感应电机电压跌落临界清除时间解析算法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业的蓬勃发展,有越来越多的感应电动机应用于工业生产,其在工业负荷中所占的比例高达90%以上。感应电动机运行良好与否,已经成为影响工业生产连续性的重要因素。而影响感应电动机最主要的电能质量问题就是电压跌落。相关统计数据表明,由电压跌落引起的用户投诉占整个电能质量问题投诉数量的80%以上。电压跌落影响工业感应电动机的主要表现是造成大量的非必要停机。现代高度自动化的工业生产过程一旦中断,将会造成巨大的经济损失甚至危害人身安全。而另一方面,绝大多数电压跌落的幅值都在其额定电压幅值的80%左右且其持续时间仅为4-10周期,考虑到感应电动机及其负载本身所具有的惯性,感应电动机自身有能力穿越这些电压跌落并恢复稳定运行。因此,工业用户有强烈的愿望来改善感应电动机的保护,避免因电压跌落造成生产过程不必要的中断。此外,随着感应发电机的大量装备及电力系统负担的不断加重,感应发电机的大扰动稳定问题和电网的短期电压稳定问题日益突出,迫切需要有效的方法来对这些稳定问题进行快速评估。
     要实现这些需求,必须首先快速计算出感应电机在遭遇电压跌落时其能够穿越的最长时间。解析算法因具有物理概念明确、计算速度快等一系列独特优点,是实现快速、准确在线计算的理想选择。因此,从理论上推导出评估感应电机电压跌落穿越能力的解析算法,无疑具有重要的现实意义。
     本文在分析了电压跌落持续期间和电压跌落消除后感应电动机的动态响应之后,结合电磁转矩与负载转矩之间的稳定和不稳定平衡交点的概念,提出了感应电动机电压跌落临界清除时间的概念来衡量感应电动机电压跌落穿越的能力。针对电力系统中危害程度最为严重的三相对称电压跌落,分别为恒转矩负载特性、恒功率负载特性和风机类负载特性推导出了各自的感应电动机对称电压跌落临界清除时间解析算法及临界转差率的计算公式。此外还提出了感应电动机绝对安全电压跌落的概念及判断某一对称电压跌落是否是绝对安全的判定方法,以及最小绝对安对称全电压跌落的概念及其计算方法。仿真实验和参数敏感分析仿真实验都证实了对称电压跌落临界清除时间解析算法与绝对安全对称电压跌落判定方法的有效性和准确性。
     针对电力系统中出现次数最多的非对称电压跌落,通过分析感应电动机在非对称电压跌落期间的正负序稳态等效电路及其正负序电磁转矩,提出了总电磁转矩的Ⅰ类和Ⅱ类简化表达形式,并利用不同电磁转矩表达式分别为恒转矩负载特性、恒功率负载特性和风机类负载特性推导出了各自的非对称电压跌落临界清除时间解析算法。此外还提出了判断某一非对称电压跌落是否是绝对安全的判定方法。通过仿真实验验证了所提出的感应电动机非对称电压跌落临界清除时间解析算法和绝对安全非对称电压跌落判定方法的有效性和准确性。
     为了便于解析算法实际应用于感应电动机的电压跌落保护,本文提出了利用递推最小二乘法来在线辨识电压跌落发生前后感应电动机上游供电网络等效电路的等效参数和感应电动机总体机械负载参数的方法。为辨识非对称故障期间上游供电网络正负序等效参数而提出了获取感应电动机定子正、负序瞬时电压矢量和瞬时电流矢量的方法。为辨识总体机械负载参数利用扩展卡尔曼滤波来估计感应电动机的电磁转矩。之后利用一个实际配电系统模型来模拟配电系统中可能真实发生的故障来仿真验证参数辨识方法和感应电动机电压跌落临界清除时间解析算法的有效性和准确性。
     本文最后分析了机端故障发生时和消除时感应发电机暂态电磁过程对临界清除时间的影响。根据暂态电磁转矩公式分析了机端三相金属性故障发生时和消除时因感应电动机电磁暂态过程而造成的加速面积变化及计算方法,并推导出了这两个暂态过程所对应的补偿时间的计算公式。提出了计及感应发电机暂态过程的临界清除时间保守计算解析方法。通过仿真实验验证了所提出考虑感应发电机暂态过程的临界清除时间解析算法的有效性和准确性。
     本文提出的感应电机电压跌落临界清除时间解析算法不仅有助于工业用户实现感应电动机电压跌落的智能保护,还可以用于分析、研究感应发电机大扰动稳定性及考虑感应电动机负荷的系统短时电压稳定性等问题,具有重要的理论意义和实用价值。
With the great boom of the industry in our country, more and more induction motors are being equipped in various industrial departments and they have accounted for more than90%of the whole industrial electric power load. The operating status of induction motors will influence the continuity of industrial production. The voltage sag is the most serious problem in power quality that affects induction motors. The statistics show that more than80%of the complaints caused by power quality are voltage sags. Voltage sags can cause a large number of unnecessary out of service of induction motors. The interruptions of modern highly automated industrial production will lead to a sizable economic loss and may endanger the safety of human life. In the other hand, most voltage sags have a magnitude of around80%and the duration of4to10cycles. So induction motors can ride through these voltage sags and recover to normally operation state by themselves with respect to the inertia of induction motors and their mechanical loads. Consequently, there are strong desires of industrial customers to improve the protections of induction motors in order to avoid unnecessary interruptions of production processes caused by voltage sags. In addition, with the giant equipment of induction generators and rising burden of power system, the large-disturbance stability of induction generators and the short-term voltage stability of power systems are becoming increasingly acute and hence effective methods are desired to be developed to fast estimate these stability problems.
