte Cyanidium caldarium. Biochem J 163:571-81
    Cai YA, Murphy JT, Wedemayer GJ, Glazer AN (2001) Recombinant phycobiliproteins. Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Anal Biochem 290:186-204
    Fischer R, Scheer H (1992) Dissociating effect of chromophore modifications on C-phycocyanin heterohexamers. J Photochem Photobiol B 15:91-103
    Glazer AN (1994) Phycobiliproteins - a family of valuable, widely used fluorophores. J Appl Phycol 6:105-112
    Gottschalk L, Lottspeich F, Scheer H (1993) Reconstitution of allophycocyanin from Mastigocladus laminosus with isolated linker polypeptide. Photochem Photobiol 58:761-767
    Liu JY, Jiang T, Zhang JP, Liang DC (1999) Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-? resolution. J Biol Chem 274:16945-16952
    MacColl R (2004) Allophycocyanin and energy transfer. Biochim Biophys Acta 1657:73-81
    MacColl R, Eisele LE, Menikh A (2003) Allophycocyanin: trimers, monomers, subunits, and homodimers. Biopolymers 72:352-365
    McGregor A, Klartag M, David L, Adir N (2008) Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J Mol Biol 384:406-421
    Murray JW, Maghlaoui K, Barber J (2007) The structure of allophycocyanin from Thermosynechococcus elongatus at 3.5 ? resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:998-1002
    Pizarro SA, Sauer K (2001) Spectroscopic Study of the Light-harvesting Protein C-Phycocyanin Associated with Colorless Linker Peptides. Photochem Photobiol 73:556-563
    Reuter W, Wiegand G, Huber R, Than ME (1999) Structural analysis at 2.2 ? of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci U S A 96:1363-1368
    Saunee NA, Williams SR, Bryant DA, Schluchter WM (2008) Biogenesis of phycobiliproteins: II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to CYS-82 of beta-phycocyanin and CYS-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. J Biol Chem 283:7513-7522
    Schirmer T, Bode W, Huber R (1987) Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 ? resolution. A common principle of phycobilin-protein interaction. J Mol Biol 196:677
    Toole CM, Plank TL, Grossman AR, Anderson LK (1998) Bilin deletions and subunit stability in cyanobacterial light-harvesting proteins. Mol Microbiol 30:475-486
    Yeh SW, Ong LJ, Clark JH, Glazer AN (1987) Fluorescence properties of allophycocyanin and a crosslinked allophycocyanin trimer. Cytometry 8:91-95
    Zhao KH, Su P, Tu JM, Wang X, Liu H, Pl scher M, Eichacker L, Yang B, Zhou M, Scheer H (2007) Phycobilin: cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc Natl Acad Sci U S A 104:14300-14305
    夏安东,朱晋昌,伍华菊,蒋丽金,张新夷(1993)螺旋藻藻胆蛋白的荧光寿命、量子产率及其光谱学特性。感光科学与光化学,11:35-40
    许金钩,王尊本荧光分析法(第三版)科学出版社2007:11-12
    Capuano V, Braux AS, Tandeau de Marsac N, Houmard J (1991) The" anchor polypeptide" of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apce gene. J Biol Chem 266:7239-7247
    De Marsac NT, Cohen-Bazire G (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A 74:1635
    Houmard J, Capuano V, Colombano MV, Coursin T, Tandeau de Marsac N (1990) Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A 87:2152-2156
    Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668-1674
    Liu S, Chen H, Qin S, Zhang W, Guan X, Lu Y (2009) Highly soluble and stablerecombinant holo-phycocyanin alpha subunit expressed in Escherichia coli. Biochemical Engineering Journal 48: 58-64
    Lundell DJ, Yamanaka G, Glazer AN (1981) A terminal energy acceptor of the phycobilisome: the 75,000-dalton polypeptide of Synechococcus 6301 phycobilisomes--a new biliprotein. J Cell Biol 91:315-319
    Nallamsetty S, Austin BP, Penrose KJ, Waugh DS (2005) Gateway vectors for the production of combinatorially-tagged His6-MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli. Protein Sci 14:2964-2971
    Nallamsetty S, Waugh DS (2006) Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expr Purif 45:175-182
    Redlinger T, Gantt E (1982) A Mr 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc Natl Acad Sci U S A 79:5542-5546
    Scheer H, Zhao KH (2008) Biliprotein maturation: the chromophore attachment. Molecul Microbiol 68:263-276
    Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: the early observations. Photosynthesis Research 76:193-202
    Zhao KH, Su P, B hm S, Song B, Zhou M, Bubenzer C, Scheer H (2005) Reconstitution of phycobilisome core-membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochimica et Biophysica Acta 1706:81-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700