采用烯丙醇聚氧乙烯醚合成聚羧酸系高效减水剂及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羧酸系减水剂具有高减水率和控制混凝土坍落度损失等优点,是高效减水剂的发展方向。本论文详细介绍了国内外高效减水剂的研究应用现状,分析了聚羧酸系减水剂的合成方法及发展趋势,并且从化学结构、作用机理入手,通过分子设计,合成出了含羟基、羧基、磺酸基、聚氧乙烯基等基团的具有梳型分子结构的聚羧酸系高效减水剂。
     课题选用烯丙醇聚氧乙烯醚(APEG)、丙烯酸(AA)、马来酸酐(MAD)与甲基丙烯磺酸钠(SMAS)为原材料,在引发剂过硫酸铵(APS)引发下进行自由基聚合,得到聚羧酸减水剂。试验结果表明:当单体APEG:AA:MAD:SMAS摩尔比为3:4:8:3时,该共聚物有较好分散性能。同时确定了最佳反应条件:引发剂用量为反应物总质量的2%;合成浓度为25%;度为85℃;反应时间为4h。
     通过对自制PC红外光谱分析表明,分子中含有羧基、磺酸基和醚基等多种官能团。并对其进行了一系列水泥、混凝土试验,结果表明:自制PC对水泥浆体有较好的分散性能,与水泥的相容性好配制的混凝土有较好的保坍性,当掺量为0.3%时,减水率可以达到32.4%,各龄期抗压强度比均超过160%,性能远优于萘系减水剂,可应用于混凝土行业。通过对自制PC溶液的表面张力、水泥颗粒表面ζ电位和吸附量的测定,进一步分析了聚羧酸减水剂的作用机理。其减水作用机理主要为减水剂与水泥粒子之间的吸附-分散作用,即在减水剂-水-水泥体系中减水剂吸附在水泥颗粒表面,形成双电层,从而产生静电斥力作用,而在吸附过程中,其主链上的长侧链可在体系中充分伸展而发挥空间立体位阻作用,因此具有更好的分散性和分散保持性。
     通过综合性能评价,自制PC具有一定的性能和价格优势,应用前景良好。
Polycarboxylic acid type water-reducer which exhibit an excellent ability of water-reducing and prevention of slump loss,represent the trend of warer-reducers for concret in the future.In this thesis the research and application actualities of high performance water reducers both in an outside china were introduced in detail,the synthetic methods and debelopment trends of Polycarboxylic acid type high performance water-reducer was analyzed.Though the molecule design,beginning with the chemical structure and antion mechanisms of high performance water-reducers, polycarboxylic acid type water-reducer which contain,hydroxy carboxyl,sulfonic, polyoxyethylene groups and so on with comb-like molecular structure was synthesized.
     In this paper,using allyl alcohol polyoxyethylene(APEG),acrylic acid(AA),maleic anhydride(MAD),and Sodium methyl acrylamide(SMAS) as the main raw material.By the radical polymerization,the polycarboxylate acid type water-reducers was synthesized with the using of initiator.The experimental structure indicated that,When monomer APEG:AA:MAD:SMAS mole of ratio 3:4:8:3,this copolymer has the good dispersivity.At the same time the best response condition has been determined:the amount of initiator used for the reactant weight 2%;the reanctant concentrationis 25%;the temperature is 85℃; the reaction time is 4h.
     The studying of FTIR analysis showed that the molecule structure of synthetic product has the carboxylic groups,sulphonic groups,polyoxyethylene side chain groups. Through gathers the Polycarboxylic acid type water-reducer to the synthesis is reduces water medicinal preparation a series of concrete,the cement experiment,finally indicated the self-restraint gathers polycarboxylic acid type water-reducer have the good dispersivity and the dispersive retentivity.The compatibility between PC with cement is excellent.The configuration concrete has the excellent characteristics such as lower slump loss.The water-reducing ratio in concrete was 32.4% at the solid dosage of 0.3%. the strength ratio was 160%.The properties of PC were obviously superior to FDN,so it can be applied at the concrete profession.
