太阳能居住建筑采暖系统优化决策及市场化推广研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在整个能源消耗系统中,建筑物既是能源的主要消耗者,又是环境污染的主要排放源,建筑能耗问题已成为普遍关注的焦点。解决建筑能耗问题的一项重要举措,就是要开发利用可再生能源、减少常规能源的消耗。
     本文以太阳能居住建筑及其采暖系统为研究对象,在文献研究和本基金项目团队已取得的相关技术研究成果的基础上,以能源-经济-环境一体化、技术经济学、公共经济学等理论为指导,以建筑节能为主线,以被动式太阳能利用为基础,以太阳能居住建筑的市场化推广应用为目标,对新增采暖区(城市)居住建筑采暖能源需求、被动式太阳能居住建筑采暖方式优化决策、被动式太阳能采暖系统和主被动结合的整体太阳能采暖系统优化决策、太阳能居住建筑市场化推广利益主体行为博弈和太阳能居住建筑增量成本分摊等进行了深入系统的分析与研究,并提出了太阳能居住建筑市场化推广的政策建议。本文的研究思路和相关成果不仅对于太阳能居住建筑采暖决策具有重要的理论意义和参考价值,而且对于节约采暖运行成本,提高建筑热环境质量等具有现实意义和实用价值。
     本文的主要研究思路与成果如下:
     (1)本文针对新增采暖区没有采暖能源统计数据,需求预测困难的实际情况,在深入分析居住建筑采暖能源需求影响因素的基础上,运用多元回归分析,构建了参照区(城市)居住建筑采暖能源需求预测模型,进而通过引入气候、建筑体形系数、建筑朝向等修正系数,构建了新增采暖区(城市)居住建筑采暖能源需求预测模型。并以拉萨市为例,按设定的住宅集中供热面积占居住总面积的不同比例,分别预测了采暖能源需求量。另外,从节能的角度,提出了优化被动式建筑设计和优化选择主动采暖系统等居住建筑采暖能源节约的主要技术路径。
     (2)从系统论的角度出发,根据可持续发展理论和全寿命周期评价理论,在3E系统的基础上,提出了被动式太阳能居住建筑采暖系统(采暖方式)的“全寿命周期-3E+S+T”三维理论评价模型;从能源、经济、环境、社会和技术等方面深入分析了影响采暖方式选择的影响因素,并在此基础上,优化构建了被动式太阳能居住建筑采暖方式综合评价指标体系;进而建立了基于改进AHP和熵技术组合权重的灰色关联度采暖方式决策模型。同时,以拉萨典型的被动式太阳能居住建筑为例进行实证研究,得出了当地最适宜的被动式太阳能居住建筑的采暖方式。
     (3)在分析建筑热平衡和太阳能采暖系统关系的基础上,从技术经济和节能的角度,深入分析了建筑物屋面、外墙、外窗等六个围护结构变量及其属性,运用0-1规划思想引入围护结构决策变量,通过分析围护结构组合做法与节能率和单方造价增加总额之间的关系,以一定节能率下围护结构组合做法的单方造价增加总额最低为目标,构建了被动式太阳能采暖系统优化模型,通过拟合两者函数关系曲线确定了被动式太阳能采暖系统的经济节能率区间;并在此基础上,构建了主被动结合的太阳能采暖系统整体优化模型,同样确定了整体太阳能采暖系统的经济节能率区间。同时,本文还专门对优化模型进行了算法设计,并编写了基于Dve-Cpp开发软件环境的计算机程序。另外,以拉萨典型居住建筑作为对比房,对新建居住建筑太阳能采暖系统进行了实证研究,研究为拉萨及类似地区建筑节能设计标准和配套标准图集的编制提供了依据。
     (4)从公共经济学的视角,将太阳能居住建筑界定为混合产品中的准公共产品,并探讨了其外部性特征。运用动态博弈的理论和方法,构建了中央与地方政府关于财政补贴的完全信息动态博弈模型,以及政府与购房者关于太阳能居住建筑增量成本分摊的不完全信息动态博弈模型。以拉萨为例,引入意愿调查法,从购房者角度对太阳能居住建筑增量成本的分摊进行了初步设计。另外,在明确政府角色定位的基础上,从法律法规、标准规范、政府合作机制、财税激励政策、能效标识、专业服务市场、技术创新、宣传教育、国际合作等方面提出了具体的实施建议。
     本研究得到国家自然科学基金重点项目“西藏高原节能居住建筑体系研究”(编号50638040)的资助。
In the entire system of energy consumption, buildings are not only the primal consumer of energy but the major releaser of environmental pollutants. Consequently energy consumption by buildings has now emerged as the focus of universal social concern. One of the cardinal ways for curbing energy consumption by buildings lies both in development and exploitation of renewable energy and in reduction of conventional energy consumption.
