水稻胚乳垩白形成机制的生理生化与转录组水平解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垩白是指稻米胚乳中白色不透明的部分。垩白现象的出现直接影响稻米的外观品质和蒸煮品质,这是因为高垩白的稻谷在精碾加工过程中极易破碎、整精米率低,并且在蒸煮后米饭蓬松中空、蒸煮食味品质较差。研究表明,稻米垩白性状属于复杂的数量性状,受多基因控制,目前对于垩白形成的分子机制尚不清楚,这在很大程度上阻碍了稻米品质的遗传改良。本研究以Asominori为遗传背景、IR24为供体的高垩白染色体片段置换系(CSSL)和低垩白品系Asominori为材料,通过生理生化分析和cDNA微阵列分析,研究稻米垩白形成的酶学特性及相关基因的表达调控。研究结果表明,稻米垩白的形成具有复杂的内在生理环境,与灌浆期水稻籽粒细胞内的碳代谢(淀粉合成和降解;纤维、半纤维素和果胶生物合成)、信号传递、细胞防御、抗氧化平衡等基因功能类群和调控网络途径密切相关。此外,研究中同时发现高垩白CSSL50中的氧化-还原体系被激活,表明ROS信号传导途径与稻米垩白形成存在密切的相关性。主要研究结果如下:
     1.稻米垩白的形成与淀粉合成酶动力学变化、较快的籽粒灌浆速率,以及淀粉粒的精细结构相关。生理生化分析研究结果发现,高垩白置换系CSSL50与低垩白品系Asominori胚乳细胞中淀粉体的形态存在差异,Asominori淀粉体为多边形、排列紧密、颗粒间基本没有空隙、透光性好;然而,CSSL50籽粒胚乳垩白部位的淀粉体为椭圆形、排列疏松、颗粒间存在较大空隙、透光性差;与Asominori相比,CSSL50中聚合度为8和9的短链比例显著偏高,聚合度为12的中长链,以及聚合度为17的长链所占比例显著偏低;高垩白CSSL50的SuSy、AGPase、SBE和DBE酶的活性显著高于低垩白Asominori;在灌浆后10-15 d时,CSSL50籽粒灌浆速率明显高于Asominori。上述结果表明CSSL50高垩白性状的形成与淀粉合成酶动力学变化,较快的籽粒灌浆速率,以及淀粉粒的精细结构密切相关。
     2.稻米胚乳垩白的形成可能与灌浆期籽粒细胞内的信号传递、细胞防御、抗氧化平衡、碳代谢、转录调控和蛋白降解等基因功能类群和调控网络途径密切相关。基因表达谱分析发现,以低垩白背景亲本Asominori为参比,高垩白置换系CSSL50中极显著上调或下调(P < 0.01)的基因623个,其中上调的有324个,下调的有299个。结合差异基因的相关功能注释,将此623个差异表达基因分为18个功能类别,其中6个主要功能类别基因群(信号传递、细胞防御、抗氧化平衡、碳代谢、转录调控和蛋白降解)占差异显著基因总量的68.8%,说明稻米胚乳垩白的形成可能与灌浆期籽粒细胞内的信号传递、细胞防御、抗氧化平衡、碳代谢、转录调控和蛋白降解等基因功能类群和调控网络途径密切相关
     3.稻米垩白的形成与多糖合成关系密切。结合基因差异表达、碳代谢相关酶活性和物质含量变化等研究结果,发现稻米垩白的形成与增强的淀粉代谢和减弱的纤维、半纤维素及果胶生物合成密切相关。基于生理生化测定结果和基因表达谱分析结果对碳代谢相关差异表达基因进行pathway构建,发现水稻碳代谢影响稻米垩白形成的机制表现出一致性,即在形成稻米高垩白的生理环境中,淀粉合成能力增强,降解程度减弱,与此相反,在低垩白环境下胚乳细胞中纤维素和半纤维素的合成能力减弱,降解程度增强。
     4.基于本研究中基因芯片、RT-PCR和过氧化氢含量变化的研究结果,可发现高垩白近等基因系CSSL50中抗氧化体系被激活。本研究发现高垩白CSSL50的过氧化氢含量显著地高于低垩白背景亲本Asominori。同时,SOD、APX、GPX、MDAR和PrxR等抗氧化基因在高垩白CSSL50中的表达水平均显著高于Asominori,说明高垩白CSSL50籽粒胚乳中的抗氧化体系被激活,清除多余氧化自由基(如:过氧化氢等)的能力高于Asominori。此外,GST、Glx和Trx基因在高垩白CSSL50中的表达水平也均显著高于Asominori;而CSSL50的LOX基因表达水平显著地低于Asominori;RT-PCR结果进一步证明了这一结果。因此,CSSL50籽粒胚乳中的抗氧化修复体系的功能明显高于Asominori,说明稻米胚乳垩白产生是在被激活(提高)的抗氧化水平的环境下进行的,且通过改变碳水化合物代谢而实现的。
     5.综合上述研究结果得出稻米垩白的形成同时受特定基因型和特定生理环境互作决定。稻米垩白形成的内在生理环境特征表现为,蛋白质合成和降解能力均增强、淀粉合成能力增强,但是纤维素和半纤维素的合成能力减弱;基因表达谱等分子研究结果显示,在稻米垩白形成过程同时由多种激素、逆境信号途径的参与和互作;其中,ROS信号传导途径与稻米垩白形成密切关联,而氧化-还原体系被激活程度及其消除胚乳生境内ROS的能力可能将在一定程度上决定了稻米垩白的形成度。至此,本研究在基因水平上发现了CSSL50产生垩白的原因/机理与经典遗传和生理研究结果“外界环境胁迫(如:高温、光照条件等)条件导致稻米垩白产生”相一致。
Grain endosperm chalkiness of rice is a varietal physical characteristic that negatively affects not only the appearance and milling properties but also the cooking texture and palatability of cooked rice. Chalky grains have a lower density of starch granules compared to vitreous ones, and are therefore more prone to breakage during milling. In many rice-producing areas, high chalkiness represents one of the most serious problems that decrease grain quality. However, chalky grain is a complicated quantitative trait and the molecular mechanisms underlying its formation are still poorly understood. In this study, we performed a comparative transcriptome analysis of the caryopses of a pair of near-isogenic lines, CSSL50 with high chalkiness and its low chalkiness parental line Asominori. Corroborated with the phenotypic and physico-biochemical observations, our genome-wide transcription analysis supports the notion that rice grain endosperm development is controlled by delicate, but complex genetic networks. Our results revealed that grain endosperm chalkiness of rice formation entails an intricate gene network, including genes involved in carbon metabolism, starch biosynthesis and degradation, metabolism of cellulose, hemicellulose and pectin, signal transduction and most interestingly, we found that ROS signaling and homeostasis are closely related to the formation of rice grain endosperm chalkiness. The important results were as follows:
     1.The results of analyses at the phenotypic, physiological and biochemical levels showed that the occurrence of endosperm chalkiness in rice might associate with the changes of enzyme activities, the increased of grain-filling rate and the structure of starch granule. Asominori amyloid is of the form of polygon, tightly arranged, few inter-space among the granules, and good transparency; however, the amyloid on the chalky portion of CSSL50 seed granule endosperm is of the form of ellipse, loosely arranged, big interspace among the granules, and poor transparency. Besides, the SuSy, AGPase, SBE, and DBE for high chalkiness CSSL50 is remarkably higher than that for low chalkiness Asominori. What is more, on the 10-15th day after grain filling, the seed grain filling speed for CSSL50 is remarkably higher than that for Asominori. These results show that the high chalkiness of CSSL50 is most likely due to the dynamic change of starch-composed enzyme and high seed grain filling speed, and to the fine structures of starch granules.
