高速轮胎试验台转鼓的振动分析及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着车速的不断提高,原有的轮胎试验台已经不能满足试验的需要,人们又设计出了高速轮胎试验台。高速轮胎试验台主要用于测试和识别高速情况下,车辆轮胎及悬挂系统等的动态特性,为进行整车及车辆各组件的动态性能研究提供依据。
     本论文研究的对象是高速轮胎试验台中的一个重要组件——转鼓。在车辆的高速性能试验中,由于转鼓本身的动态性能将对试验结果的好坏产生直接的影响,所以,转鼓自身的动态性能设计将是整个高速轮胎试验台设计中的一个关键环节。为了在工作时避免共振的发生,就必须在转鼓设计时就大幅度提高转鼓的第一阶固有频率,这是整个转鼓以至整个试验台设计中至关重要的一环。该转鼓的设计还有另外两个特点:①转鼓外环的内、外表面均可作为被测轮胎的接触面,使得该试验台可以同时进行两种(部)车辆高速性能试验的要求;②转鼓直径达到4m,使得与被测轮胎接触的转鼓外环的内、外表面均能够比较真实的模拟车辆的实际行走情况。
     本论文应用拓扑优化方法及模态理论,运用有限元软件为转鼓设计出了三种不同的模型,为了使铸造工艺尽可能的简单及总质量尽可能的小,最终提出了最优模型,使得转鼓的第一阶固有频率得到了大幅度提高,从而避免了在工作时共振的发生。在模型确定之后,又利用有限元方法,对最优模型进行了尺寸优化、模态灵敏度分析及最优化设计,最终为最优模型各部件定下了较为合理的尺寸组合。该尺寸组合不仅使转鼓的总质量减轻了22%以上,而且也使转鼓的第一阶固有频率提高到了90Hz以上,优于国外同类试验台转鼓,从而满足了各方面的设计要求。
As the vehicle speed increases, the original tire test-bed can't meet the need of the test. Automobile high-speed tire test-bed is designed. Automobile high-speed tire test-bed is mainly used to test and identify the dynamic characteristics of vehicle tires and the suspension system in high speed and provide basis for the research of the dynamic characteristics of the whole vehicle and each component of the vehicle。
     The drum, which is an important component of the automobile high-speed tire test-bed is the subject of this thesis. During the test of the high-speed performance of vehicles, the dynamic characteristics design of the drum will be the key step in the design of the whole automobile high-speed tire test-bed because the dynamic characteristics of the drum directly influences the result of the test. To avoid the resonance during the work, the first eigenfrequency of the drum should be increased greatly in the design of the drum. This is very important in the design of the whole drum and even the whole automobile high-speed tire test-bed. The design of the drum has two other characteristics. First, both the inner and outer side of the drum outer ring can function as the interface of the tested tire, which enables the automobile high-speed tire test-bed to test the high-speed performance of two vehicles at the same time. Secondly, the diameter of the drum is 4m. This makes both the inner and outer side of the outer ring of the drum, which contact the tested tire, truly simulate the vehicles' actual running condition.
     This thesis uses topology optimization theory and carries out the modal analysis and design optimization using the finite element software, Hyper Works. According to the result of topology optimization, we get three kinds of finite element models for the drum and the first eigenfrequency of the drum is greatly improved. However, these three models have their own advantages and disadvantages. For the first model, the first eigenfrequency is the lowest, but the manufacture technology is simple; for the third model, the first eigenfrequency is much higher than that of the first and the second model, but the manufacture technology is complicated. All three models can not fulfill the following conditions at the same time: first, to increase the eigenfrequency of the drum structure as much as possible; secondly, to lower the casting technological requirements as much as possible; the quality should be as light as possible. To make the structure of the drum more reasonable, we get the fourth design scheme synthesizing the former three design schemes.