     In order to achieve these requirements, the longest time that induction machines can ride through voltage sags should be quickly calculated at first. Analytical methods are the most adaptive choice to conduct fast and accurate on-line computation since it has a lot of unique advantages such as clear physical meaning and high computation speed. Therefore, the developing analytical method that can on-line fast estimate the capability of voltage sag ride-through of induction machines is important undoubtedly.
     According to the stable and unstable equilibrium points between electromagnetic torque and mechanical load torque, the concept of voltage sag critical clearance time of induction motors is presented to scale the capability of induction motors' low voltage ride-through after analyzing the dynamic response of induction motors during and after voltage sags. For the three-phase symmetrical voltage sags that are most dangerous to power systems, the analytical methods calculating the voltage sag critical clearance time and the algorithms to calculate the critical slip are derived for the constant torque load scenario, the constant power load scenario and fan type load scenario respectively. Additionally, the concept of the absolutely safe voltage sag for induction motors and its judgment method, and the concept of the minimum absolutely safe voltage sag and its calculation method are presented. The effectiveness and accuracy of the proposed analytical method calculating the symmetrical voltage sag critical clearance time and the judgment method to determine whether a symmetrical voltage sag is absolutely safe have been validated through simulations and a parameter sensitivity study.
     In power systems, the unsymmetrical voltage sags occur more often than the symmetrical voltage sags. The type I and the type II simplified expressions of the integral electromagnetic torque of induction motors are presented through analyzing the positive and the negative sequence steady-state equivalent circuit and the positive and the negative sequence electromagnetic torque of induction motors during unsymmetrical voltage sags. Using different expressions of the integral electromagnetic torque, the analytical methods that calculate the unsymmetrical voltage sag critical clearance time are derived for the constant torque load scenario, the constant power load scenario and fan type load scenario respectively. Moreover, a judgment method that determines whether unsymmetrical voltage sags are absolutely safe is also presented. The proposed analytical method calculating the unsymmetrical voltage sag critical clearance time and judgment method are verified through simulations.
     For the practical application of the proposed analytical method, the equivalent parameters of the induction motors' upstream network equivalent circuit and the parameters of the integral mechanical load of induction motors are on-line identified by recursive least square algorithm. In order to identify the positive and the negative sequence equivalent parameter of the upstream network during unsymmetrical voltage sags, a method gaining the positive and negative sequence instantaneous voltage vectors and current vectors is presented. The electromagnetic torque of induction motors is on-line estimated through the extended Kalman Filtering to identify the parameters of the integral mechanical load of induction motors. The parameter identification methods and the analytical method calculating the critical clearance time of voltage sags are validated through a simulation model which can simulate faults that may occur in real distribution systems.