     2.Based on the results of gene expression profiles between Asominori and CSSL50, we found the pathways of signal transduction, cell rescue/defense, transcription, protein degradation, carbohydrate metabolism and redox homeostasis might be play a significant role in the formation of chalkiness in rice. the occurrence of endosperm chalkiness in rice might be closely related to these functional and regulatory pathways. For the vast majority of probes, expression appeared unchanged between Asominori and CSSL50. Using the selection criteria of P value<1%, we identified a total of 623 probe sets with a significant change. Of these, expression of 324 was up-regulated and 299 down-regulated. Based on the bioinformatics tools such as Gene ontology and JAFA , and the metabolic and functional features of rice, a total of 623 differentially expressed genes were classified into 18 major categories. 68.8% of these identified genes were implicated in the first six functional groups (signal transduction, cell rescue/defense, transcription, protein degradation, carbohydrate metabolism and redox homeostasis), suggesting that the occurrence of endosperm chalkiness in rice might be closely related to these functional and regulatory pathways.
     3.From three aspects of expression of gene difference, carbon- metabolization-related enzyme activities and substance content, we found that there exists a close relationship between the biosynthesis/hydrolysis of starch and non-starch polysaccharide and the formation of endosperm chalkiness, namely, the enhanced starch biosynthesis and the decreased biosynthesis of non-starch polysaccharide may result in the occurrence of chalkiness in rice endosperm.
     4.Based on the results in this study on gene chips, RT-PCR, and physiochemical data (eg., H2O2 content), it is found that the antioxidation system in high chalkiness isogen CSSL50 is activized. It is also found that the hydrogen peroxide content of high chalkiness CSSL50 is remarkably higher than that of low chalkiness background parent strain Asominori. Meanwhile, the expression level of antioxidation genes such as SOD, APX, GPX, MDAR,and PrxR in high chalkiness CSSL50 is remarkably higher than that in Asominori, which shows that the antioxidation system in high chalkiness CSSL50 seed granule endosperm is activized and the ability of eliminating extra oxidation free radicals (such as H2O2, etc.) in CSSL50 is higher than that in Asominori. Besides, the expression level of GST, Glx, and Trx genes in high chalkiness CSSL50 is also remarkably higher than that in Asominori and the expression level of LOX gene in CSSL50 is remarkably lower than that in Asominori,which is further testified by the RT-PCR result.Then it is concluded that the function of antioxidation repair system in CSSL50 seed granule endosperm is remarkably higher than that in Asominori, which shows that the emergence process of the rice endosperm chalkiness begins in the environment of activized (increased) antioxidation level, and is fulfilled through changing carbohydrate metabolization.
     5 . To conclude, exterior stressful conditions are likely to further influence the carbohydrate metabolization of rice by changing the oxidation-reduction balance in the plant, finally leading to the emergence of chalkiness, which agrees with the conclusion of a dissertation by Wan et al (2008)—“The stresses of coldness, drought, salt, heavy metal,etc can lead to the fact that H2O2 content in the rice is increased and oxidation-reduction system in the rice plant is activized, finally affecting the carbohydrate metabolization.”As for the high chalkiness CSSL50, the cause for forming its chalkiness is similar to the case in which a general low chalkiness variety can produce high chalkiness in coercive environment.
