垂直流人工湿地水力学规律与数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工湿地是20世纪70年代兴起的污水处理技术,具有工艺设备简单、投资少、耗能低、易建设、运行维护简便等优点,尤其间歇进水垂直流人工湿地有着较好的脱氮效果在世界各地得到广泛应用。但是,直到最近人们对人工湿地各种去污机理和途径尚未得到全面、细致的了解和掌握,大多人工湿地的设计与运行依然建立在经验的基础上,对设计水质目标和长期运行效果缺乏准确可靠的预测手段和长期有效的运行经验,使建成的人工湿地处理效果不尽相同或无法最大限度的发挥其净化功能,限制了人工湿地技术的发展和应用。
     本课题主要针对垂直潜流人工湿地,从水力学角度利用改进型停留时间分布曲线和水力学效率研究了间歇进水垂直潜流人工湿的水流规律,并讨论了水力条件对湿地净化效果的影响;从反应器流动特性模型和污染物降解一级动力学模型角度研究了间歇进水垂直流人工湿地水流流态和污染物降解规律,并提出了一级动力学参数;从人工湿地渗流规律和污染物迁移规律出发,以地下水模拟软件HYDROUS-2D和活性污泥动力学模型为基础提出了垂直流人工湿地简化的机理模型,并对小试系统的水力学实验和污染物降解规律进行了模拟验证。
     在间歇进水垂直流人工湿地水力学性能和净化效果的影响规律研究方面:探讨了湿地植物及配水方式对垂直潜流人工湿地水流规律及水力效率的影响,揭示水力负荷、停留时间、进水流速、进水周期、布水方式对垂直流人工湿地系统净化效果的影响规律。结果显示,植物对间歇进水垂直流人工湿出水流量及停留时间分布影响较小,但在一定程度上可以提高系统的水力效率。当采用相同日水力负荷和间歇进水周期,适当地提高进水流速或在相同日水力负荷和进水流速下,采用较短间歇进水周期可提高系统的有效容积,改善系统的水力性能,有助于提高CODcr、NH4-N、TN的去除率。采用相同进水流速,连续和间歇运行模式对系统水力效率综合影响效果无显著差异,但在相同日水力负荷下,采用间歇进水方式可以保证较高的流速,从而获得较高的水力效率。在相同进水流速下,间歇进水方式较连续进水方式系统的日水力负荷减小,能够保证污染物足够的停留时间,有利于污染物的去除。布水不均匀使得水流出现短流,湿地上部有效空间不能充分发挥。因此在保证处理效果的前提下,提高布水均匀性,可适当提高系统的水力负荷率。
     在反应器流动特性模型和污染物去除一级动力学模型研究方面:采用若干串联的完全混合反应器模型对间歇进水垂直流人工湿地的停留时间分布曲线进行了拟合,揭示了间歇进水垂直流人工湿地的流动特性类似于3个串联的完全混合反应器水流特点。建立在理想推流反应器或3个串联的完全混合反应器基础上的污染物降解一级动力学模型可以模拟间歇进水VFCW系统有机物、氨氮和总氮去除效果,得出了有机物、氨氮、总氮的一级反应速率常数和背景浓度值以及一级反应速率常数温度修正系数。
     在二维动态水力学模拟方面:采用地下水模拟软件HYDROUS-2D对间歇进水垂直流人工湿地不同工况下出水流量、出水累计流量和停留时间分布进行了模拟,提出了适用于模拟石英砂为填充基质的垂直流人工湿地系统的水力学参数值,为垂直流人工湿地的水力学模型深入研究提供了基础的经验数据,为人工湿地对污染物去除机理模型提供了水力学模拟平台。
     在污染物降解机理模型研究方面:以二维动态水力学模型为基础,借鉴活性污泥模型、两步硝化模型提出了能够描述垂直流人工湿地多组分污染物迁移转化的简单机理模型。通过与实际监测数据的对比,验证了该机理模型对实验系统有机物、氮污染物、无机磷去除效果模拟的有效性和各组分在湿地系统内动态规律变化。
     通过以上研究,加强了间歇进水垂直流人工湿地内部水流规律的认识,提供了垂直流人工湿地系统优化设计和优化运行的理论、技术支持以及实践经验,加深了人工湿地内部过程和机理的理解和洞察,促进人工湿地数学模型的发展,为人工湿地进一步的研究提供新的思路和方法,为人们解决与其相关的其它课题提供经验和依据,从而推动这一高效、低耗、生态技术的广泛应用。
Constructed wetlands (CWs) for wastewater treatment with the advantages of simpleness of equipment, low cost of construction, operation and maintance have been thrived at 1970's. Especially vertical subsurface flow constructed wetlands (VFCWs) with intermittent feeding are increasingly used during the last several years due to their good efficiency regarding the removal of nitrogen. However, there is a lack of understanding in detail about the transformation and elimination processes of pollutants in CWs. Most of their design and operation are still based on'rules of thumb', lead to a quite different removal effect or unsuccesful use and result in discouraging the development and application of CWs.