     This paper focuses on analyzing aspects of residential building and its heating system by taking advantage of both relevant literature available and pertinent technological findings obtained by the team engaged in this research project which is funded by the Foundation. The study, as is illustrated in this paper, has been carried on upon the basis of such theoretic propositions as the theory of integration of the three factors of energy, economy, and environment, technical economics, and public economics. The goal of the said study consists in representing methods for achieving reduced residential building's energy consumption-methods that would be based primarily on a passive utilization of solar energy in a residential building. This paper is also aimed at hashing out the optimal ways for the maximal marketing of solar residential buildings. As a result, this paper touches in detail upon subjects such as (1) the amount of energy required for heating in residential buildings of the newly sprawling region (urban), (2) the ways to optimize the heating modes of a passive solar residential building, (3) the optimization of both the passive solar-heating system and the overall solar-heating system in which are combined the passive solar-heating subsystem and the active solar-heating subsystem, (4) the games going on among the interest-subjects involved in market-oriented promotion of solar residential buildings, and (5) the issue of solar residential building's incremental cost sharing. In addition, in this paper is offered a proposal which is expected to have some bearing on the government's decision in relation to market-oriented promotion of solar residential buildings. It is believed that both the rationale upon which this paper is based and the findings presented in this paper can be not only of significant theoretic and referential value in terms of optimization of utilization of solar energy for residential building but also of substantially pragmatic value in terms of both optimal reduction of heating cost of a residential building and betterment of thermal efficiency in a residential building.
     Below are presented in a nutshell the rationale followed by and the findings achieved in this paper:
     (1) In this paper is introduced-on the basis of a detailed analysis of factors that can markedly inform the amount of energy required for heating a residential building-the method of "multiple regressions", for the practical situation that there is no heating energy statistical data and it is difficult to predict (forecast) heating energy demand in newly added heating region. And by dint of creating a prognostic of the amount of energy required for heating residential buildings in a given referential area and also by dint of taking into consideration such modifying parameters as climatic coefficient, building shape coefficient, building-orientation coefficient, this paper is successful in establishing a model exclusively for predicting the amount of energy required for heating residential buildings in a newly sprawling suburban area. In this paper, Lhasa, Tibet is cited as an example. The percentages of different given districts in relation to the total residential area in Lhasa are calculated so that different amounts of energy required for effecting central heating of the residential buildings in any of the given districts specified above can be thus ascertained. Moreover in this paper are also elaborated the main technological expedients, by which optimization-exactly for the purpose of reducing energy consumption resulting from residential-quarters heating-of not only the passive solar-heating system in a residential building but also the active solar-heating system in a residential building can be attained.
     (2) In this paper is propounded the formula of "full life-cycle-3E+S+T" which, being duly termed "a 3-dimensional-theorem-based model of evaluation", can well serve as a means for appraising the solar-heating system (or the heating modes) a residential building is equipped with. Underlying such an evaluative model, which is patterned after the theory of 3E system, are such propositions as are derived from systematology, the theory of sustainable development, and the theory of full-life-cycle assessment. Moreover in this paper is presented an in-depth study of such diverse factors, which can have some bearing upon an architect's attempt at opting for a certain type of solar-heating system, as energy resource, economic condition, environment, social circumstances, and technological feasibility. And upon the basis of such an in-depth study is formulated in this paper "the system of indices for attaining a comprehensive assessment of thermal efficiency of a passive solar-heating device in a residential building. With the establishment of the aforesaid system of indices for attaining a comprehensive assessment of thermal efficiency, can be formulated a model of decision-making with regard to the optimization of heating device engineered on the basis of an improved AHP and gray correlation degree with entropy technology portfolio weights. Furthermore In order to test the validity of propositions specified in this paper, the typical passive solar-heating system used in an average residential building in Lhasa has been used as an object in our empirical study. From such an empirical study has been obtained the optimal type of passive solar-heating device for an average residential building in Lhasa.
     (3) On the basis of the findings from a study made of the relationship between building thermal equilibrium and solar heating systems has been conducted-from the perspectives of technical economy and energy conservation-an in-depth analysis of (a) the variables of a building's six building envelopes including roofs, exterior walls, exterior widows, etc. and (b) the properties of these variables. Thus by following the guidance of the 0-1 programming ideas, this paper is successful in setting forth the decision-making variables in relation to building envelopes. As a result of the analysis made by us of the relationship between "the folio approach plus the energy-saving rate" and "the unilateral increase in the total cost", is thus set forth in this paper an optimized model of passive solar heating system. The motive for formulating such an optimized model is a desire not only to attain a unilateral increase in the total cost arising from the adoption of the "envelope portfolio approach" when a certain energy-saving rate stays in the minimum but to determine the economical energy-saving-rate interval of a certain passive solar-heating system by means of bringing about a coincidence between the function curves of both the "envelope portfolio approach" and a certain energy-saving rate. And on this basis, an entire optimization model can be built out of a combined system of active solar-heating apparatus and passive solar-heating apparatus. Accordingly an economical energy-saving rate interval can thus be determined for the entire solar heating system. Furthermore in this paper are advanced not only the resultant algorithm for the optimization models specified above but a new computer program which has been developed exclusively for use in the environment of such computer programs as "Dve-Cpp".
     In addition, an empirical study has been carried out for the purpose of fathoming the validity of the above-mentioned solar-heating systems in a new residential building. In the empirical study, a typical residential building in Lhasa has been used to serve as a contrast. Findings from such an empirical study can serve as a basis for the creation in the future of atlas of both standardized designs of residential building's energy-saving system and standardized designs for a residential building's associated structures in not only Lhasa but areas which are meteorologically similar to Lhasa.