引文
1.鲍根良,奚永安.粳稻垩白与产量性状、品质性状及其他性状的相关分析.浙江农业学报, 1997, 9: 1-4
    2.蔡一霞,王维,朱智伟,张祖建,郎有忠,朱庆森.结实期水分胁迫对不同氮肥水平下水稻产量及其品质的影响.应用生态学报, 2006, 17: 1201-1206
    3.长户一雄,江幡守卫.心白米に关する研究第1报.日本作物学会纪事, 1958, 27: 49-51
    4.长户一雄.心白の现に及ほす夜温の影响.日本作物学会纪事, 1964, 29: 400-411
    5.陈建国,宋国清,瞿绍洪.杂交早稻米质性状的直接和母体遗传效应分析.中国水稻科学, 1998a, 12: 79-84
    6.陈建国,朱军.籼粳杂交稻米外观品质的遗传及基因型环境互作效应研究.中国农业科学, 1998b, 31: 1-7
    7.程方民,胡东维,丁元树.人工控温条件下稻米垩白形成变化及胚乳扫描结构观察.中国水稻科学, 2000, 14: 83-87
    8.程方民,蒋德安,吴平,石春海.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征,作物学报, 2001, 27: 201-206
    9.程方民,张嵩午,吴永常.灌浆结实期温度对稻米垩白形成的影响.西北农业学报, 1996, 5: 31-34
    10.程方民,钟连进,舒庆尧,黄华宏,石春海,吴平.早籼水稻垩白部位淀粉的蒸煮食味品质特征.作物学报, 2002, 28: 363-368
    11.程方民,钟连进,孙宗修.灌浆结实期温度对早籼稻籽粒淀粉合成代谢的影响.中国农业科学, 2003, 36: 492-501
    12.程旺大,程方民,吴伟,陆建贤,赵国平,张国平.合理配施氮、磷、钾对直播晚粳稻产量与品质的效应.江西农业大学学报, 2000, 22: 174-177
    13.高振宇,曾大力,崔霞,周奕华,颜美仙,黄大年,李家洋,钱前.水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析.中国科学, 2003, 33: 481-487
    14.郭二男,潘增,王才林,卢少华.粳稻的腹白研究.作物学报, 1983, 9: 31-38
    15.郭小勤,董海涛,郑康乐,骆红梅,谭学林,方永启,王炎钦,邓晔,戴承恩,娄沂春,邵菁,史文琴,赵东,李德葆.水稻光温敏核不育系培矮64S在不同光周期/温度下表达谱的变化.科学通报, 2005, 22: 2509-2513
    16.郭咏梅,穆平,刘家富,卢义宣,李自超.水、旱栽培条件下稻米主要品质性状的比较研究.作物学报, 2005, 17: 1443-1448
    17.何平,李仕贵,李晶炤,马育清,钱前,王文明,陈英,朱立煌.影响稻米品质几个性状的基因座位分析.科学通报, 1998, 43: 1747-1750
    18.黄发松,胡培松,罗炬.我国出口优质籼米新品种与国外优质米品种比较.中国稻米, 1994, 2: 6-7
    19.黄少军,梁庆平.早籼杂交稻稻米品质性状相关分析.广西农业科学, 2003, 1: 15-17
    20.贾良,丁雪云,王平荣,邓晓建.稻米淀粉RVA谱特征及其与理化品质性状相关性的研究,作物学报, 2008, 34: 790-794
    21.贾志宽,高如嵩,张嵩午.中国稻米垩白形成的地域分异规律之初步研究.中国水稻科学, 1992, 6: 159-164
    22.江幡守卫,长户一雄.心白米に关する的研究第3报.日本作物学会纪事, 1960, 29: 93-96
    23.金正勋,杨静,钱春荣,刘海英,金学泳,秋太权.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响.中国水稻科学. 2005, 19: 377-380
    24.冷燕,洪德林.不同生态类型间杂交粳稻品质性状及其遗传分析.中国水稻科学, 2004, 18: 29-33
    25.李成荃,孙明,许克农,程融.杂交粳稻品质性状的遗传研究.杂交水稻, 1988, 3: 32-35
    26.李林,沙国栋.水稻灌浆结实期温光因子对稻米品质的影响.中国农业气象, 1989, 1: 33-38
    27.李仕贵,黎汉云,周开达,马玉清.杂交水稻的品质性状的遗传相关分析.西南农业学报, 1995, 17: 197-201
    28.李太贵,沈波,陈能,罗玉坤. Q酶在水稻子粒垩白形成中作用的研究.作物学报, 1997, 23: 338 - 344
    29.李欣,顾铭洪,潘学彪.常见水稻品种稻米品质研究.江苏农学院学报, 1987, 29: 1-8
    30.李欣,顾铭洪.灌浆期间环境条件对稻米品质的影响.江苏农学院学报, 1989, 10: 7-12
    31.李欣,莫惠栋,王安民,徐辰武,朱毅华,于恒秀.粳型杂种稻米品质性状的遗传表达.中国水稻科学,1999, 13: 197-204
    32.李泽福,万建民,夏加发,翟虎渠.水稻外观品质的数量性状基因位点分析.遗传学报, 2003,
    30: 251-259
    33.梁敬焜,王学海,卢乃第.杂交稻米及其亲本淀粉粒形态的扫描电镜观察.中国水稻科学, 1996, 10: 79-84
    34.梁满中,陈良碧,张会勇.超级杂交稻杂种优势基因组水平的转录因子分析.湖南农业大学学报, 2007, 33: 11-15
    35.廖伏明,周坤炉,阳和华,徐秋生.籼型杂交水稻杂种与亲本的稻米品质比较.中国水稻科学, 2003, 17: 134-140
    36.刘奇华,蔡建,刘敏,柴廷友,李天.两个籼稻品种垩白对稻米蒸煮食味与营养品质的影响.中国水稻科学, 2007, 21: 327-330
    37.刘小川,王渭霞,陈深广,余柳青.杂交稻米质性状的亲本配合力分子标记鉴定.中国水稻科学, 2005, 19: 25-28
    38.吕川根.栽培密度和施肥方法对稻米品质影响的研究.中国水稻科学, 1988, 2: 141-144
    39.罗玉坤,施一平,闵捷,吴戍君.中国食用优质米品质的分析研究.浙江农业学报, 1991, 3: 55-60
    40.孟亚利,周治国.结实期温度与稻米品质的关系.中国水稻科学, 1997, 11: 51-54
    41.莫惠栋.谷类作物胚乳性状遗传控制的鉴别.遗传学报, 1995a, 22: 126-132
    42.莫惠栋.我国稻米品质的改良.中国农业科学, 1993a, 26: 8-14
    43.潘瑞炽,董愚得.植物生理学.第三版.北京高等教育出版社, 1995, 176-178
    44.潘晓华,李木英,曹黎明,刘水英.水稻发育胚乳中淀粉的积累及淀粉合成的酶活性变化.江西农业大学学报, 1999, 21: 456-462
    45.祁祖白,李宝健,杨文广,吴秀峰.水稻籽粒外观品质及脂肪的遗传研究.遗传学报, 1983, 10: 452-458
    46.沈波,陈能,李太贵,罗玉坤.温度对早籼稻米垩白发生与胚乳物质形成的影响.中国水稻科学, 1997, 11: 183-186
    47.沈新平,沈晓燕,顾丽,龚丽萍,张洪程.两优培九稻米垩白在江苏省不同纬度点的播期效应.中国水稻科学, 2007, 21: 677-680
    48.石春海,申宗坦.早籼稻谷性状遗传效应的分析.浙江农业大学学报, 1994, 20: 405-410
    49.松田智明.登熟期の水稻子房にぉける淀粉贮藏细胞の微细构造と转流、蓄积机构につぃて.日本作物学会纪事, 1984 , 53: 146-147
    50.汤圣祥,江云珠,余汉勇,张云康,李双盛.早稻胚乳淀粉体扫描电镜观察.作物学报, 1999, 25: 269-271
    51.田代亨,江幡守卫.腹白米に关する的研究第2报.日本作物学会纪事, 1974, 43: 105-110
    52.田代亨,江幡守卫.腹白米に关する的研究第3报.日本作物学会纪事, 1975a, 44: 86-92
    53.田代亨,江幡守卫.腹白米に关する的研究第4报.日本作物学会纪事, 1975b, 44: 205-214
    54.王维,蔡一霞,张祖建,郎有忠,杨建昌,朱庆森.结实期低土水势对水稻强弱势粒灌浆特性及主要米质性状的影响.中国农学通报, 2005, 21: 170-183
    55.王丽华,谭学林,张峰,董海涛,李德葆.水稻灌浆期种子贮藏物相关基因表达谱的微阵列分析.浙江大学学报, 2003, 29: 392-398
    56.王维,蔡一霞,张祖建,朗有忠,杨建昌,朱庆森.结实期低土水势对水稻强弱势粒灌浆特性及主要米质性状的影响.中国农学通报, 2005, 21: 170-183
    57.王忠,顾蕴洁,陈刚,粱国斌.水稻胚乳细胞的分裂、分化和充实.当代作物生理学研究,中国农业科学技术出版社.北京, 2002
    58.王忠,顾蕴洁,陈刚,熊飞,李运祥.稻米的品质和影响因素.分子植物育种, 2003, 1: 231-241
    59.王忠,李卫芳,顾蕴洁,陈刚,石火英,高煜珠.水稻胚乳的发育及其养分输入的途径.作物学报, 1995, 21: 520-527
    60.吴东辉,李锐,肖昕.广东籼型三系杂交品质性状的研究.广东农业科学, 1998: 6-8
    61.吴秀菊,江玲,万向元,翁建峰,边小峰,万建民.与稻米高垩白粒率相关的qPGWC–9的生理功能.植物生理与分子生物学学报, 2007, 33: 153-159
    62.伍时照,黄超武,欧烈才.水稻籼型品种胚乳淀粉性状的扫描电镜观察.植物学报, 1986, 28: 145-149
    63.向远鸿,唐启源.海拔对稻米品质影响的灰色关联分析.中国水稻科学, 1991, 5: 94-96
    64.邢俊杰,成志伟,杨剑,李亦群,梁铃,殷绪明,张朝良,杨塞,谢宝贵,曹孟良.利用基因芯片技术分析水稻杂种优势的分子机理.杂交水稻, 2005, 20: 59-61
    65.熊飞,王忠,顾蕴洁,陈刚,周鹏.施氮时期对扬稻6号颖果发育及稻米品质的影响.中国水稻科学, 2007, 21: 637-642
    66.徐富贤,郑家奎,朱永川,王贵雄,杨大金,刘康.川东南杂交中稻超稀栽培对稻米整精米率和垩白粒率的影响.植物生态学报, 2004, 28: 686-691
    67.徐是雄,徐雪宾.稻的形态与解剖.北京:农业出版社, 1984
