沉桩挤土球孔扩张理论研究和数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济社会的发展,城市化进程不断加快,城市用地也越来越紧张,在密集城区进行建设成为不得已的选择。如何在建设过程减少对环境的影响成为一个值得研究的重大课题。在密集城区沉桩影响环境是其中的一个重要问题,有效地预估沉桩挤土效应以减少对邻近建筑物和地下公用设施等的影响和破坏具有重要的理论和实际意义。圆孔扩张理论、有限元法数值模拟是研究沉桩挤土问题最常用的两种方法,本文在前人工作的基础上,合理假设,考虑各种因素的影响,采用解析理论与数值模拟的方法对沉桩挤土效应进行研究。
     首先,根据土塑性力学的基本原理和常规三轴试验结果,假设土体应力应变关系为均质各向同性的三折线或四折线线性软化模型,认为土体软化过程是土体屈服强度随应变线性降低,引入剪胀角考虑土体的剪胀性,采用Mohr-Coulomb屈服准则、双剪统一强度屈服准则,考虑土体大小应变,推导得到了球孔扩张问题解析解,分析了塑性区变形、软化参数、大小应变对孔扩张解答结果的影响。
     其次,为模拟在半无限空间中的沉桩挤土问题,假定沉桩过程是若干个球孔在不同位置的扩张效应的累加,以本文所得的球孔扩张解析解为基础,借助源-源和源-汇手段,推导得到了沉桩挤土效应的解析解。
     第三,根据现有有限元方法在模拟沉桩挤土过程之不足,采用符合实际沉桩过程的位移贯入法,考虑初始应力场的影响,采用Mohr-Coulomb模型,数值模拟研究沉桩挤土效应,分析了土性等参数(黏聚力、摩擦角、弹性模量、泊松比、剪胀角、桩土界面摩擦系数)对沉桩挤土位移的影响,讨论了考虑初始应力场与否对挤土效应的差别,分析了桩体下沉过程中土体内各点挤土效应的变化规律,讨论了桩长不同时对挤土性状的影响。
     最后,采用有限元模拟分析了饱和土体中沉桩引起的超静孔隙水压力的分布和固结规律,讨论了静孔压消散、有效应力增长、地表初始隆起量降低的发展过程,研究了土性等参数(黏聚力、摩擦角、弹性模量、泊松比、桩土界面摩擦系数、渗透系数)对固结过程的影响。
With the rapid development of economic, urbanization developed quickly, available earth in city become rare, so it became inevitable that buildings are constructed in dense city zone, which make it become an important subject that how to reduce the bad effect produced during construction, the bad effect caused by driving pile is severe, how to predict and reduce the effect on surrounding region would have theoretical and practical value. Cavities expansion and finite element method are used widely in studying pile driving effects, on the base of past researches, such two methods were improved by introducing more appropriate hypothesis and considering more completely the factors involved in pile driving.
    Firstly, by using the principle of the elasto-plastic theory and the outcomes of routine triaxial test, the soil was assumed to be a homgeneous, isotropic matrial obeying tri-linear and tetra-linear softering model that considered the yield strength was dropped lineary with strain the dilation was considered, the Mohr-Coulomb and twin -shear united strength theory yield criterion were adopted individualy, big strain theory and small strain theory were also considered, on all these supposes, analytic solution of spherical cavities expansion was got. the influence of wether or not to consider elastic deformation in plastic zone and test and softening parameters and big and small strain were analyzed.
    Secondly, on the suppose that the effect of pile driving was the accumulation of effects of a lot of sole spherical cavity expansion, on the base of the analytical solution got, by making use of a source-source and a source-sink imaging technique, a anlytical solution predicting the effect of pile driving was obtained.
    Thirdly, according to some shortcomings in simulation of pile driving by finite element method, on the idea of displacement penetration, finite element method was used to analyze the compacting effects of pile driving with the consideration of influence of initial stress and with the use of Mohr-Coulomb model. The influence of some factors were analyzed, the difference of whether or not to consider the initial stress was discussed, the variation of discipline of compacting effect with the the sink of pile was analyzed, the discipline of compacting effect of different length of pile was also analyzed.