     (4) A definition offered in this paper from the perspective of public economics is this:A solar residential building should be termed-in the midst of mixed products-as a quasi-public product. Externality of a solar residential building are also delved into in this paper. In order to create not only a "complete information-dynamic game model" in the field of financial subsidy which involves both the Central Government and local governments but also an "incomplete information-dynamic game model" in the field of incremental cost-sharing which involves both local governments and buyers of solar residential buildings, the theory of dynamic game and methods derived therefrom have been duly adopted. Moreover the "contingent valuation method" has been used in our study which was conducted in Lhasa and applied there expressly from the standpoint of an average buyer of a solar residential building for the purpose of producing a tentative formula which is intended for ironing out problems that may arise from a transaction of incremental cost-sharing. Furthermore, having specifically defined the role to be played by a local government in the move to promote the construction of solar residential building, this paper proceeds to offer a relevant proposals that touch upon a very wide range of fields such as stature, ordinance, standard, inter-departmental cooperation-oriented mechanisms, tax incentive, energy efficiency labeling, specialized-service market, technological innovation, education, international cooperation.
     Our study which springs from the research project bearing the name of "energy-efficient residential building system in the Tibetan plateau" and gives birth to this paper is funded by the National Natural Science Foundation of China.
引文
[1]张正敏,王革华,高虎执笔.中国可再生能源发展战略与政策研究[J].经济研究参考,2004,84:26-32.
    [2]International Energy Agency. Key World Energy Statistics.2003.
    [3]陈滨,孙鹏,丁颖慧等.住宅能源消费结构及自然能源应用[J].暖通空调,2005,35(3): 45-50.
    [4]白玮.民用建筑能源需求与环境负荷研究[D].同济大学博士学位论文.2007.12.
    [5]Larson E. D., Wu Zongxin. Future implications of China's energy technology choices[J]. Energy Policy,2003,31(12):1189-1204.
    [6]龙惟定.国内建筑合理用能的现状及展望[J].能源工程,2002,(2):1-6.
    [7]W. A. Kamal. Improving energy effieiency-The cost-effeetive way to mitigate global wanning[J]. Energy Conversion and Management.1997,38(1):39-59.
    [8]江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调,2005,35(5):30-40.
    [9]何涛,郑瑞澄,路宾.我国太阳能供暖的研究与分析[A].全国暖通空调制冷2006年学术年会论文集[C],2006.
    [10]邢艳艳,刘艳峰,易赛兰.拉萨市民用建筑采暖热源经济性分析[J].节能技术,2008,26(1):41-44.
    [11](美)丹尼斯·米都斯著,李宝恒译.增长的极限:罗马俱乐部关于人类困境的报告[M].长春:吉林人民出版社,1997.
    [12]Rashe R, Tatom J. Energy resources and potential GNP[J]. Federal Reserve Bank of StLouis Review,1977,59(6):68-76.
    [13]J. Kraft, A. Kraft. On the Relationship between Energy and GNP[J]. Energy Development,1978,3:401-403.
    [14]Akarca A.T., Long T.V. On the Relationship between Energy and GNP[J]. Journal of Energy and Development,1980,5:326-331.
    [15]Cleveland, C. J. CostanraR, Hall C. A. Setal. Energy and the US economy:a biophysical perspective[J]. Science,1984,225(3):119-206.
    [16]Yu. E., Choi J. Y.. The Causal Relationship between Electricity and GNP:an International Comparison[J]. Journal of Energy and Development,1985,10:249-272.
    [17]Burbidge, Harrison. An Investigation of Cointegration and Causality between Energy Consumption and Economic Activity in Taiwan[J]. Energy Economics,1984,19: 435-442.
    [18]Loungani. The Relationship between Energy Consumption, Energy Prices and Economic Growth:Time Series Evidence from Asian Developing Countries [J]. Energy Economics,1986,22:615-625.
    [19]David I. Stern. Energy and economic growth in the USA:A multivariate approach[J]. Energy Economics,1993,15(2):30-38.
    [20]Glasure Y. U., Lee A. R. Cointegration, error-correction, and the relationship between GDP and energy:the case of South Korea and Singapore[J]. Resource and Energy Economics,1997,3:17-25.
    [21]Michael Messenger. A High Technology-low Energy Demand for Western Europe[J]. Energy,1981,6:1481-1503.
    [22]B Lapillonne, B Chateau. The Medee Models for Long Term Energy Demand Forecasting[J]. Socio-Economic Planning Sciences,1981,15(2):53-58.
    [23]O Sato, K Tatematsu, T Hasegawa. Reducing Future CO2 Emissions the Role of Nuclear Energy[J]. Progress in Nuclear Energy,1998,32(314):323-330.
    [24]A Lehtila, P Pirila. Reducing Energy Related Emissions:Using an Energy Systems Optimization Model to Support Policy Planning in Finland[J]. Energy Policy,1996, 24(9):805-819.