    68.徐锡元,茶村修吾.腹白米に关する的研究第1报.日本作物学会纪事, 1979, 48: 418-424
    69.徐云碧,申宗坦.籼稻米粒垩白的遗传.浙江农业大学学报, 1989, 15: 8-13
    70.许凤英,马均,王贺正,刘惠远,黄清龙,马文波,明东风.水稻强化栽培下的稻米品质.作物学报, 2005, 31: 577-582
    71.严文潮,裘伯钦.浙江省早籼稻加工和商品品质现状及其改良途径探讨.浙江农业科学, 1993: 61-64
    72.晏月明,王绪信,邵启明.籼粳杂交稻米粒垩白的遗传分析.西南农业大学学报, 1993, 15: 446-449
    73.杨福,聂小兰,宋慧,崔喜艳,侯立荣. 2个不同垩白度粳稻胚乳养分输导组织解剖结构的比较研究.吉林农业大学学报, 2005, 27: 11-18
    74.杨建昌,彭少兵,顾世梁, R.M.Visperas,朱庆森.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报, 2007, 27: 157-164
    75.杨建昌,袁莉民,唐成,王志琴,刘立军,朱庆森.结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响.作物学报, 2005, 31: 1052- 1057
    76.杨仁崔,梁康迳,陈表华.稻米垩白直感遗传和杂交稻垩白米遗传分析.福建农学院学报, 1986, 15: 51-54
    77.袁莉民,朱庆森,王志琴,张祖建.亚种间杂交稻及其亲本胚乳淀粉粒性状的初步观察.江苏农学院学报, 1994, 15: 45-50
    78.曾大力,钱前,阮刘青,滕胜,国广泰史,藤本宽,朱立煌.稻米垩白三维切面的遗传分析.中国水稻科学, 2002, 16: 11-14
    79.张嵩午.我国秦岭–淮河过渡区稻米品质的气候分析.自然资源学报, 1991, 6: 211-219
    80.赵镛洛,张云江,王继馨,张淑华,张兰民,李大林,吕彬,单莉莉.北方早粳稻米品质因子分析.作物学报, 2001, 27: 538-540
    81.钟连进,程方民.水稻籽粒灌浆过程直链淀粉的积累及其相关酶的品种类型间差异,作物学报, 2003, 29: 452-456
    82.钟旭华,黄农荣.水稻结实期根系活性与稻米垩白形成的相关性初步研究.中国水稻科学, 2005, 19: 471-474
    83.周少川,李宏,王家生,黄道强,谢振文,卢德城.华南籼稻早造稻米蒸煮、外观和碾米品质与食味品质的相关性研究.作物学报, 2002, 28: 397-400
    84.朱述爱,李秀珍.早籼碾米和外观品质研究.安徽农业科学, 2001, 29: 277-278
    85.朱旭东.异季栽培对稻米品质的影响.中国水稻科学, 1993, 7: 25-29
    86. Anderson JM, Hnilo J, Larson R, Okita TW, Morell M, Preiss J. The encoded primary sequence of rice seed ADP-glucose pyrophosphorylase subunit and its homology to the bacterial enzyme. J Biol Chem, 1989, 264, 21: 12238-12242
    87. Anderson LE, Bryant JA, Carol AA. Both chloroplastic and cytosolic phosphoglycerate kinase isozymes are present in the pea leaf nucleus. Protoplasma, 2004, 223: 103-110
    88. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373-399
    89. Barone AD, Beecher JE, Bury P, Chen C, Doede T, Fidanza JA, McGall GH. Photolithographic synthesis of high-density oligonucleotide probe arrays. Nucleotides Nucleic Acids, 2001, 20: 525-531
    90. Bienert GP, Schjoerring JK, Jahn TP. Membrane transport of hydrogen peroxide. Biochim Biophys Acta 2006, 1758: 994-1003
    91. Blanshard JMV. Starch granule structure and function in starch: Properties and potential. Critical review of applied chemistry, 1987, 13:16-54
    92. Boehlein SK, Shaw JR, Stewart JD, Hannah LC. Heat stability and allosteric properties of the maize endosperm ADP-Glucose pyrophosphorylase are intimately intertwined. Plant Physiol, 2008, 146: 289-299
    93. Burton RA, Bewley JD, Smith AM, Bhattacharyya MK, Tatge H, Ring S, Bull V, Hamilton WD, Martin C. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J, 1995, 7: 3-15
    94. Cai YX, Wang W, Zhu Z, Zhang Z, Langm Y, Zhu Q. Effects of water stress during grain-filling period on rice grain yield and its quality under different nitrogen levels. Chinese Journal of Applied Ecology, 2006, 17: 1201-1206
    95. Cao Y, Song F, Goodman RM, Zheng Z. Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J Plant Physiol, 2006, 163: 1167-1178
    96. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection . Science, 1998, 281: 2016 - 2018
    97. Chang TT, Somrith B. Genetic studies on the grain quality of rice. In: Chemical aspects of rice quality. IRRI, Los Banos, Philippines, 1979, 49-58
    98. Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y, Yun SJ, Reyes BG. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics, 2007, 8: 175
    99. Cheng F, Zhang S, Wu YH. Effect of Temperature during Filling Period on the Chalkiness Formation of Rice. Northwestern Agricultural University. 1996, 5: 31-34
    100. Cheng FM, Zhong LJ, Wang F, Zhang GP. Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem, 2005, 90: 39-46
    101. Cho SK, Jeung JU, Kang KH, Shim KS, Jung KW, You MK, Ok SH, Chung YS, Hwang HG, Choi HC, Moon HP, Shin JS. Identification of genes induced in wound-treated wild rice (Oryza minuta). Mol Cells, 2004, 17: 230-236
    102. Ciftci-Yilmaz S, Mittler R. 2008. The zinc finger network of plants. Cell Mol Life Sci, 65: 1150-1160
    103. Coursol S, Fan LM, Stunff HL, Spiegel S, Gilroy S, Assmann SM. Sphingolipid signalling inArabidopsis guard cells involves heterotrimeric G proteins. Nature, 2003, 423: 651-654
    104. Crismani W, Baumann U, Sutton T, Shirley N, Webster T, Spangenberg G, Langridge P, Able JA. Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics, 2006, 7: 267
    105. Del Rosario AR, Briones VP, Vidal AJ, Juliano BO. Composition and endosperm structure of developing and mature rice kernel. Cereal Chem, 1968, 45: 225-235
    106. Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol, 2002, 3: 1-10