     The impact of the induction generators' transient electromagnetic process during and after faults on the critical clearance time is analyzed finally. The method to calculate the variation of the acceleration area caused by the induction generators' transient electromagnetic process during and after the fault occurring near induction generators is presented according to the transient electromagnetic torque expressions. Then the method calculating the corresponding compensated time is derived. The analytical method that calculates the conservative critical clearance time considering the transient process of induction generators is stated. This conservative, analytical method is verified through simulations.
     The proposed analytical method calculating voltage sag critical clearance time of induction machines not only can help industrial customers improve the intelligent protections of induction motors when voltage sags occur, but also can be used to analyze the large-disturbance stability of induction generators and the short-term voltage stability of power systems considering induction motor load. It has great significance in both theory and practice.
引文
[1]肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2009.
    [2]IEEE Power & Energy Society. IEEE Std.1159-1995:IEEE Recommended Practice for Monitoring Electric Power Quality,1995.
    [3]IEEE Power & Energy Society. IEEE Std.1159-2009:IEEE Recommended Practice for Monitoring Electric Power Quality,2009.
    [4]S. Z. Djokic, J. V. Milanovic, D. Kirschen. Sensitivity of AC coil contactors to voltage sags, short interruptions, and undervoltage transients[J]. IEEE Transactions on Power Delivery,2001,19(3):1299-1307.
    [5]M. H. J. Bollen. Understanding Power Quality Problems:Voltage Sags and Interruptions[M]. New York:IEEE Press,2000.
    [6]王宾,潘贞存,徐丙垠.配电系统电压跌落问题的分析[J].电网技术,2004,28(2):56-59.
    [7]C. J. Melhorn. T. D. Davis, G. E. Beam. Valtage sags:their impact on the utility and industrial customers[J]. IEEE Transactions on Industry Applications,1998,34(3): 549-558.
    [8]I. Iyoda. M. Hirata, N. Shigei, Affect of voltage sags on electro-magnetic contactor[C]. //9th International Conference on Electrical Power Quality and Utilisation, Barcelona, 2007.
    [9]J. Perdra, F. Corcoles, L. Sainz, Study of AC contactors during voltage sags[C].//10th Inrenational Conference on Harmonic and Quality of Power,2002.
    [10]E. R. Collins, M. A. Bridgwood, The impact of power system disturbances on AC-coil contactors[C].//Textile, Fiber, and Film Industry Technical Conference, IEEE 1997 Annual,1997.
    [11]E. R. Collins, F. Zapardiel, An experimental assessment of AC contactor behavior during voltage sags[C].//IEEE International Symposium on Industrial Electronics, 1997.
    [12]A. H. Escribano, E. Gomez-Lazaro, G. Jimenez-moreno, A. Molina-Garcia, Analysis of the AC-contactor electrical behavior under voltage dips[C].//2010 XIX International Conference on Electrical Machines,2010.
    [13]S. M. Akolkar, B. E. Kushare, Effect of point on wave angle on sensitivity of AC coil contactor and SMPS to voltage sags[C].//IPEC, Singapore,2010.
    [14]H. Shareef. A. Mohamed, N. marzuki, K. Mohamed, Experimental investigation of AC contactor ride through capability during voltage sag[C].//9th International Conference on Environment and Electrical Engineering,2010.
    [15]C. T. Chi, S. A. Yin, Stability evaluation of an electromagnetic contactor during voltage sag[C].//10th International Conference on Control, Automation, Robotics and Vision, 2008.
    [16]W. Kanokbannakorn, T. Saengsuwan, S. Sirisukprasert, The modeling of AC magnetic contactor for immunity studies and voltage sag assessment[C].//8th Electrical Engineering/Electronics, Computer, Telecommunications and Information technology, 2011.