    [25]Yuzuru Matsuoka, Mikiko Kainuma, Tsuneyuki Morita. Scenario Analysis of Global Warming Using the Asian Pacific Integrated Model (AIM) [J]. Energy Policy,1995, 26(4-5):357-371.
    [26]Mikiko Kainuma, Yuzuru Matsuola, Tsuneyuki Morita. The AIM/end-use Model and Its Application to Forecast Japanese Carbon Dioxide Emissions[J]. European Journal of Operational Research,2000,122(2):416-425.
    [27]Ranjan Kumar Bose, V Srinivasachary. Policies to Reduce Energy Use and Environmental Emissions in the Transport Sector:Acase of Delhi City[J]. Energy Policy,1997,25(14-15):1137-1150.
    [28]E Plinke. Emission Control Strategies for Turkey in View of an Integration into the European Community[J]. Inernational Journal of Energy Research,1992,16(3): 223-239.
    [29]Eckhard Plinke, Mehmet Atak, Hans-Dietrich Haasis, et al. Cosr-efficient Emission Control Strategies for the Turkish Energy System[J]. Energy,1992,17(4):377-395.
    [30]ICCEPT. Assessment of Technological Options to Address Climate Change-A Report for the Prime Minister's Strategy Unit[R].2002.
    [31]Gurkan Selcuk Kumbaro Glu. Environmental Taxation and Economic Effects:a Computable General Equilibrium Analysis for Turkey[J]. Journal of Policy Modeling, 2003,25(8):795-810.
    [32]Felix B Dayo, Anthony O Adegbulugbe. Utilization of Nigerian Natural Gas Resources:Potentials and Opportunities[J]. Energy Policy,1988,16(2):122-130.
    [33]Mayeres I, Van Regemorter D. The Introduction of the External Effects of Air Pollution in AGE Models:Towards the Endogenous Determination of Damage Valuation and Its Application to GEM-E3. Final Report of the GEM-E3 Elite Project of the EU Joule Research Program,1999.
    [34]Olivier Bahn. Combining Policy Instruments to Curb Greenhouse Gas Emissions[J]. European Environment,2001,11(3):163-171.
    [35]魏一鸣,吴刚,刘兰翠.能源-经济-环境复杂系统建模与应用进展[J].管理学报,2005,2(2):159-170.
    [36]张阿玲,李继峰.构建中国的能源-经济-环境系统评价模型[J].清华大学学报(自然科学版),2007,47(9):1537-1540.
    [37]陆海波.能源-经济-环境系统的可持续发展研究[D].天津大学博士学位论文,2003.12.
    [38]张丽峰.中国能源供求预测模型及发展对策研究[D].首都经济贸易大学博士学位论文,2006.4.
    [39]Li Zhidong. An Econometric Study on China's Economy, Energy and Environment to the Year 2030[J]. Energy Policy,2003,31(12):1137-1150.
    [40]Zhang Zhongxiang, Folmer H.. Economic Modeling Approaches to Cost Estimates for the Control of Carbon Dioxide Emissions[J]. Energy Economics,1998,20(1): 101-120.
    [41]赵芳.基于3E协调的能源发展政策研究[D].中国海洋大学博士论文,2008.6.
    [42]赵芳.日本、韩国能源发展政策及借鉴意义[J].经济纵横,2007,(3):94-96.
    [43]王建华,吴季平,徐伟.太阳能应用研究进展[J].水电能源科学,2007,25(4):155-158.
    [44]郑瑞澄.太阳能供热采暖工程应用推广[J].太阳能,2007,(2):37-41.
    [45]周正楠.太阳能技术在德国建筑中的应用[J].世界建筑,2002,(12):54-55.
    [46]杨维菊.美国太阳能热利用考察及思考[J].世界建筑,2003,(8):83-85.
    [47]丘佳梅.太阳能建筑发展管理研究[D].天津大学硕士学位论文,2005.
    [48]底冰,马重芳,唐志伟等.太阳能集中供热系统发展简况[J].暖通空调,2006,36(7):27-31.
    [49]罗振涛译,霍志臣校.欧盟各国太阳能热利用概况[J].太阳能,2003,(5):40-42.
    [50]Schmidt T, Angold D M, Muller-steinhagen H. Central solar heating plants with seasonal storage in Germany[J]. Solar Energy,2004,76(1/3):165-174.
    [51]李齐颖.建筑中综合应用太阳能系列研究[D].中国建筑设计研究院硕士学位论文,2005.
    [52]卢艳.德国住宅设计中的太阳能利用系统[J].建筑学报,2003,(3):61-63.
    [53]朱欢.德国的低能耗住宅[J].世界建筑,2001,(4):34-36.
    [54]杨维菊.法国建筑节能技术谈[J].世界建筑,2000,(4):66-67.
    [55]Argiriou A. Active solar space heating of residential buildings in northern Hellas-a case study. Energy and Building,1997,26 (2):215-221.
    [56]姜雅.日本新能源的开发利用现状及对我国的启示[J].国土资源情报,2007,(7):31-35.
    [57]Hamada Y, Nakamura M. Development of a database of low energy homes around the world and analyses of their trends[J]. Renewable Energy,2003,28(2):321-328.
    [58]白岛和彦.住宅にぉける然利用技衍の勤向[J].空调和(?)生工学,2002,75(8).