    107. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM. Expression profiling using cDNA microarry. Nayure Gnetics Supplement, 1999, 21: 10-14
    108. Dung LV, Mikami I, Amano E, Sano Y. Study on the response of dull endosperm 2-2, du2-2, to two Wx alleles in rice. Breeding Sci 2000, 50: 215-219
    109. Ebata M, Tashiro T. Studies on white–belly rice kernels I. Varietal differences in the occurrence of white–belly kernels. Proc Crop Sci Soc Jpn, 1973, 42: 370-376
    110. Espartero J, Sanchez-Aguayo I, Pardo JM. Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol, 1995, 29: 1223-1233
    111. Fieulaine S, Lunn JE, Borel F, Ferrera JL. The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell. Plant Cell, 2005, 17: 2049-2058
    112. Fitzgerald MA, McCouch SR, Hall RD. Not just a grain of rice: the quest for quality. Trends Plant Sci, 2009, 14: 133-139
    113. Fodor SPA. Massively parallel genomics. Science, 1997, 277: 393-395
    114. Fothergill-Gilmore LA, Watson HC. The phosphoglycerate mutases. Adv Enzymol Relat Areas Mol Biol, 1989, 62: 227-313
    115. Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park JH, Jane JL, Miyao A, Hirochika H, Nakamura Y. Characterization of SSIIIa–deficient mutants of rice: The function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol, 2007, 144: 2009-2023
    116. Geisler-Lee J, Geisler M, Coutinho PM, Segerman B, Nishikubo N, Takahashi J, Aspeborg H, Djerbi S, Master E, Gunnera SA, Sundberg B, Karpinski S, Teeri TT, Kleczkowski LA, Henrissat B, Mellerowicz EJ. Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol, 2006, 140: 946-962
    117. Gorantla M, Babu PR, Lachagari VB, Reddy AM, Wusirika R, Bennetzen JL, Reddy AR. Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot, 2007, 58: 253-265
    118. Grauvogel C, Brinkmann H, Petersen J. Evolution of the glucose-6-Phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes. Mol Biol Evol, 2007, 24: 1611-1621
    119. Greene TW, Hannah T W. Adenosine diphosphate glucose pyrophosphorylase, a rate-limiting step in starch biosynthesis. Physiol Plant, 1998, 103: 574-580
    120. Guan HP , Preiss J. Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol, 1993, 102, 1269-1273
    121. Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci U S A, 2005, 102: 8066-8070
    122. Guo YP, Mu P, Liu JF, Lu YX, Li ZC. Comparative Studies on Quality Characters of Rice under Water-and Dry-cultivation Conditions. Acta Agronomica Sinica, 2005, 17: 1443-1448
    123. Guo Z, Guilfoyle FA, Thiel AJ, Wang R, Smith LM. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res, 1994, 22: 5456-5465
    124. Han XZ, Hamaker BR. Amylopectin fine structure and rice starch paste breakdown. J Cereal Sci, 2001, 34: 279-284
    125. HavlováM, Dobrev PI, Motyka V, StorchováH, Libus J, DobráJ, Malbeck J, GaudinováA, Vanková, R. The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ, 2008, 31: 341-353
    126. He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH. Genetic analysis of rice grain quality. Theor Appl Genet, 1999, 98: 502-508
    127. Hennen-Bierwagen TA, Liu F, Marsh RS, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM. Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol, 2008, 146: 1892-1908
    128. Hennen–Bierwagen TA, Liu F, Marsh RS, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM. Plant Physiol, 2008, 146: 1892-1908
    129. Hou X, Xie K, Yao J, Qi Z, Xiong L. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci U S A, 2009, 106: 6410-6415
    130. Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev, 2009, 23: 1805-1817
    131. Hughes TR, Mao M, Jones AR. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 2001, 19: 342-334
    132. Isshiki M, Nakajima M, Satoh H. dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J, 2000, 23:451-460
    133. Ito M. Conservation and diversification of three-repeat Myb transcription factors in plants. J Plant Res, 2005, 118: 61-69
    134. Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem, 1999, 76: 629-637
    135. Jenkins PJ, Donald AM. The influence of amylose on starch granule structure. Int J Bio Macromol,1995, 17: 315-321
    136. Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin, C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J, 2000, 19: 6150-6161
    137. Jin Q, Waters D, Cordeiro GM, Henry RJ, Reinke RF. A single nucleotide poly-morphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Plant Science, 2003, 165: 359-364