     Aims to VFCW with intermittent feeding, some studies were conducteded. Firstly, to investigate the hydraulic behaviors on use of modified residence time distribution (RTD) theory and hydraulic efficiency and to discuss the potential effects hydraulic condition has on polltants removal. Secondly, to determine the flow pattern and the regularity of wetland pollutant reduction by reproducing the experimental RTD and first-order removal kinetics models utilizing reaction theory and to present first order removal rate constants. Thirdly, to simulate dynamic hydraulic behaviors of pilot-scale VFCW employed the two-dimensional hydraulic simulation program HYDROUS-2D. Fourthly, to develop a simplified biological model based on HYDROUS-2D and activated sludge models (ASMs) and to be calibrated with a pilot-scale vertical flow constructed wetland.
     In the case of study on hydraulic behaviour and the effects of hydraulic conditions on contaminant removal efficiency of VFCWs with intermittent feeding, the influences of plants and feeding strategies on hydraulic behaviors of VFCW are discussed and the impacts on polltants removal efficiency with all sorts of hydraulic operations including hydraulic loading, residence time, flow rate, feeding interval and water distribution are explored. Results indicate that plants have less influence on effluent rate and RTD, but is somewhat helpful to improve hydraulic efficiency. Higher flow rate under the same daily hydraulic loading and feeding interval or less feeding interval but the same daily hydraulic loading and the flow rate can increase effective volume ratio, improve hydraulic performance and advance wetland removal efficiency of chemical oxygen demand (CODcr), annonium-nitrogen (NH4-N), total nitrogen (TN). Hydraulic efficiency compared between continuous and intermittent feeding has no distinctively difference when the same flow rate was employed. Otherwise intermittent feeding can obtain higher flow rate under the same hydraulic loading to improve hydraulic perfermace or can obtain lower daily hydraulic loading under the same flow rate compared with continuous feeding to guarantee enough residence time which increases pollutans removal. Uniformly water distribution can promote the upper areas of VFCW are untilized to increase hydraulic loading in case of the pollutants removal performance.
     In the case of the study on flow pattern and first-order removal kinetics models, the tanks in series (TIS) model, TIS with delay model and shiffted lognormal distribution model were employed to reproducing the experimental RTD. All proved capable of fitting the RTD curves and the flow pattern of VFCW can be presumed as flow characteries of three continuous stired tank reactors (CSTR). Furthermore, first-order removal kinetics models were conducted to simulate the reduction of CODcr, NH4-N, TN and the first order removal rate constants, background concentrations and temperature correction coefficient of VFCW with intermittent feeding are all presented.
     In the case of the study on the two-dimensional dynamic hydraulic simulation, effluent rate, cumulatived effluent and tracer experiments of VFCW with intermittent feeding are simulated using simulation program HYDROUS-2D for flow and transport in saturated and unsaturated zones. Hydraulic parameters and soil parameters of VFCW with the main substrate consists of quartz sand are calibrated. The simulated results show a good match with measured data. Moreover, the valuable experience with the in-depth study on hydraulic numerical model of CWs are gained and the platform to propose a biological model of VFCW is provided.
     In the case of the study on mechanistic model of VFCW, a simple biological model learned from CW2D model, ASMs and a two-step nitrification (ASM3_2N) model for the process nitrification and denitrification on both nitrite and nitrate is proposed based on the two-dimensional dynamic hydraulic model, which can describe the multi-component reactive transport. By comparing with the measured data, the model is available to simulate the effect of COD, NH4-N and TP removal and dynamic changes of dissolved oxygen (DO), heterotrophic organisms, autotrophic organisms (nitrosomonas and nitrobacter), ornanic carbon compounds, NH4-N, nitrite-N (N02-N), nitrate-N (N03-N), inorganic phosphorus (IP) in VFCW.
     All the studies above enhance knowledge of hydraulic behaviors of VFCW with intermittent feeding to offer a support of theories and technologies and practical experiences on optimal design and optimal operation of VFCW, to increase understanding and insight of process and mechanisms in CW, and to prompote the development of mathematical models of CW which advance the widespread use of the ecological tenology.
引文
[1]中华人民共和国水利部,2008年中国水资源公报,2009.
    [2]中华人民共和国环境保护部,2008中国环境状况公报,2009.
    [3]Kadlec R.H. Constructed wetlands:State of the art [C]. In: Proceedings of the 9th International Conference on Wetland Systems for Water Population Control. Avignon, France: IWA Publishing,2004.1.
    [4]Fisher P.J. Hydraulic characteristics of constructed wetlands at Richmond, NSW, Australia [C]. In: Cooper, P.F., Findlater, B.C. (Eds.), Constructed Wetlands in Water Pollution Control. Pergamon Press, Oxford,1990:21-32.