    Finally, the discipline of distribution and consolidation of excess hydraulic pressure was simulated when piles were drived in saturated soft soil, the unified process of the dissipation
    of excess hydraulic pressure and the increase of effective stress and the decrease of heave of soil surface was discussed, the influence on discipline of consolidation of some factors of soil are analyzed.
引文
Adms J. I. and Hanna, T. H., Ground movements due to pile driving, Behaviour of pries, 1971, London: Instruction of civil engineers. 127-133
    Aleksandar Sedmak Vesic, Expansion of cavity in infinite soil mass, Journal of the soil mechanics and foundations division proceedings of the American society of civil engineers, 1972, 3, 265-291.
    Baligh M. M., Undrained deep penetration, Ⅰ: shear stress, Geotechnique, 36(4): 471-485.
    Baligh M. M., Undrained deep penetration, Ⅱ: pore pressures, Geotechnique, 36(4): 487-501.
    Bigoni D. and Laudiero F., The quasi-static finite cavity expansion in a non-standard elasto-plastic medium, The J. Mech. Sci. 1989, 31(11): 825-837.
    Been, K., Jefferies, M. A state parameter for sands, Geotechnique, 1985, 35(2): 99-112.
    Bolton M. D., The strength and dilatancy of sands, Geotechnique, 1986, 36(1): 65-78.
    Bozozuk, M., Fellenius, B. H. and Samson, L. Soil disturbance from pile driving in sensitive clay, Can. Geotech. J. 1978, 15: 346-361.
    Burns, S. E. and Mayne, P. W., Analytical cavity expansion critical state model for piezocone dissipation in fine-grained soils, Soil and foundations, 2002, 42(2): 131-137.
    Burland, J. B., Shaft friction of pries in clay)—a simple foundational approach, Ground Engng. 6(3): 30-42.
    Butterfield R. and Baunerjee, P. K., The effect of pore-water pressures on the ultimate bearing capacity of driven pries, Proc. 2rd Southeast Asian Conf. on Soil Engng. Singapore, 1970, June.
    Carranza-Torres Carlos, Self-similarity analysis of the elasto-plastic response of underground openings in rock and effects of practical variables, the University of Minnesota[D], 1998.
    Chandler, R. J., The shaft friction piles in cohesive soil in terms of effective stress, Civ. Engng. Publ., Wks rev. 63, 48-51.
    Chan, S. H. and Tuba, I. S., Afinite element method for contact problems of soild bodies, Int. J. Mech. Sci., 1971, 13: 615-639.
    Chopra, M. B. and Dargush, G. F., Finite element analysis of time-dependent large-deformation problems, Int. J. for Numer. Analyst. Mech. Geomech., 1992, Vol. 16: 101-130.
    Chow Y. K. and Teh C. I., A theoretical study of pile heave, Geotechnique, 1990, 40(1): 1-14.
    Collins F. and Stimpson J. R., Similarity solution for drained and undrained cavity expansions in soils, Geotechnique, 44(1): 21-34.
    Collins, I., Pender, M., and Wang Yan, Cavity expansion in critical state soils, International Journal of numerical and analytical methods in Geomechanics, 1996, 20: 489-516.
    Collins, I. F. and Yu, H. S., Undrained cavity expansions in critical state soils, International Journal of numerical and analytical methods in Geomechanics, 1996,20:489-516.
    Cooke, R. W., Price, G and Tarr, K., Jacked piles in London clay: A study of load transfer and settlement under working conditions, Geotechnique, 1979,29(2):113-147.
    Coop, M. R. and Wroth C.P., Field studies of an instrumented model pile in clay, Geotechnique, 1989,39(4):679-696.
    