    [59]袁莹,胡林.太阳能技术在建筑中的应用[J].世界建筑,2000,(4):68-69.
    [60]郑瑞澄.太阳能建筑应用发展方向和对策[J].建设科技,2006,(23):54-58.
    [61]郑宏飞,陈子乾.绿色生态建筑中可应用的太阳能技术(1)[J].工业建筑,2003,33(10): 5-8.
    [62]郑宏飞,陈子乾.绿色生态建筑中可应用的太阳能技术(2)[J].工业建筑,2003,33(11):24-27,72.
    [63]黄德中,沈吉宝.建筑节能技术综述[J].太阳能学报,2007,28(6):682-688.
    [64]黄云峰.太阳能在住宅中的应用现状与建筑一体化技术[J].住宅科技,2008,(7):14-17.
    [65]仲继寿.太阳能建筑的技术途径和发展策略[J].太阳能,2004,(4):22-23.
    [66]Mousa S. Mohsen, Bilal A. Akash. Evaluation of Domestic Solar Water Heating System in Jordan using Analytic Hierarchy Process[J]. Energy Conversion & Management,1997,38(18):1815-1822.
    [67]Ola Eriksson, Goran Finnveden, Tomas Ekvall, Anna Bjorklund. Life cycle assessment of fuels for district heating:A comparison of waste incineration, biomass and natural gas combustion[J]. Energy Policy,2007(35):1346-1362.
    [68]建设部科技发展促进中心.中国建筑采暖方式调查分析[J].建筑科技,2007,(22):27-29.
    [69]江亿.华北地区大中型城市供暖方式分析[J].暖通空调,2000,30(4):30-32,45.
    [70]冯国会.城市住宅建筑供暖方式的分析[J].节能,2002,(11):16-18.
    [71]陈广孚,张晓艳,盛晓文.几种供暖热源形势的技术经济分析[J].低温建筑技术, 2002,(3):83-84.
    [72]李慧星,路连瑞,冯国会等.沈阳地区不同热源供热方式的动态经济性分析[J].节能,2003,(7):36-39.
    [73]李炎锋,杨英霞,高辉等.国内几种供暖方式的经济技术比较与分析[J].建筑热能通风空调,2004,23(4):84-89.
    [74]张治江,陶进,石久胜等.几种能源供暖方式的技术经济比较[J].暖通空调,2004,34(1): 8-10,18.
    [75]韩伟国,江亿,郭非.多种供热供暖方式的能耗分析[J].暖通空调,2005,35(11):106-110.
    [76]李先瑞,郎四维.住宅采暖空调方式的研究[J].节能与环保,2001,(1):19-24.
    [77]常缨.住宅建筑各种类型采暖供热方式的综合比较及节能研究[D].西安建筑科技大学硕士学位论文,2006.06.
    [78]曹勇,陈光明,许文发.大中型城市供热模式优化方法研究[J].暖通空调,2002,32(1): 5-8.
    [79]李志芳.住宅供暖方式综合性能比较研究[D].长安大学硕士学位论文,2006.05.
    [80]王梅杰,陈贵芳.基于熵权的供热系统模糊综合评价模型[J].建筑科学,2007,23(8): 41-43,47.
    [81]曹勇,许文发;赵鑫.供暖方式环境评价方法的研究[J].建筑热能通风空调,2002,(2):6-7.
    [82]任志涛,孙白爽,张睿.基于建筑产品寿命周期的建筑节能评价体系研究[J].建筑节能,2008,36(212):57-60.
    [83]李元哲.拉萨市住宅利用太阳能采暖的可行性[J].太阳能,2004,(4):36-38.
    [84]邢艳艳,刘艳峰,易塞兰.拉萨市民用建筑采暖热源经济性分析[J].节能技术,2008,26(147):41-44.
    [85]白叶飞,唐如宁,高红艳.太阳能在内蒙古民用建筑中的应用[J].节能,2006,25(1):42-44.
    [86]J. D. Balcomb, R. D. Mcfarland. Simulation Anaysis of Passive Heated Buildings[C]. The Infuence of climate and Geometry on Performance, Los Alamos NM87545.
    [87]US DePt. of Energy, Passive Solar Design HandBook[M]. Vol.1,1980.
    [88]J. D. Balcomb. Passive Solar Buildings[M], The MIT Press,1992.
    [89]G·培克曼,P·V·吉利.蓄热技术及其应用[M].北京:机械工业出版社,1989,186.
    [90]Nordell B, Hellstrom G. High temperature solar heated seasonal storage system for low temperature heating of buildings [J]. Solar Energy,2000,69(6):511-523.
    [91]R. Yumruta, M. Unsal. Analysis of solar heat pump systems with seasonal thermal energy storage in surface tanks[J]. Energy,2000,25(12):1231-1243.
    [92]Ozgener O, Hepbasli A. Experimental performance analysis of a solar assisted ground-source heat pump greenhouse heating system[J]. Energy and Buildings,2005, 37(1):101-110.
    [93]Alfred L H.15 years of R & D in central solar heating in Denmark[J]. Solar Energy, 2000,69(6):437-447.