     Through the studying of surface properties such as surface tension of water-reducer concentration, zeta potential and adsorption capacity of water-ruducer onto cement particles of synthetic product,the water-reducing mechanism was exploited.The results indicated that the water-reducing mechanism mainly depends on the adsorption and dispersion of the interactivity between the polycarboxylate superplasticizer and the cement.On one hand,in the mixed system of superplasticizer,water,and cements,the electric double layer is informed while the polycarboxylate superplasticizer is absorbed on the cement,which generated intra-particle repulsion force.On the other hand,the side chain of the polycarboxylate superplasticizer displays steric hindrance because of extension of longer branched chain.So the dispersion and stability of the dispersion is increased significantly.
     By analyzing the economic function evaluation,this copolymer have certain function and price advantage,so its future in market is great.
引文
[1]钱晓琳,赵石林,张孝兵等.混凝土高效减水剂的性能与作用机理[J].南京工业大学学报,2002.24(2):61-64.
    [2]何延树.混凝土外加剂[M].西安:陕西科学技术出版社,2003.
    [3] P.C.Aitcin.Cement of yesterday and concrete of tomorrow[J].Cement and Concrete Research, 2000(30):1349-1359.
    [4] A.Baskoca,M.H.Ozkull,S.Artirma.Effect of chemical admixtures on qorkability and strength properties of prolonged agitated concrete[J].Cement and Concrete Research,1998,28 (5):737-747.
    [5] John M.Scanlon.Concrete International[M],Oct,1992.
    [6] S.Ramachdran Yoshihiko Ohama等著,混凝土化学外加剂-国际研究最新进展[J].中国建筑材料科学研究院,2000.14-15.
    [7] Anna M.Grahiee.Contribution to the knowledge of melamine superpllaspicizer effect on some characteristics of concrete after long period of hardening[J].Cement and Concrete Research 1999(29),699-704.
    [8]张秀芝,杨永清,裴梅山.高效减水剂的应用与发展[J].济南大学学报(自然科学版),2004,18 (2):139-144.
    [9]张晓梅,邓成刚等.萘系高效减水剂添加剂的合成及作用机理研究[J].安徽理工大学学报,2004,(1):18-19.
    [10] A.M.Grabiec.Contribution to the lrnowledge of melamine superplasticizer effect on some characteristics of concrete after long periods of hardening[J].Cement and Concrete Research,1999 (29):699-704.
    [11]守屋庆龙,等,高性能AE减水剂の最近の动向[J].材料,1994,43(491):9-19.
    [12] K Hattori,Mechanism of slump loss and its control[J],J Soc Mater Sci,Jpn:1980(29),240-240.
    [13] T Sato,R Ruch.Surfactant series 9,stabilization of colloid dispersions by polymer adsorption[J], Marcel Dekker Inc,N Y,1980.
    [14] Evance R,Napper D H.Steric stabilization II:A generalization officer’s solvency theory [J].Kolloid Z Polm,1973:29-33.
    [15]山田一夫.Superplasticizer(高性能AE减水剂,高性能减水剂).国际的开发状况[J],コンクリ一ト工学,1996(5):20
    [16]何廷树.混凝土外加剂[M].陕西科学技术出版社,2003.
    [17] D.H .Nappe,Polymeric stabilization of colloidal dispersion[J].NY:Acadamic Press,1993.
    [18]李永德,陈荣军,李崇智.高性能减水剂的研究现状与发展方向[[J].混凝土,2002,(9):10-14.
    [19] K.C.Hover.Concrete mixture proportioning with water-reducing admixtures to enhance durability:A Quantitative Model[J].Cement and Concrete Composites,1998(20):113-119.
    [20]姜国庆.日本高性能AE减水剂的研究进展及应用现状[J].化学建材,2000,(2):42-44.
    [21]李崇智等.高性能减水剂的研究现状与展望[J].混凝土与水泥制品,2001(2):3-6.
    [22]冯乃谦.氨基磺酸系高效减水剂的研制及其混凝土的特性[J].混凝土与水泥制品,2000, (2):5-8.
    [23]李强等.氨基磺酸系高性能减水剂的合成与性能分析[J].混凝土,2001,(11):25-28.