    [17]S. W. Jeong, G. J. Lee, J. H. Gim, The study on the characteristics of operating limits of AC contactor during voltage sag[C].//Transmission & Distribution Conference & Exposition:Asia and Pacific,2009.
    [18]S. M. Silva, M. F. Braga, T. de Fernandes, L. Milagres, Analysis and development of a ride-through device for AC contactors[C].//2007 European Conference on Power Electronics and Applications,2007.
    [19]C. T. Chi, S. A. Yin, Compensation strategy for contactor ridethrough costs[C]. //IEEE/PES Transmission and Distribution Conference and Exposition,2008.
    [20]A. Kelley, J. Cavaroc, J. Ledford, L. vassalli. Voltage regulator for contactor ridethrough[J]. IEEE Transactions on Industry Applications,2000,36(2):697-705.
    [21]C. Y. Hung, C. T. Chi, A new compensation strategy for an AC contactor under voltage-sag events[C].//IEEE Conference on Robotics Automation and Mechatronics, 2010.
    [22]L. A. Chen, Z. Y. Chen, Intelligent AC contactor with contacts for switching reactive compensation device[C].//The International Conference on Advanced Power System Automation and Protection,2011.
    [23]蔡甫寒,蔡甫权,任致程.低压电动机保护器选型与应用指南[M].北京:中国电力出版社,2008.
    [24]武予鲁.电动机及其综合保护装置的工作原理与使用[M].北京:煤炭工业出版社,2004.
    [25]E. W. Gunther, H. Metha. A study of distribution system power quality:preliminary results[J]. IEEE Transactions on Power Delivery,1995,10(1):322-329.
    [26]L. Tang, J. Lamoree, Distribution system voltage sags:with motor and drive loads[C]. //IEEE Transmission and Distribution Conference, Chicago, USA,1994.
    [27]J.J.Perez, C.A.Cortes, A. Gomez, A study of voltage sags in electric motors[C].//9th International Conference on Electrical Power Quality and Utilization, Barcelona, Spain, 2007.
    [28]N. Jenkins, R. Allan, P. Crossley, D. Kirschen, G Strbac. Embedded Generation[M]. London, U.K.:Inst. Elect. Eng.,2000.
    [29]V. Akhmatov. Induction Generators for Wind Power[M]. Esses, U.K.:Multi Science, 2007.
    [30]V. Akhmatov, H. Knudsen, A.H.Nielsen, J. K. Pedersen, N. K. Poulsen. Modelling and transient stability of large wind farms[J]. International Journal of Electrical Power & Energy Systems,2003,25:123-134.
    [31]R. Belhomme, M. Plamondon, D. Desrosiers, C. Gagnon. Case study on the integration of a non-utility induction generator to the Hydro-Quebec distribution[J]. IEEE Transactions on Power Delivery,1995,10(3):1677-1684.
    [32]N. P. McQuin, P. N. Willians, S. Williamson, Transient electrical and mechanical behavior of large induction generator installations[C].//4th International Conference on Electrical Machines and Drives,1989.
    [33]J. R. Parsons. Cogeneration application of induction generators[J]. IEEE Transactions on Industry Applications,1984,20(3):497-503.
    [34]V. Akhmatov. Analysis of dynamic behavior of electric power systems with large amount of wind power[D]. Technical University of Denmark,2003.
    [35]E. G. Potamianakis, C. D. Vournas. Short-term voltage instability:effects on synchronous and induction machines[J]. IEEE Transactions on power Systems,2006, 21(2):791-798.
    [36]O. Samuelsson, S. Lindahl. On speed stability[J]. IEEE Transactions on power Systems, 2005,20(2):1179-1180.
    [37]刘鹏,吴刚.世界范围内两起典型电压崩溃事故分析[J].电网技术,2003,27(5):35-37.
    [38]B. R. Williams, W. R. Schmus, D. C. Dawson. Transmission voltage recovery delayed by stalled air-conditioner compressors[J]. IEEE Transactions on power Systems,1992, 7(3):1173-1181.
    [39]V. Ajjarapu, B. Lee. Bibliography on voltage stability[J]. IEEE Transactions on power Systems,1998,13(1):115-125.