    [94]J. G. Cervantes a, E. Torres-Reyes, Experiments on a solar-assisted heat pump and an exergy analysis of the system[J]. Applied Thermal Engineering,2002(22):1289-1297.
    [95]Viorel Badescu, Model of a thermal energy storage device integrated into a solar assisted heat Pump system for space heating[J]. Energy Conversion and Management, 2003(44):1589-1604.
    [96]王磊.西藏地区被动太阳能建筑采暖研究[D].西南交通大学博士学位论文,2008.05.
    [97]龚明启,冀兆良等.上海市自然通风建筑围护结构的节能分析[J].暖通空调,2006,36(5):81-83.
    [98]赵群,李桂文.被动太阳能建筑太阳能贡献率的影响因子[J].低温建筑技术,2008,(1):113-115.
    [99]黄瑜媛,李茂杰.浅议拉萨被动式太阳能建筑设计[J].西藏大学学报(自然科学版),2008,23(1):12-15.
    [100]谢琳娜.被动式太阳能建筑设计气候分区研究[D].西安建筑科技大学硕士学位论文,2006.06.
    [101]朱新荣,杨柳,刘加平等.西藏自治区城市围护结构传热系数的修正系数[J].清华大学学报(自然科学版),2008,48(9):1-4.
    [102]高金水.太阳能供暖系统分析[D].天津大学硕士学位论文,2005.12.
    [103]郑宗和,高金水,葛听.太阳能热泵供暖系统在西藏地区的应用[J].煤气与热力,2006,26(12):52-54.
    [104]韩宗伟,郑茂余,李忠建等.太阳能热泵供暖系统的热经济性分析[J].太阳能学报,2008,29(10):1242-1246.
    [105]田蕾,秦佑国.可再生能源在建筑设计中的利用[J].建筑学报,2006,(5):13-17.
    [106]刘艳峰,申志妍.拉萨多层住宅太阳能热水采暖设计初探[J].建筑节能,2008,(11):1-4.
    [107](英)朱迪·丽丝.自然资源:分配、经济学与政策[M].北京:商务印书馆,2002,345-349.
    [108]Edward L. Vine, Eduardas Kazakevicius. Residential energy use in Lithuania:the prospects for energy efficiency [J]. Energy,1999,24(7):591-603.
    [109]Milou Beerepoot, Niels Beerepoot. Government regulation as an impetus for innovation:Evidence from energy performance regulation in the Dutch residential building sector[J]. Energy Policy,2007,35(10):4812-4825.
    [110]Decanio S. I. Barriers within firms to energy-efficient investments [J]. Energy Policy, Vol.21,1993(8):906-914.
    [111]Henri L. F de Groot, Erik T. Verhoef, Peter Ni jkamp. Energy saving by firms: decision-making, barriers and policies[J]. Energy Economics,2001,23(6):717-740.
    [112]王庆一.国外促进节能的财税政策[J].中国能源,2006,28(1):18-20,46.
    [113]Edward Vine. An international survey of the energy service company (ESCO) industry[J]. Energy Policy,2005, (33):691-704.
    [114]Charles A. Goldman, Nicole C. Hopper, Julie G. Osborn. Review of US ESCO industry market trends:an empirical analysis of project data[J]. Energy Policy,2005, 33(2):387-405.
    [115]Paolo Bertoldi, Silvia Rezessy, Edward Vine. Energy service companies in European countries:Current status and a strategy to foster their development[J]. Energy Policy, 2006,(34):1818-1832.
    [116]Evan Mills. Risk transfer via energy-savings insurance[J]. Energy Policy,2003,31(2): 273-281.
    [117]Kirsten Gram-Hanssen, Francoise Bartiaux. Do homeowners use energy labels? A comparison between Denmark and Belgium[J]. Energy Policy,2007,35(5): 2879-2888.
    [118]Patrick Hartmann, Vanessa Apaolaza Ibanez. Managing customer loyalty in liberalized residential energy markets:The impact of energy branding[J]. Energy Policy,2007, 35(4):2661-2672.
    [119]武涌.发挥政府公共管理职能推进建筑节能[J].建筑,2003,(12):12-15.
    [120]康艳兵,李亚平.我国建筑节能的障碍及对策研究[J].暖通空调,2006,36(8):33-36.
    [121]毛义华,蔡临申.我国建筑节能的现状及其对策分析[J].技术经济与管理研究,2007,(1):58-59.
    [122]尹波,刘应宗.建筑节能领域市场失灵的外部经济性分析[J].华中科技大学学报(城市科学版),2005,22(4):65-68.
    [123]孙鹏程,刘应宗,梁俊强等.建筑节能领域的政府失灵及其对策[J].建筑科学,2007,23(12):1-6.
    [124]徐江,刘应宗,尤爱军.建筑节能激励政策的非对称博弈分析[J].电子科技大学学报(社科版),2006,8(3):9-12.
    [125]金乐琴,张红霞.可持续发展战略实施中中央与地方政府的博弈分析[J].经济理论与经济管理,2005,(12):11-15.
    [126]王文甫.不完全信息下政府和消费者对公共产品的博弈分析[J].商业研究,2006,(18): 41-43.