    [24]蒋新元,邱学青等.氨基磺酸系高效减水剂ASP性能研究[J].化学建材,2003,(3):36-38.
    [25]史昆波等.氨基磺酸系高效减水剂的实验室研制[J].延边大学学报(自然科学版),2002, (2):106-109.
    [26]徐正林.氨基磺酸系高效减水剂的合成及其应用技术研究[J].新型建筑材料,2003, (5):44-45.
    [27]张智强,钱中秋,饶小宇等.氨基磺酸系高效减水剂的改性研究[J].重庆建筑大学学报,2005.7.
    [28]江京平.利用聚羧酸系高效减水剂配制C100高性能混凝土的试验研究[J].混凝土,2002(4): 19-20.
    [29] Satoh Aruyuki.Concrete Admixture[P],US5911820,1998.2.20.
    [30] Yamashita,T.Hirata,T.Yuasa.Cement admixture and cement composition[P].USP6087418, 2000.07.11.
    [31] Yamashita,T.Hirata,T.Yuasa.Cement admixture and cement composition[P].USP6294015, 2001.09.25.
    [32] Tanaka Yoshi. Fluidity Control of Cementitious Compositions[P],US5661206,1995.12.21.
    [33] Tanaka Yoshio.Cement Composition Using the Dispersant of (Meth) acrylic Esters,(Metha) acrylic Acids Polymers[P].U.S.6187841,1996.07.12.
    [34] Honda Susumu.et al.Dispersant composition for cement having excellent property in inhibition of slump-loss[P],US5432212,1994,04.04.
    [35] J.Vickers,M.Thomas,R.P.Wirth.Derivatized polycarboxylate dispersants[P]. USP6310143, 2001.10.30.
    [36] Hirata,etal.Cementitious composition comprising acrylic copolymerrs[P]. EP0792850A1, 1997.
    [37] J.M.Gaidis,A.M.Rosenberg.Multicomponent concrete superplasticizer[P]. USP4460720, 1984.07.17.
    [38] Matsunaga T,TakeiK,TobaT,etal.Process for producing polymer having hydroxyl groups atboth terminals[P].U.S.5391665,1993.04.02.
    [39] Akimoto S I,HondaS,YasukohchiT.Polyoxyalkylene Alkenyl Ether-Maleic Ester Copolymer and Use Thereof[P].U.S.5142036,1989.12.14.
    [40] E.Sakai,J.K.Kang.M.Daimon.Action mechanisms of comb-type superplasticizers containing grafted polyethylene oxide chains.(in):6th CANMET/ACI International Conference on Superplaticizers and Other Chemical Admixtures in Concrete[J].Nice:CANMET/ACI.2000. 75-90.
    [41] G.Bradley,I.M.Howarth.Water Soluble Polymers:The Relationship between Structure, Dispering Action,and Rate of Cement Hydration[J].Cement Concrete.Aggregate,1986,(8): 996-1001.
    [42]李祟智等.聚羧酸系高性能减水剂的合成与性能[J].化学建材,2002.8:55-57.
    [43]李崇智,李永德,冯乃谦.聚羧酸系减水剂的合成工艺研究[J].建筑材料学报,2002, (4):326-330.
    [44]李崇智,冯乃谦,王栋民等.梳型聚羧酸系减水剂的制备、表征及其作用机理[J].硅酸盐学报,2005(1):87-92.
    [45]包志军,饶炬,陈建宝.聚羧酸系高效减水剂的研制[J].化学建材,2004,(2):49- 52.
    [46]廖国胜,马保国,孙恩杰.新型聚羧酸类混凝土减水剂中间大分子单体合成研究[J].化学建材,2003,(7):23-26.
    [47]胡国栋,游长江,刘治猛等.聚羧酸系高效减水剂酯化反应动力学的研究[J].化学建材,2003(4):38-40.
    [48]游有鲲,冉千平,丁蓓等.JM2PCA(I)接枝共聚羧酸类高效减水剂的合成及性能研究[J].化学建材,2004(2):46-48.