    138. Kang HG, Park SH, Matsuoka M, An G. White–core endosperm floury endosperm–4 in rice is generated by knockout mutations in the C4–type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J, 2005, 42: 901-911
    139. Kawagoe Y, Kubo A, Satoh H, Takaiwa F, Nakamura Y. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm. Plant J, 2005, 42: 164-174
    140. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 2001, 13: 889-905
    141. Kim KH, Joo HK. Variation of grain quality of rice varieties grown at different locations. Korean J Crop Sci, 1990, 35: 34-43
    142. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell, 2006, 11: 441-450
    143. Kobayshi A, Suzuki Y, Kobayashi A, Miura K, Ohtsubo K. Grain qualities of new-characteristic rices developed in Hokuriku district. Journal of the Japanese Society for Food Science and Technology, 1998, 45: 484-493
    144. Koh DM, Cook GJ, Husband JE. New horizons in oncologic imaging. N Engl J Med, 2003, 348: 2487-2488
    145. Kovtun Y, Chiu WL, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Science of the USA, 2000, 97: 2940-2945
    146. Lee JI, Kim JK, Shin JC. Effects of ripening temperature on the quality appearance and chemical quality characteristics of rice grain. RDA Journal of Agricultural Science Rice, 1996, 38: 1-9
    147. Li JM, Xiao JH, Grandillo S, Jiang LY, Wan YZ, Deng QY, Yuan LP, McCouch SR. QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. Sativa L.) and African (O. glaberrium S) rice. Genome, 2004, 47: 697-704
    148. Li ZF, Wan JM, Xia JF, Yano M. Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Breeding Science, 2003, 53: 209-215
    149. Li ZF, Wan JM, Xia JF, Zhai HQ. Mapping quantitative trait loci underlying appearance quality of rice grains (Oryza sativa L.). Acta Genetica Sinica, 2003, 30: 251-259
    150. Li ZF, Wan JM, Xia YW, Zhai HQ, Ikehashi H. Identification of quantitative trait loci underlying milling quality of rice (Oryza sativa) grains. Plant breeding, 2004, 123: 229-234
    151. Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on ricechromosome 1. Genetics, 2007, 177: 1871-1880
    152. Lin SK, Chang MC, Tsai YG, Lur HS. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics, 2005, 5: 2140-2156
    153. Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A. Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant, 2008, 134: 508-521
    154. Maccarrone M, Melino1 G, Finazzi-Agro A. Lipoxygenases and their involvement in programmed cell death. Cell Death and Differentiation, 2001, 8: 776-784
    155. Martin C, Smith AM. Starch biosynthesis. Plant Cell, 1995, 7: 971-985
    156. Martin C, Smith AM. Starch biosynthesis. The plant cell, 1995, 7: 971-985
    157. Maxwell K, Johnson G.N. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 2000, 51: 659-668
    158. Mittler R, Vanderauwera S, Gollery M, Breusegem FV. Reactive oxygen gene network of plants. Trends Plant Sci, 2004, 9: 490-498
    159. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405-410
    160. Mouille G, Maddelein ML, Libessart N, Talaga P, Decq A, Delrue B, Ball S. Preamylopectin processing: a mandatory step for starch biosynthesis in plants. Plant Cell, 1996, 8: 1353-1366
    161. Myers AM, Morell MK, James MG, Ball SG. Recent progess toward understanding biosynthesis of the amylopectin crystal. Plant Physiol, 2000, 122: 989-997
    162. Nagato K, Ebata M. Studies on white–core rice kernel II on the physical properties of the kernel. Proc Crop Sci Soc Jpn, 1959, 28: 46-50
    163. Nakamura Y, Kubo A, Shimamune T, Matsuda T, Harada K, Satoh H. Correlation between activities of starch debranching enzyme andα-polyglucan structure in endosperms of sugar-1 mutants of rice. The plant Journal, 1997, 12: 143-153
    164. Nakamura Y, Umemoto T, Takahata Y, Aano E. Characteristics and roles of key enzymes associated with starch biosynthesis in rice endosperm. Gamma Field Symposia, 1992, 31, 25-44
    165. Nakamura Y, Yuki K, Park SY, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grain. Plant Cell Physiol, 1989, 30: 833-839
    166. Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant cell physiology, 2002, 43: 718-725
    167. Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic analysis of the effect of amylose-extender mutation in rice endosperm. Plant Physiology, 2001, 127: 459-472
    168. Ohtsu K, Smith MB, Emrich SJ, Borsuk LA, Zhou R, Chen T, Zhang X, Timmermans MC, Beck J, Buckner B, Janick-Buckner D, Nettleton D, Scanlon MJ, Schnable PS. Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J, 2007, 52: 391-404