     After the structure of the drum is determined,we optimize the size of the fourth model by OptiStruct and make the total mass of the drum decrease 18% on condition that the first eigenfrequency is not lowered. Then we carry out the model sensitivity analysis and optimal design of the revised model using ANSYS. Through model sensitivity analysis, we get more sensitive design variables and revise each design parameter reasonably. The result of the revision is that the mass of drum is reduced by 413kg on condition that the first eigenfrequency is above 90Hz. To get a more ideal design, we make full use of the merits of the finite element software ANSYS and carry out the optimal design of some more sensitive design parameters on the basis of sensitivity analysis. The result of optimization is that the total mass of the drum is decreased about 115kg on condition that the first eigenfrequency is above 90Hz. After the size optimization, model sensitivity analysis and optimal design of the best model, the first eigenfrequency of the drum is higher than 90Hz and the mass of the drum is reduced from 12.85ton to 9.99ton.
     From the above discussion, under the guidance of the Finite Element Theory, Topology Optimization Theory and Modal Analysis Theory, we get the more reasonable drum structure(the fourth finite element model).And the application of the finite element software-Hyper Works, Pro-E and ANSYS greatly reduces the cost and the design cycle.
引文
[1] 陈宇东,结构振动分析,吉林大学出版社,2007。
    [2] 陈塑寰 ,结构振动分析的数值方法,吉林科学技术出版社,1996。
    [3] Mastinu. G, Pennati. M and Gobbi. M, Design and Construction of a Test Rig for assessing Tyre Characteristics at Rollover. SAE technical paper. 2002 -01-2077.
    [4] Pacejka,H.B.(Ed.)“Tyre Models for Vehicle Dynamic Analysis”Swets & Zeitlinger,Amsterdam, The Netherlands,1992.
    [5] Mastinu, G.“Feasibility study of a test rig for high frequency pneumatic tyre testing” ,Politecnico di Milano, internal Report,feb.1998.
    [6] 李先涛、赵继印,轮胎动态实验台往复运动位移自动测控系统,元器件与应用,2003(4):29-31。
    [7] 陶柯、钱建徐、蒋佩岩,高速轮胎试验机轮毂动态特性分析,机械研究与应用,2006,19(5):38-39。
    [8] 陶柯、毕树国、郭丹,基于模态分析的汽车高速轮胎试验机机架研究, 机械研究与应用,2005,18(3):36-37。
    [9] 刘曦,热喷涂技术在转鼓表面上的应用,机械科学与技术,1996, 25 (3):37-39。
    [10] 过学迅、李玉民,转鼓实验台阻力模拟和控制的研究,拖拉机与农用运输车,2001(3):11-14。
    [11] 王红卫,转鼓实验台转鼓的有限元建模与分析,拖拉机与农用运输车,2005 (3):36-37。
    [12] 程耿东,结构优化新方法及其计算机实现,力学与实践,1992,14(1): 1-6。
    [13] Eschenauer. HA, Olhoff. N, Topology optimization of continuum structures: a review [J]. Applied Mechanics Review, 2001, 54(4): 331-389.
    [14] 罗震、 陈立平、黄玉盈, 连续体结构的拓扑优化设计[J],力学进展,2004,34(4): 463-476。
    [15] Rozvany. GIN, Bendsoe. MP, Kirsch.U, Layout optimization of structures [J]. Applied Mechanics Review,1995, 48(2): 41-119.
    [16] 许素强、夏人伟,结构优化方法研究综述,航空学报,1995,16(4): 385-396。
    [17] Lijuan. X, Jiameng. W, Xianding. J, Study on topology optimum design of engineering structures [J].Journal of Ship Mechanics, 2002, 6(6): 107-113.
    [18] Maxwell. JC, On reciprocal figures, frames and diagrams for forces[J]. Scientific Papers, Cambridge Univ. Press,1980,2,175-177.
    [19] Michell. GM, The limits of economy of materials in frame structures [J]. Philosophical Magazine, Series 6.
    [20] Cox.HL, The design of structures of least weight [M].Oxford: Pergamon, 1965.
    [21] Hegeminer.GA, Prager. W, On Michell trusses [J].International Journal of Mechanical Sciences, 1969, 11(2):209-215.
    [22] 周克民、胡云昌,利用有限元构造 Michell 桁架的一种方法[J],力学学报,2002,34(6): 935-940。
    [23] 隋允康,建模·变换·优化—结构综合方法新进展[M].大连: 大连理工大学出版社, 1996。
    [24] Hornlein. H, Kocvara. M, Werner. R, Material optimization: bridging the gap between conceptual and preliminary design[J]. Aerospace Science and Technology, 2001, 5(8):541-554.