    Cooke, R. W. and Price, G, Strain and displacements around friction piles, Proc. 8~(th) Int. Conf. Soil Mech. Fdn. Engng., 1973, Moscow, 2(l):53-60.
    
    Carter J. P., Cavity expansion in cohesive frictional soils, Geotechnique, 1986,36(3):349-358.
    
    
    Cao L. F., The C. I., Undrained cavity expansion in modified Cam clay I: Theoretical analysis, Geotechniqus, 2001,51(4):323-334.
    Dafalias, Y. F. and Herrmann, L. R., Bounding surface plasticity, II: application to isotropic cohesive soils, J. Eng. Mech. ASCE, 1986,112:1263-1291.
    
    Davis, R. O., Scott, R. F. and Mullenger, G, Rapid expansion of a cylindrical cavity in a rate-type soil, Int. J. Analyst. Mech. Geomech. 1984,8(2):25-140.
    Emmanuel Detournay, Elastoplastic model of a deep tunnel for a rock with variable dilatancy, Rock mechanics and rock engineering, 1986,19:99-108.
    
    Guo Wei Dong, Visco-elastic consolidation subsequent to pile installation, Computers and Geotechnics, 2000,26,113-144.
    
    Hwang Jin-Hung, Ground response during pile driving, Journal of Geotechnical and Geoenvironmental engineering, 2001,11,939-949.
    
    
    Gupta,R. C, Finite strain analysis for expansion of cavities in granular soils, Soils and Foundations,2002,42(6):105-115.
    
    Joseph D. Hagerty, Heave and lateral movements due to pile driving, Journal of the soil mechanics and foundations division, proceedings of the American Society of Civil Engineer, 1971,11,1513-1532.
    
    Kavvadas M., A constitutive model for structured soils, 2000,50(3):263-273.
    
    Lee F. H., Juneja A., Stress and pore pressure changes due to sand compaction pile installation in soft clay, Geotechnique, 2004,54(1):1-16.
    
    Li X., Stress and displacement fields around adeep circular tunnel with partial sealing, Computers and Geotechnics, 1999,24:125-140.
    
    Li X. S. and dafalias Y. F, Dilatancy for cohesionless soils, Geotechnique, 2000,50(4):449-460.
    
    
    Mabsout M. E. and Tasoulas J. L., A finite element model for the simulation of pile driving, Int. J. Numer. Meth. Engng., 1994, Vol. 37,:257-278.
    
    Mantaras F. M. and F. Schnaid, Cylindrical cavity expansion in dilatant cohesive-frictional materials, Geotechnique, 2002,52(5):337-348.
    
    Mckinley John D., Coupled consolidation of a solid, infinite cylinder using a Terzaghi formulation, Coumpers and Geotechnics, 1998,23,193-204.
    
    Meyerhof, G.G. et al, Bearing capacity of piles in layeral soils, part I, Part II, Canada Geotechnique, 1978(1).
    
    Niels Saabye Ottosen, Behaviour of viscoelastic-viscoplastic spheres and cylinders-Fully plastic vessel walls, Int. J. Solids Structures, 1985,21(6):561-572.
    
    Niels Saabye Ottosen, Behaviour of viscoelastic-viscoplastic spheres and cylinders-Partly plastic vessel walls, Int. J. Solids Structures, 1985,21(6):573-595.
    
    Niels Saabye Ottosen, Viscoelastic-viscoplastic formulas for analysis of cavity in Okamoto, N. and Nakazawam M., Finite element increment contact analysis with various friction condition, Int. J. Numer. Meth. Engng., 1979,14:337-357.
    Orrje O. and Broms B. B., Effects of pile driving on soil properties, J. Soil Mech. Found. Div ASCE, Vol. 93, SM5.59-73.
    
    Palmer, A. C, Undrained plan strain expansion of a cylindrical cavity in clays. Geotechnique, 1972, 22:451-457.
    
    Palmer A. C, Undrained plane-strain expansion of a cylindrical cavity in clay: a simple interpretation of the pressuremeter test, Geotechnique 1972,22(3):451-457.
    
    Pestana Juan M., Soil deformation and excess pore pressure field around a closed-ended pile, Journal of Geotechnical and Geoenvironmental engineering, 2002,1,1-12.
    