    169. Patindol J, Wang YJ. Fine structures and physicochemical properties of starches from chalky and translucent rice kernels. J Agri Food Chem, 2003, 51: 2777-2784
    170. Preiss J, Sivak MN. Biochemistry, molecular biology and regulation of starch synthesis. Genetic Engineering, 1998, 20: 177-219
    171. Raju GM, Srinivas T. Effect of physical, physiological, and chemical factors on the expression of chalkiness in rice. Cereal Chem, 1991, 68: 210-211
    172. Rakwal R, Kimura S, Shibato J, Nojima K, Kim YK, Nahm BH, Jwa NS, Endo S, Tanaka K, Iwahashi H. Growth retardation and death of rice plants irradiated with carbon ion beams is preceded by very early dose- and time-dependent gene expression changes. Mol Cells, 2008, 25: 272-278
    173. Reiter WD, Vanzin GF. Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Molecular Biology, 2001, 47: 95-113
    174. Riechmann JL, Meyerowitz EM. The AP2/EREBP family of plant transcription factors. Biol Chem, 1998, 379: 633-646
    175. Rogers YH, Ping JB, Huang ZJ, Bogdanova V, Andersonb S, Boyce-Jacino MT. Immobilization of oligonucleotides onto a glass support via disulfide bond: a method for preparation of DNA microarrays. Anal Biochem, 1999, 266: 23-30
    176. Roitsch T, Gonzalez MC. Function and regulation of plant invertases: sweet sensations. Trends in Plant Sci, 2004, 12: 606-613
    177. Saha BC. Hemicellulose bioconversion. Ind Microbiol Biotechnol, 2003, 30: 279-291
    178. Santos CVD, Pascal R. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci, 2006, 11: 1360-1385
    179. Schaeffer GW, Sharpe FT. Increased lysine and seed storage protein in rice plants recovered from calli selected with inhibitory levels of lysine plus threonine and S-(2-Aminoethyl) cysteine. Plant Physiol, 1987, 84: 509-515
    180. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis : Microarray - based expression monitorong of 1000 genes. PANS, 1996, 93: 10614 -10619
    181. Schena M. Microarry Biochip Technology. Eaton pulishing, 2000
    182. Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR. Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet, 2003, 107: 1433-1441
    183. Shi CH, Wu JG, Lou XB, Zhu J, Wu P. Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativa L.). Field Crops Res, 2002, 76: 1-9
    184. Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 2006, 18: 651-664
    185. Shouichi Y. Effects of air temperature and light on grain filling of an indica and a japonica under controlled environmental conditions. Soil sci plant Nut, 1987, 23: 93-104
    186. Singh N, Sodhi NS, Kaur M, Saxena SK. Physico-chemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kernels. Food Chem, 2003, 82: 433-439
    187. Smith A M, Denyer K, Martin C R. What controls the amount and structure of starch in storage organs. Plant Physiol, 1995, 107: 673-677
    188. Smith AM, Denyer K, Martin C. The synthesis of the starch granule. Annu Rev Plant Physiol, 1997, 48: 67-87
    189. Somrith B, Chang TT, Jackson BR. Genetics analysis of traits related to grain characteristics and quality in two crosses of rice. IRRI Research Paper Series, 1979, 35: 1-14
    190. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING–type E3 ubiquitin ligase. Nature Genet, 2007, 39: 623-630
    191. Southern E, Maskos U, Elder J. Analyzing and comparing nucleic acid sequences by hyridization to array of oligo-nucleotides: evaluation using experiment models. Genomics, 1992, 13: 1008-1017
    192. Stipp D. Gene chip breakthrough. Fortune, 1997, 31: 56-73
    193. Suzuki Y, Sano Y, Hirano HY. Isolation and characterization of rice mutant insensitive to cool temperatures on amylose synthesis. Euphytica, 2002, 123: 95-100
    194. Takashima Y, Senoura T, Yoshizaki T, Hamada S, Ito H, Matsui H. Differential chain-length specificities of two isoamylase-type starch-debranching enzymes from developing seeds of kidney bean Biosci. Biotechnol Biochem, 2007, 71: 2308-2312
    195. Takeda K, Saito K. Heritability of kernel weight and white belly frequency in rice and genetic correlation. Jpn J Breed, 1983, 33: 468-469
    196. Tameling WI, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen BJ, Takken FL. Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol, 2006, 140: 1233-1245
    197. Tan YF,Xing YZ,Li JX,Yu SB, Xu CG, Zhang QF, Xing YZ. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet, 2000, 101: 823-829
    198. Tashiro T, Ebata M. Studies on white–belly rice kernelⅦ. Jpn J Crop Sci, 1980, 49: 482-488
    199. Tashiro T, Wardlaw IF. The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust J Agric Res, 1991, 42: 485-496