    [40]T. V. Cutsem, C. Vournas. Voltage Stability of Electric Power Systems[M]. Boston, MA, USA:Kluwer Academic Publishers,1998.
    [41]P. Kundur, J. Paserba, V. Ajjarapu. Definition and classification of power system stability[J]. IEEE Transactions on power Systems,2004,19(2):1387-1401.
    [42]C. W. Taylor. Power System Voltage Stability[M]. New York, USA:McGraw-Hill, 1994.
    [43]CIGRE Task Force 38.02.10. Modeling of Voltage Collapse including Dynamic Phenomena, CIGRE Brochure No 75,1993.
    [44]李欣然,贺仁睦、周文.一种具有全电压范围适应性的综合负荷模型[J].中国电机工程学报,1999,19(5):71-76.
    [45]李力理,陆超,黄志刚.计及感应电动机的负荷节点暂态电压稳定解析评估方法[J].电力系统自动化,2009,33(7):1-5.
    [46]F. Corcoles, J. Pedra. Algorithm for the study of voltage sags on induction machines[J]. IEEE Transactions on Energy Conversion,1999,14(4):959-968.
    [47]J. Pedra, L. Sainz, F. Corcoles. Effects of symmetrical voltage sags on squirrel-cage induction motors[J]. Electric Power System Research,2007,77(2):1672-1680.
    [48]J. Pedra, F. Corcoles, L. Sainz. Effects of unsymmetrical voltage sags on squirrel-cage induction motors[J]. IET Generation, Transmission & Distribution,2007,1(5):769-775.
    [49]L. Guasch, F. Corcoles, J. Pedra. Effects of symmetrical and unsymmetrical voltage sags on induction machines[J]. IEEE Transactions on Power Delivery,2004,19(2): 774-782.
    [50]L. Guasch, F. Corcoles, J. Pedra, Effects of unsymmetrical voltage sag type E, F, and G on induction motors[C].//9th International Conference on Harmonics and Quality of Power, Orlando, FL, USA,2000.
    [51]J. C. Gomez, M. M. Morcos, C. A. Reineri. Behavior of induction motor due to voltage sags and short intrruptions[J]. IEEE Transactions on Power Delivery,2002,17(2): 434-440.
    [52]M. Baran, J. Cavaroc, A. Kelley, Stresses on induction motors due to momentary service interruptions[C].//IEEE Industrial and Commercial Power Systems technical Conference, Detroit, MI, USA,2006.
    [53]S. K. Salman, A. L. J. Teo. Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator[J]. IEEE Transactions on power Systems,2003,18(2):793-792.
    [54]D. J. Trudnowski, A. Gentile, J. M. Khan, E. M. Petritz. Fixed-speed wind-generator and wind-park modeling for transient stability studies[J]. IEEE Transactions on power Systems,2004,19(4):1911-1917.
    [55]P. Ledesma, J. Usaola, J. L. Rodriguez. Transient stability of a fixed speed wind farm[J]. Renewable Energy,2003,28:1341-1345.
    [56]J. Zhang, A. Dysko, J. OReilly, W. E. Leithead. Modeling and performance of fixed-speed induction generators in power system oscillation stability studies[J]. Electric Power System Research,2008,78(8):1416-1424.
    [57]A. causebrook, D. J. Atkinson. A. G. Jack. Fault ride-through of large wind farms using series dynamic braking resistors[J]. IEEE Transactions on power Systems,2007,22(3): 966-965.
    [58]M. H. Ali, B. Wu. Comparision of stabilization methods for fixed-speed wind generator systems[J]. IEEE Transactions on Power Delivery,2010,25(1):323-331.
    [59]O. Mohand. Transient analysis of a grid connected wind driven induction generator using a real-time simulation platform[J]. Renewable Energy,2009,34(3):801-806.
    [60]E. S. Mora, T. I. A. Olivares, D. R. Veja, D. O. Salinas. The effect of induction generators on the transient stability of a laboratory electric power system[J]. Electric Power System Research,2002,61(3):211-219.