    [49]王国建,黄韩英.聚羧酸盐高效减水剂的合成与表征[J].化学建材,2003(6):47-51.
    [50]奚强,朱本玮,邝生鲁.一种聚羧酸高性能减水剂的研究[J].现代化工,2004(12):38-40.
    [51]周盾白.新型多羟基聚羧酸混凝土流化剂的合成及流化机理[J].新型建筑材料,2002, (3):44-45.
    [52]卞荣兵,缪昌文.聚羧酸高效减水保坍剂的研制与应用[J].化学建材,1999(6):36-37.
    [53]赵石林等.聚羧酸盐多元共聚物高效减水剂的研制[J].化学建材,2000(4):37-39.
    [54]冉千平,游有鳗,丁蓓.低引气型聚羧酸类高效减水剂的制备及其性能研究[J].化学建材,2003 (6):33-35.
    [55]刘德荣,颜杰,毛逢银.高性能AAE减水剂合成[J].化学建材,1997,(4):167-168.
    [56]郑国峰.一种聚羧酸型高效减水剂的实验研究[J].混凝土与水泥制品,2001(2):7-8.
    [57]郑国峰等.聚羧酸高效减水剂的研究[J].化学建材,2002(6):42-45.
    [58]李虎军等.水溶性聚合物改性水泥的研究[J].功能高分子学,1998.3:16-22.
    [59]钱晓琳等.多官能团高效减水剂的研制[J].化学建材,2002(1):42-43.
    [60]向建南等.羧酸类共聚物AE减水剂的合成与分散性能研究[J].湖南大学学报,1999.26 (4):30-33.
    [61]郭保文等,新型羧酸系高效减水剂合成研究[J],山东建材学院学报,1998,(6).
    [62]王立久,卞利军等.聚羧酸系高效减水剂的研究现状与展望[J].材料导报,2003(2):43-45.
    [63]郭新秋,方占民,王栋民等.共聚羧酸高效减水剂的合成与性能评价(第一部份)[J].应用基础与工程科学学报,2002,10(3):219-225.
    [64] Rixom R. Economic spects of admixture use[J].Cement and Concrete Research,1998,20(2/3): 87-101.
    [65]冉干平,游有鳃,周伟玲.聚羧酸高效减水剂现状及研究方向[J].化学建材,2001(12):25-28 8.
    [66] S·本田,T·原,H·小谷田.用于水泥的极好的抑制坍落度损失特性的新分散剂组合物[P].CN1096774,1994.12.28.
    [67] T.Hirata, T Yuasa,T.Uno,et al.Cement omposition[P].USP5925184,1999.7.20.
    [68] J.Eiffler.Process for preparing hydrophobically modified low foaming copolymers hydrophobically modified low foaming copolymers and their use as cement additives[P]. EP0985691,2000.03.15.
    [69]潘祖仁.高分子化学(第二版)[M].北京:化学工业出版社,1997.
    [70] V.S.Ramachandran,V M.Malhotra,C.Jolicoeur.Superplasticizers:properties and applications in concrete[J].Canada: Minister of public works and government services,1998.
    [71]潘祖仁.高分子化学[M].北京:化学工业出版社,2003年1月.
    [72] T.Hirata,S.Iwai,K.Nagare,Cement dispersant,method for producing polycarboxylic acid for cement dispersant and cement composition[P].EP0850895,1998.07.01.
    [73] S.Tamaki,M.Kinoshita.Method of producing allyletherester monomers and cement dispersants[P].EP1302457,2003.04.16.
    [74] T.Yuasa,T.Hirata,K.Nagare.Process for producing a polycarboxylic acid as an effective compound for a cement admixture[P].EP1247824,2002.10.09.
    [75] T.Hirata,H.Tanaka,T.Yuasa.Method for production of esterified product and apparatus therefore[P].USP6362364,2002.03.26.
    [76] T.Hirata,T.Yuasa,K.Shiote,et al.Method for dispersion of cement[P].USP6048916,2000.04.11.
    [77]马正飞,殷翔.数学计算方法与软件的工程应用[M].北京:化学工业出版社,2002年12月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700