    
    Poulos H. G, Effect of pile driving on adjacent piles in clay, Can. Geotech. J., 1994,31:856-867.
    Randolph M. F., Carter J. P., Driven piles in clay-the effects of installation and subsequent consolidation, Geotechnique, 1979,29(4):361-393.
    Sagaseta Cesar, Prediction of ground movements due to pile driving in clay, Journal of Geotechnical and Geoenvironmental engineering, 2001,127( 1), 55:65.
    Sagaseta C, Analysis of undrained soil deformation due to ground loss, Geotechnique, 1987, 37(3):301-320.
    Sagaseta Cesar,Whittle,A. J.,Discussion to effect of pile driving on adjacent piles in clay, Can. Geotech. E, Ottava, 1996,33(3):525-527.
    Sayed S.M., Cylinderical cavity expansion in nonlinear dilatant media, Mechanics research communications, 1987,14(4):219-227.
    
    rock salt, 1986,23(3):201-212.
    Schnaid F. and Mantaras F. M., Cavity expansion in cemented materials: Structure degradation effects, Geotechnique, 2003, 53(9):797-807.
    Sikhanda Satapathy, Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis, Mechanics of Materials, 1996,23:323-330.
    Soderberg, L. O. Consolidation theory applied to foundation pile time effects, Geotechnique, 1962, 12: 217-225.
    Teh C. I. and Houlsby G. T., An analytical study of the cone penetration test in clay, Geotechnique, 1991, 41(1): 17-34.
    Yu H. S. and Carter J. P, Rigorous similarity solution for cavity expansion in cohesive-frictional soils, The international journal of geomeehanics, 2002, 2(2): 233-258.
    Yu H. S. and Houlsby G. T., Finite cavity expansion in dilation soils: loading analysis, Geotechnique, 1991, 41(2): 173-183.
    曹秀娟,刘开富,谢新宇,刘一林,深厚软土地基沉桩挤土效应防治及现场监测,工业建筑,2004,34(6):55-58.
    陈志坚,张雄文,柳毅,考虑挤土和群桩效应的预制桩安全监控模型,岩土力学,2004,25(6):891-895
    卞立民,徐海波,徐建平,沉桩挤土效应研究综述,华中科技大学学报(城市科学版),2002,19(3):68-72.
    陈文,施建勇,龚友平,孙邦宾,饱和软粘土中静压桩沉桩机理及挤土效应研究综述,1999,19(3):38-59.
    蒋明镜,沈珠江,考虑剪胀的弹脆塑性软化柱形孔扩张问题,河海大学学报,1996,24(4):65-72.
    蒋明镜,沈珠江,考虑剪胀的线性软化柱形孔扩张问题,岩石力学与工程学报,1997,16(6):550-557.
    罗晓辉,何立红,土体应变软化特性的柱孔扩张弹塑性解,武汉城市建设学院学报,15(1):16-20.