    [61]雷兴,薛禹胜,薛峰,徐泰山,Z. Y. Dong,文福拴.感应发电机暂态电压稳定性定量分析[J].电力系统自动化,2012,36(12):1-6.
    [62]A. P. Grilo, A. D. A. Mota, L. T. M. Mota, W. Freitas. An analytical method for analysis of large-disturbance stability of induction generators[J]. IEEE Transactions on power Systems,2007,22(4):1861-1869.
    [63]周念成,王强刚,王鹏.含多感应发电机配电网的暂态稳定研究[J].中国电机工程学报,2011,31(16):40-47.
    [64]Z. Zhou, P. Wang, Q. Wang, P. C. Loh. Transient stability study of distributed induction generators using an improved steady-state equivalent circuit method[J]. IEEE Transactions on power Systems,2014,29(2):608-616.
    [65]孙华东.计及感应电动机负荷的电压稳定分析及其应用研究[D].中国电力科学研究院,2005.
    [66]井艳清,李兴源,郭晓鸣.考虑感应电动机负荷模型的暂态电压稳定快速判据[J].电力系统自动化,2011,35(5):10-14.
    [67]孙华东,周孝信,李若梅.感应电动机负荷参数对电力系统暂态电压稳定性的影响[J].电网技术,2005,29(23):1-6.
    [68]徐泰山,薛禹胜,韩祯祥.暂态电压稳定的模型要求和快速判断[J].电力系统自动化,1995,19(12):11-115.
    [69]徐泰山,薛禹胜,韩祯祥.感应电动机暂态电压的定量分析[J].电力系统自动化,1996,20(6):12-15.
    [70]H. Sun, X. Zhou, A quick criterion on judging short-tem large-disturbance voltage stability considering dynamic characteristic of induction motor loads[C].//Power Conference 2006, Chongqing, China,2006.
    [71]Y. Xue, T. Xu. B. Liu. Quantitative assessments for transient voltage security[J]. IEEE Transactions on power Systems,2000,15(3):1077-1083.
    [72]王义红,梅生伟.基于稳定裕度指标的暂态电压稳定分析[J].电工电能新技术, 2007,26(2):39-33.
    [73]林瞬江,李欣然,刘杨华,李培强,罗安,刘光晔.考虑负荷动态模型的暂态电压稳定快速判断方法[J].中国电机工程学报,2009,29(4):14-20.
    [74]孙华东,周孝信.计及感应电动机负荷的电力系统在线电压稳定指标[J].中国电机工程学报,2006,26(6):1-6.
    [75]何笠,李兴源,徐梅梅.考虑动态负荷机械转矩参数的节点暂态电压评估[J].电力系统自动化,2010,34(19):11-15.
    [76]汤蕴璆,史乃.电机学[M].Vol.机械工业出版社北京,2002.
    [77]阮毅,陈伯时.电力拖动自动控制系统——运动控制系统(第4版)[M].北京:机械工业出版社,2009.
    [78]P. Kundur. Power System Stability and Control[M]. New York:McGrawHill,1994.
    [79]N. N. Hancock. Matrix Analysis of Electrical Machinery[M]. New York:Pergamon Press,1974.
    [80]叶其孝,沈永欢.实用数学手册(第2版)[M].北京:科学出版社,2006.
    [81]M. Mansfield. A Text-Book on the Method of Least Squares (8 Ed.)[M]. New York: John Wiley & Sons, Inc.,1991.
    [82]M. R. Iravani, M. Karimi-Ghartemani. Online estimation of steady state and instantaneous symmetrical components[J]. IEE Proc-Gener. Transm. Distrib.,2003, 150(5):616-622.
    [83]A. Ghosh, A. Joshi. A new approach to load balancing and power factor correction in power distribution system[J]. IEEE Transactions on Power Delivery,2000,15(1): 417-421.
    [84]G. C. Paap. Symmetrical components in the time domain and their application to power network calculations[J]. IEEE Transactions on power Systems,2000,15(2):522-528.