    [127]卢双全.建筑节能改造的外部性分析与激励政策[J].建筑经济,2007,(4):43-46.
    [128]王洪波,刘长滨,王煜.我国节能建筑市场供求分析及激励政策对象选择[J].建筑经济,2007,(12):99-101.
    [129]金占勇,武涌,刘长滨.基于外部性分析的北方供暖地区既有居住建筑节能改造经济激励政策设计[J].暖通空调,2007,37(9):14-19.
    [130]刘长滨,唐永忠,张丽等.太阳能建筑应用的政策与市场运行模式[M].北京:中国建筑工业出版社,2007.01.
    [131]仲继寿.太阳能建筑——节能省地型住宅建设的重要途径[J].住宅产业,2005,(7):25-28.
    [132]赵群,李桂文.太阳能建筑的困境[J].华中建筑,2008,26(8):4-6.
    [133]仲继寿.太阳能建筑发展的中国之路[J].太阳能,2008,(12):34-37.
    [134]王恒一.浅谈太阳能建筑[J].太阳能,2008,(1):42.
    [135]Redclift. M. Sustainable Development:Exploring The Contradictions[M]. London: Methuen,1987.
    [136]世界环境与发展委员会著,王之佳,柯金良译.我们共同的未来[M].长春:吉林人民出版社,1997.
    [137]夏华龙,姚华军,石东平.可持续发展与资源利用[M].武汉:中国地质大学出版社,1998.
    [138]刘培哲.可持续发展对人类前途与命运的回答[J].安徽科技,2003,(3):20-22.
    [139]Sardar M. N. Islam, Matthew F. Clarke. The welfare economics of measuring sustainability:a new approach based on social choice theory and systems analysis[J]. Sustainable Development,2005,13(12):282-296.
    [140]Roger L Burritt. Environmental management accounting:roadblocks on the way to the green and pleasant land[J]. Business Strategy and the Environment,2004,13(1-2): 13-32.
    [141]陆晓明.能源、矿产资源与经济发展的关系[A].第一届中国煤焦化国际论坛论文集[C].北京:中煤集团出版,2005:56-62.
    [142]郭志刚.人口、资源、环境与经济发展之间关系的初步理论思考[J].人口与经济,2000,(6):12-16.
    [143]张丽.建筑节能经济激励机制和政策研究——新建采暖居住建筑节能经济激励政策选择[D].北京交通大学博士学位论文,2005.07.
    [144]范咀华,张绍学,杨明享.现代管理基本理论和方法[M].成都:四川大学出版社,1996.
    [145]Lodwig Von Bertalanffy. General Systems Theory[M]. Newyork:GeorgeBraziller, 1968.
    [146]卫民堂,王宏毅,梁磊.决策理论和技术[M].西安:西安交通大学出版社,2000.05.
    [147]徐南荣,仲伟俊.科学决策理论与方法[M].南京:东南大学出版社,1995.
    [148]喻翔.高速公路路面养护管理系统决策优化的研究[D].西南交通大学博士论文,2005.
    [149]杨建新,王如松.生命周期评价的回顾与展望[J].环境污染治理技术与设备,1998,6(2): 21-28.
    [150]王寿兵,杨建新,胡聃.生命周期评价方法及其进展[J].上海环境科学,1998,17(11):7-10.
    [151]邓南圣,王小兵.生命周期评价[M].北京:化学工业出版社,2003.
    [152]张旭梅,刘飞.产品生命周期成本概念及分析方法[J].工业工程与管理,2001,(3):26-29.
    [153]张蓉,王京芳,陶建宏.基于生命周期成本法的环境成本分新方法研究[J].软科学,2004,18(6):8-11.
    [154]王寿兵,王祥荣.工业产品生命周期环境成本评估方法初探[J].上海环境科学,2002,21(12):742-744.
    [155]左玉辉.环境经济学[M].北京:高等教育出版社,2003.
    [156]束庆,张旭.生命周期评价和生命周期成本分析的整合方法研究[J].同济大学学报(社会科学版),2003,14(4):81-86.
    [157]G. A. Norris. Integrating Economic Analysis into LCA[J]. Environmental Quality Management,2000,10(3):59-64.
    [158]Bengt S.. Environmental Costs and Benefits in Life Cycle Costing[J]. Management of Environmental Quality,2006,16(2):107-118.
    [159]邓超,王丽琴.吴军生命周期评价与生命周期成本集成方法研究[J].中国机械工程,2007,18(15):1904-1809.
    [160]张有为.预测的数学方法[M].北京:国防工业出版社,1991.
    [161]秦寿康等.综合评价原理与应用[M].北京:电子工业出版社,2003.
    [162]胡永宏、贺思辉.综合评价方法[M].北京:科学出版社,2000.
    [163]张维迎.博弈论与信息经济学[M].上海:上海人民出版社,2007.
    [164]中华人民共和国建设部.中华人民共和国国家标准,建筑气候区划标准GB50178-93[S].北京:中国计划出版社,1994.
    [165]中华人民共和国建设部.中华人民共和国国家标准,民用建筑热工设计规范
    GB90176-93[S].北京:中国计划出版社,1993.