    陈文,施建勇,龚友平,周林根等,饱和黏土中静压桩挤土效应的离心模型试验研究,河海大学学报,1999,27(6):103-109.
    丁佩民,肖志斌,施建勇,松砂中大型静压沉桩模型试验研究桩基挤土加密效应,工业建筑,2003,33(3):45-48.
    樊良本,打桩抬高的机理及对策,浙江工业大学学报,1998,26(1):73-77.
    龚晓南,李向红,静力压桩挤土效应中的若干力学问题,工程力学,2000,17(4):7-12.
    龚晓南,土塑性力学,浙江大学出版社,1999。
    胡中雄,饱和软黏土中单桩承载力随时间的增长,岩土工程学报,1985,7(3):58-61.
    李向红,软土地基静力压桩挤土效应问题研究,浙江大学博士学位论文,2000
    李月健,土体内球形孔扩张及挤土桩沉桩机理研究,浙江大学博士学位论文,2001。
    梁发云,陈龙珠,应变软化Tresca材料中扩孔问题解答及其应用,岩土力学,2004,25(2):261-265.
    鲁祖统,软黏土地基中静力压桩挤土效应的数值模拟,浙江大学博士学位论文,1998。
    罗战友,杨晓军,龚晓南,考虑材料的拉压模量不同及应变软化特性的柱形孔扩张问题,工程力学,2004,21(2)。
    罗战友,静压桩挤土效应及施工措施研究,浙江大学博士学位论文,2004.
    罗战友,王伟堂,刘薇,桩-土界面摩擦对静压桩挤土效应的影响分析,24(18),3299-3304.
    戚科骏,张云军,王旭东,宰金珉等,岩土力学,2005,26增刊:129-132.
    戚科骏,宰金珉,王旭东,梅国雄,南京工业大学学报,2005,27(3):8-11
    施建勇,陈文等,沉桩挤土效应分析,河海大学学报,2003,31(4).
    施建勇等,沉桩挤土效应研究综述,大坝观测与土工测试,2001,25(3):5-9.
    沈珠江,岩土破损力学:理想脆弹塑性模型,岩土工程学报,2003,25(3):253-257。
    王浩,魏道垛,表面约束下的沉桩挤土效应数值模拟研究,岩土力学,2002,23(1):107-110.
    王家来,熊巨华,应变软化土体中柱形扩孔解析,应用力学学报,1998,16(4):58-62.
    王旭东,王伟,宰金珉,打桩引起的超静孔隙水压力及其消散的解析解,南京工业大学学报,2002,36(4):16-19.
    王晓鸿,王家来,梁发云,应变软化岩土材料内扩张问题解析解,工程力学,1999,16(5):71-76
    王伟堂,裘华君等,压桩挤土位移的预估与防治的研究,岩土工程学报,2001,23(3):378-379。
    王伟,宰金珉,王旭东,岩土力学,2004,25(5):774-777.
    汪鹏程,朱向荣,应变软化及剪胀性土体中考虑大应变的孔扩张问题解析,浙江大学学报,2004,38(7):909-914.
    汪鹏程,软化剪胀中孔扩张理论及沉桩挤土性状研究,浙江大学博士学位论文,2005.
    谢新宇,朱向荣,静压桩的挤土效应及现场监测,浙江大学学报,1997,增刊。243-247。
    徐建平,周健,许朝阳,沉桩挤土效应的数值模拟,工业建筑,2000,30(7):1-6.
    徐建平,周健,许朝阳等,沉桩挤土效应的模型试验研究,岩土力学,2000,21(3):235-238.
    许朝阳,吕国兵,软粘土中沉桩效应的工程数值模拟,工业建筑,2000,30(7):7-10.
    俞茂宏,岩土类材料的统一强度理论及其应用,岩土工程学报,1994年,3月,第二期:1-10.
    姚笑青,胡中雄,饱和软土中沉桩引起的孔隙水压力估算,岩土力学,1997,18(4):30-35.
    张明义,邓安福,干腾君,静力压桩数值模拟的位移贯入法,岩土力学,2003,24(1):113-117.
    张庆贺,柏炯,沉桩引起环境病害的预测与防治,岩土力学与工程学报,1997,16(6):595-603
    郑刚,顾晓鲁,软土地基上静力压桩若干问题的分析,建筑结构学报,1998,19(4):54-60.
    朱晓林,预估桩的沉桩阻力和沉桩可能性,软土地基理论与实践,北京:中国建筑工业出版社,1992,125—128。
    《桩基工程手册》编委会,桩基工程手册,北京:中国建筑工业出版社,1995。
    周小平,张永兴,王建华,考虑中间主应力影响时的圆筒形孔扩张问题的弹塑性解,重庆建筑大学学报,2002,24(2):35-38.
    周健,徐建平,许朝阳,群桩挤土效应的数值模拟,同济大学学报,2000,28(6):721-725.
    朱奎,考虑竖向平面内屈服的单桩挤土效应以及孔隙水压力分析,建筑技术开发,2004,31(3):34-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700