    [85]J. S. Hsu. Instantaneous phasor method for obtaining instantaneous balanced fundamental components for power quality control and continuous diagnostics[J]. IEEE Transactions on Power Delivery,1998,13(4):1494-1500.
    [86]M. Karimi-Ghartemani. H. Karimi, Analysis ofsymmetrical components in time-domain[C].//48th Midwest Symposium on Circuits and Systems, Covington, Kentucky, USA,2005.
    [87]丁洪发,段献忠,何仰赞.同步检测法的改进及其在三相不对称无功补偿中的应用[J].中国电机工程学报,2000,20(6):17-20.
    [88]许树楷,宋强,朱永强,刘文华,李建国.用于不平衡补偿的变压器隔离式链式D-STATCOM的研究[J].中国电机工程学报,2006,26(9):137-143.
    [89]白丹,蔡志开,彭力,康勇,陈坚.三相逆变电源不平衡负载研究[J].电力系统自动化,2004,28(9):53-57.
    [90]赵国亮,刘宝志,肖湘宁,徐永海.一种无时延的改进d-q变换在动态电压扰动识别中的应用[J].电网技术,2004,28(7):53-57.
    [91]袁旭峰,程时杰,文劲宇.改进瞬时对称分量法及其在正负序电量检测中的应用[J].中国电机工程学报,2008,28(1):52-58.
    [92]单渊达.电能系统基础[M].北京:机械工业出版社,2001.
    [93]M. Barut. Speed-Sensorless Estimation and Position Control of Induction Motors for Motion Control Applications[D]. University of Alaska,2006.
    [94]L. Zhen, L. Xu. Sensorless field orientation control of induction machines based on a mutual MRAS scheme[J]. IEEE Transactions on Industrial Electronics,1998,45(5): 824-830.
    [95]E. P. Dick, A. Narang. Canadian Urban Benchmark Distribution Systems, Varennes, Quebec, Canada:Kinectrics Inc. Report for CETC 2005-121 (TR),2005.
    [96]L. Holdsworth, X. Wu, J. Ekanayake, N. Jenkins. Comparison of fixed speed and doubly fed induction wind turbines during power system disturbance[J]. IEE Proc-Gener. Transm. Distrib.,2003,150(3):343-352.
    [97]M. V. A. Nunes, J. A. Pecas Lopes, H. H. Zurn, U. H. Bezerra, R. G. Almeida. Influence of the vriable-speed wind generators in transient stability margin of the conventional generators integrated in electrical grids[J]. IEEE Transactions on Energy Conversion 19(4):692-701.
    [98]宋战锋.低电压故障下双馈风力发电系统特性分析与运行控制[D].天津大学,2009.
    [99]M. S. Vicatos, J. A. Tegopoulos. Transient state analysis of a doubly-fed induction generator under 3-phase short-circuit[J]. IEEE Transactions on Energy Conversion, 1991,6(1):62-74.
    [100]J.Lopez, P. Sanchis, X. Roboam, L. Marroyo. Dynamic Behavior of the Doubly Fed Induction Generator During Three-Phase Voltage Dips[J]. IEEE Transactions on Energy Conversion,2007,22(3):707-717.
    [101]L. Zhang, X. Cai, J. Guo, Dynamic responses of DFIG fault currents under constant AC exitation condition[C].//Asia-Pacific Power and Energy Engineering Conference, Wuhan, China,2009.
    [102]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略的研究[D].重庆大学,2006.
    [103]P. Vas. Electrical Machines and Drives a Space-Vector Theory Approach[M]. Oxford, U.K.:Oxford University Press,1992.
    [104]魏祥林,傅龙飞,郝晓弘.交流电机理论中相量、矢量的概念辨析及空间矢量分析法的意义[J].上海大中型电机,2012,(2):40-45.
    [105]秦萌青.时间相量、空间矢量的概念及应用[J].山东工程学院学报,1998,12(1):11-15.
    [106]G. Yalcinkaya, M. H. J. Bollen, P. A. Crossley. Characterization of voltage sags in industrial distribution systems[J]. IEEE Transactions on Industrial Aplications,1998, 34(4):682-688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700