    200. Taylor NG. Cellulose biosynthesis and deposition in higher plants. New Phytol, 2008, 178: 239-252
    201. Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol, 2008, 146: 1878-1891
    202. Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol, 2008, 146: 1878-1891
    203. To JP, Kieber JJ. Cytokinin signaling: two-components and more. Trends Plant Sci, 2008, 13: 85-92
    204. Toyota K, Tamura M, Ohdan T, Nakamura Y. Expression profiling of starch metabolism-related plastidic translocator genes in rice. Planta, 2006, 223: 248-257
    205. Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR. Heterotrimeric Gproteins facilitate Arabidopsis resistance to Necrotrophic pathogens and are involved in Jasmonate signaling. Plant Physiol, 2006, 140: 210-220
    206. Umemoto T, Aoki N. Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinization and starch association of the enzyme. Functional Plant Biol, 2005, 32: 763-768
    207. Umemoto T, Nakamura Y, Ishikura N. Activity of starch synthase and the amylose content in rice. Phytochemistry, 1995, 6: 1613-1616
    208. Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol, 2005, 139: 822-835
    209. Wan XY, Liu JY. Comparative proteomic analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Molecular and Cellular Proteomics, 2008, 7: 1469-1488
    210. Wan XY, Wan JM, Weng JF, Jiang L, Bi JC, Wang CM, Zhai HQ. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005, 110: 1334-1346
    211. Wan Y, Poole RL, Huttly AK, Toscano-Underwood C, Feeney K, Welham S, Gooding MJ, Mills C, Edwards KJ, Shewry PR, Mitchell RA. Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics, 2008, 9: 121
    212. Wang Y, Zhu S, Liu S, Jiang L, Chen L, Ren Y, Han X, Liu F, Ji S, Liu X, Wan J. The vacuolar processing enzyme OsVPE1 is required for efficient glutelin processing in rice. Plant J, 2009, 58: 606-617
    213. Whittaker A, Martinelli T, Farrant JM, Bochicchio A, Vazzana C. Sucrose phosphate synthase activity and the co-ordination of carbon partitioning during sucrose and amino acid accumulation in desiccation-tolerant leaf material of the C4 resurrection plant Sporobolus stapfianus during dehydration. J Exp Bot, 2007, 58: 3775-3787
    214. Woo MO, Ham TH, Ji HS, Choi MS, Jiang W, Chu SH, Piao R, Chin JH, Kim JA, Park BS, Seo HS, Jwa NS, McCouch S, Koh HJ. Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J, 2008, 54: 190-204
    215. Xue LJ, Zhang JJ, Xue HW. Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res 2009, 37: 916-930
    216. Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol, 2007, 144: 258-277
    217. Yang G, Matsuoka M, Iwasaki Y, Iwasaki Y, Komatsu SA. Novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice. Plant Mol Biol, 2003, 52: 843-854
    218. Yang GX, Jan A, Shen SH, Yazaki J, Ishikawa M, Shimatani Z, Kishimoto N, Kikuchi S, Matsumoto H, Komatsu S. Microarray analysis of brassinosteroids- and gibberellin-regulated geneexpression in rice seedlings. Mol Genet Genomics, 2004, 271: 468-478
    219. Yang HJ, Li YQ, Hua J. The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J, 2006, 48: 238-248
    220. Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta, 2002, 215: 645-652
    221. Yang J, Zhang J, Wang Z, Zhu Q. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot, 2001, 52: 2169-2179
    222. Yang JP, Lin RC, Sullivan J, Hoecker U, Liu BL, Xu L, Deng XW, Wang HY. Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell, 2005, 17: 804-821
    223. Yano M, Isono Y, Satoh H, Omura T. Gene analysis of sugary and shrunken mutants of rice. Jpn J Breed, 1984, 34: 43-49
    224. Yano M, Okuno K, Kawakami J, Satoh H, Omura T. High amylose mutants of rice, Oryza sativa L. Theor Appl Genet, 1985, 69: 253-257
    225. Yeh KW, Jinn TL, Yeh CH, Chen YM, Lin CY. Plant low-molecular-mass heat-shock proteins: their relationship to the acquisition of thermotolerance in plants. Biotechnol Appl Biochem, 1994, 19: 41-49
    226. Zen DL, Qian Q, Ruan LQ, Teng S, Kunihiro Y, Fujimoto H, Zhu LH. QTL Analysis of Chalkiness Size in Three Dimensions. Chinese Journal of Rice Science, 2002, 16: 11-14
    227. Zhang QF. Strategies for developing Green Super Rice. P Natl Acad Sci USA, 2007, 104: 16402-16409
    228. Zhao B , Liang R , Ge L , Li W, Xiao H, Lin H, Ruan K, Jin Y. Identification of drought-induced microRNAs in rice. Biochemical and Biophysical Research Communications, 2007, 354: 585-590

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700