    [166]中华人民共和国建设部.中华人民共和国国家标准,采暖通风与空气调节设计规范GB50019-2003[S].北京:中国计划出版社,2004.
    [167]陈莉.气候变化对中国住宅采暖降温耗能的影响[D].北京师范大学博士学位论文,2008.
    [168]陈峪,黄朝迎.气候变化对能源需求的影响[J].地理学报,2000,55(z):11-19.
    [169]陈莉,方修琦,李帅.吉林省城市住宅采暖气候耗能距平序列的建立方法[J].气候变化研究进展,2008,4(1):32-36.
    [170]中国建筑科学研究院.民用建筑节能设计标准(采暖居住建筑部分)JCJ26-95[S].北京:中国建筑工业出版社,1996.
    [171]中华人民共和国建设部.中华人民共和国国家标准,居住建筑节能设计标准(征求意见稿).2006.
    [172]杨柳.建筑气候分析与设计策略研究[D].西安建筑科技大学博士学位论文,2003.05.
    [173]李元哲.被动式太阳房热工设计手册[M].北京:清华大学出版社,1993.
    [174]张沈生,傅卓林,张兆弟.住宅供暖设备的评价与选择[J].沈阳建筑大学学报(自然科学版),2006,22(4):647-652.
    [175]周伏秋.国际能源评价指标体系及对我国的启示[J].中国能源,2006,28(11):39-41.
    [176]何斯征.可持续发展能源指标体系及应用实例[J].能源工程,2007,(5):16-20.
    [177]陈丽萍译.国际原子能机构的可持续发展能源指标简介[J].国土资源情报,2004,(11):47-49.
    [178]迟春洁,黎永亮.能源安全影响因素及测度指标体系的研究[J].哈尔滨工业大学学报(社会科学版),2004,6(4):80-84.
    [179]张治江,王圣,刘龙河.多种能源供暖的经济分析[J].工业技术经济,2002,(3):87-89.
    [180]建设部标准定额研究所.建设项目经济评价参数研究[M].北京:中国计划出版社,2004.
    [181]同济大学,建设部标准定额研究所.政府投资项目经济评价方法与参数研究[M].北京:中国计划出版社,2004.
    [182]王荣光,沈天行.可再生能源利用与建筑节能[M].北京:机械工业出版社,2004.
    [183]杨金田,王金男.中国排污收费制度改革与设计[M].北京:中国环境科学出版社,1998.
    [184]高杰,孙林岩,李满园.区间估计:AHP指标筛选的一种方法[J].系统工程理论与实践,2005,(10):73-77.
    [185]徐慧,罗超,刘志刚.层次分析法评价指标筛选方法探讨[J].中国海上油气,2007,19(6):415-418.
    [186]高杰,孙林岩,何进等.层次分析的区间估计[J].系统工程理论与实践,2004,(3): 103-106.
    [187]陈敏刚等.AHP和模糊综合评判在灾难恢复能力评估中的应用[J].计算机工程,2006,32(18):135-137.
    [188]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [189]岳意定,刘丹,曾之明.基于人工神经网络的投资项目效益评估模型[J].矿冶工程,2007,27(6):86-89.
    [190]徐凤琴,乔忠.评价企业合作伙伴的集值统计方法[J].中国农业大学学报,2004,9(4):79-82.
    [191]张生瑞.公路交通可持续发展系统分析与评价[D].长安大学博士学位论文,2002.
    [192]杨永清,许先云.改进的层次分析法用于矿井安全管理的综合评价[J].系统工程理论与实践,1999,(6):121-125.
    [193]万举勇.机电产品全生命周期环境管理体系及关键技术研究[D].合肥工业大学博士学位论文,2005.
    [194]郭显光.改进的熵值法及其在经济效益评价中的应用[J].系统工程理论与实践,1998,(12):98-102.
    [195]李创新,马耀峰,李振亭.基于改进熵值法的旅游竞争力模型与聚类分析[J].软科学,2007,21(6):28-33.
    [196]曹军.西藏住宅区域供暖系统方案优化选择[D].华西大学硕士学位论文,2006.06.
    [197]俞敖元,郭占庚,赵刚.我国采暖散热器的发展和市场前景[J].中国建筑金属结构,2007,(7):28-33.
    [198]李先瑞,韩有朋,赵振农.住宅区采暖方式的选择[J].建筑热能通风空调,2000,19(2):18-21.
    [199]邓波,曹惠玲,马志刚等.传统集中供热与燃气单元采暖方式的综合比较[J].河北工业大学学报,2001,30(4):42-47.
    [200]李元哲.被动式太阳房的原理及设计[M].北京:能源出版社,1989.
    [201]刘逸,李炳熙,付忠斌.太阳能-土壤源混合式热泵系统研究[A].中国制冷学会2007学术年会论文集[C].2007.11:45-49.
    [202]黄恒学.公共经济学[M].北京:北京大学出版社,2002.
    [203]张红.政府的“经济人”特性研究[J].经济与管理,2003,(12):52.
    [204]邓志强,罗新星.环境管理中地方政府和中央政府的博弈分析[J].管理现代化,2007,(5):19-21.
    [205]谢识予.经济博弈论[M].上海:复旦大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700