    [25] Allaire. G, Shape Optimization By the Homogenization Method[M]. NewYork: Springer, 2001.
    [26] Nishiwaki.S, Min. S, Yoo.J, Optimal structural design considering flexibility[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(25): 4457-4504.
    [27] Sigmund. O, Petersson. J, Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh- dependencies and local minima[J]. Structural Optimization, 1998, 16(1): 68-75.
    [28] 孙靖民、梁迎春、陈时锦,机械结构优化设计,哈尔滨工业大学出版社,2004。
    [29] 朱伯芳、黎展眉、张璧城,结构优化设计原理与应用,水利电力出版社,1984。
    [30] 杨志军,结构拓扑修改重分析方法及工程应用,吉林大学博士论文,2006。
    [31] 贾海朋,结构与柔性机构拓扑优化,大连理工大学博士论文,2004。
    [32] 汤文成,机械结构件拓扑优化设计的研究,东南大学博士论文,2003。
    [33] 于开平、周传月、谭惠丰等,Hyper Mesh 从入门到精通,科学出版社,2005。
    [34] Hyper Mesh 软件说明书。
    [35] 周四新,Pro/ENGINEER Wildfire 2.0 实例教程,机械工业出版社,2005。
    [36] Pro/ENGINEER 软件说明书。
    [37] 段进、倪栋、王国业,ANSYS 结构分析从入门到精通,电子工业出版社,2006。
    [38] 周长城、胡仁喜、熊文波,ANSYS 基础与典型范例,电子工业出版社,2007。
    [39] ANSYS 软件说明书。
    [40] 韩强、黄小清、宁建国,高等板壳理论,科学出版社,2002。
    [41] 薛大为,板壳理论,北京工业学院出版社,1988。
    [42] 王明强、朱永海、刘文欣,有限元网格划分方法应用研究,机械设计与制造,2004(1):22-24。
    [43] 金晶、吴新跃,有限元网格划分相关问题分析研究,计算机辅助工程,2005,14(2):75-78。
    [44] 柳朝华、郭志英,网格划分技术在塑料法兰 CAE 中的应用,模具技术,2006,3:8-11。
    [45] 高广军、田红旗、姚松,有限元三维实体单元与壳单元的组合建模问题研究,中国铁道科学,2002,23(3):52-54。
    [46] 倪振华,振动力学,西安交通大学出版社,1989。
    [47] 马玉平、陈明、袁艳玲、王得胜、赵波,弯曲振动圆盘几何尺寸与振动特性关系的研究,机械工程师,2003:9-12。
    [48] 陈塑寰,结构振动分析的矩阵摄动理论,重庆出版社出版,1991。
    [49] 左鹤声、彭玉英,振动试验模态分析,中国铁道出版社,1995。
    [50] 高耀东、郭喜平、郭志强,ANSYS 机械工程应用 25 例,电子工业出版社,2007。
    [51] 张洪武、关振群、李云鹏、顾元宪,有限元分析与 CAE 技术基础,清华大学出版社,2004。
    [52] 高云凯、蓝晓理、陈鑫,轿车车身模态修改灵敏度计算分析,汽车工程,2001,23(5):352-354。
    [53] 董绍强、廖道训、陆永忠,结构频率响应灵敏度计算及响应修改研究,华中科技大学学报,2001,29(10):56-58。
    [54] Moon. YJ,Kim. BW, Ko. MG and Lee. IW, Modified modal methods for calculating eigenpair sensitivity of asymmetric damped system, Int. J. Numer. meth. Engng. 2004,60:1847-1860.
    [55] Choi. KM, Jo. HK, Kim. WK, Lee. IW, Sensitivity analysis of mon- conservative eigensystems, Journal of Sound and Vibration 274 (2004) 997-1011.
    [56] 马迅、过学迅、赵幼平、闵小炜,基于有限元法的结构优化与灵敏度分析,机械科学与技术,2002,21(4):558-561。
    [57] 高云凯,汽车车身结构分析,北京理工大学出版社,2006。
    [58] 邵蕰秋,ANSYS 有限元分析实例导航,中国铁道出版社,2004。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700