    [5]Urban D.T. Methods of determining residence time distributions in a reconstructed wetland. M. S. thesis, Illinois Institute of Technology, Chicago, IL.,1990.
    [6]Kadlec R.H., Bastiaens W.V., Urban D.T. Hydrological design of free water surface treatment wetlands [C]. In: Moshiri, GA. (Eds.), Constructed Wetlands for Water Quality Improvement. Lewis Publishers, Boca Raton, FL,1993:77-86.
    [7]Stairs D.B. Flow characteristics of constructed wetlands:Tracer studies of the hydraulic regime. M. S. thesis, Oregon State University, Corvallis, OR.,1993.
    [8]Vassilios A.T., Edgar E.M. Hydraulic resistance determination in marsh wetlands. Kluwer Academic Publishers [J]. Water Resources Manaeement,2000,14: 285-309.
    [9]Garcia J., Vivar J., Aromr M. et al. Role of hydraulic retention time and granular medium microbial removal in tertiary treatment reed beds [J]. Water Res.,2003, 37(11):2645-2653.
    [10]Chazarenc F., Merlin G, Gonthier Y. Hydrodynamics of horizontal subsurface flow constructed wetlands [J]. Ecol. Eng.2003,21,165-173.
    [11]Martinez C.J., Wise W.R. Analysis of constructed wetland hydraulics with the transient storage model OTIS [J]. Ecol. Eng.,2003,20:211-222.
    [12]Kadlec R.H. Detention and mixing in free water wetlands [J]. Ecol. Eng.,1994,3: 345-380.
    [13]Kadlec R.H. Effects of pollutant speciation in treatment wetlands design [J]. Ecol.
    Eng.,2003,20:1-16.
    [14]Andrew C.K., Cynthia A.M., Tony H. et al. Hydraulic tracer studies in a pilot scale subsurface flow constructed wetland [J]. Wat. Sci. Tech.,1997,35:189-196.
    [15]Florent C., Gerard M., Yves G. Hydrodynamics of horizontal subsurface flow constructed wetlands [J]. Ecol. Eng.,2003,21(2-3):165-173.
    [16]Werner T.M., Kadlec R.H. Wetland residence time distribution modeling [J]. Ecol. Eng.,2000,15:77-90.
    [17]Maloszewski P., Wachniew P., Czuprynski P. Study of hydraulic parameters in heterogeneous gravel beds:Constructed wetland in Nowa Slupia(Poland) [J]. Journal of Hydrology,2006,331:630-642.
    [18]Werner T.M., Kadlec R.H. Stochastic simulation of partially-mixed, event-driven treatment wetlands [J]. Ecol. Eng.,2000,14:253-267.
    [19]Marsili-Libelli S., Checchi N. Identification of dynamic models for horizontal subsueface constructed wetlands [J]. Ecological Modelling,2005,187:201-218.
    [20]Harbaugh A.W., Banta E.R., Hill M.C. et al. McDonald: MODFLOW-2000, the U. S. Geological Survey modular ground-water model-User guide tomodularization concepts and the Ground-Water Flow Process; U. S. Geological Survey Open-File Report 00-92,2000.
    [21]GMS:The Department of Defense Groundwater Modeling System, GMSv2. Reference Manual, Engineering Computer Graphics Laboratory, Brigham Young University, Provo, Utah.1996.
    [22]Diersch H.J. FEFLOW-An interactive, graphics-based finite-element simulation system for modeling groundwater contamination processes, User's Manual, Version 3.0, WASY GmbH Berlin, February 1991.
    [23]Simunek J., Senja M. The HYDRUS(2D/3D) software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 1.0; PC-Progress, Prague, Czech Republic,2007.
    [24]Langergraber G Simulation of subsurface flow constructed wetlands-results and further research needs [J]. Wat. Sci. Tech.,2003,48(5):157-166.
    [25]Brovelli A., Baechler S., Rossi L. et al. Coupled flow and hydro-geochemical modelling for design and optimization of horizontal flow constructed wetlands [C]. In: Mander U., Koiv M., Vohla C. editors.2nd International Symposium on "Wetland pollution dynamics and control WETPOL 2007"-extended abstracts, Tartu, Estonia,2007, Ⅱ:5.
    [26]Walker D.J. Modelling residence time in stormwater ponds [J]. Ecol. Eng.,1998, 10:247-262.
    [27]Jenkins G.A., Greenway M. The hydraulic efficiency of fringing versus banded vegetation in constructed wetlands [J]. Ecol. Eng.,2005,25:61-72.
    [28]Persson J., Somes N.L.G, Wong T.H.F. Hydraulics efficiency of constructed wetlands and ponds [J]. Wat. Sci. Tech.,1999,40(3):291-300.
    [29]Nepf H.M. Drag, turbulence, and diffusion in flowthrough emergent vegetation [J]. Water Res.,1999,35(2):479-89.
    [30]Serraa T., Fernandob H.J.S., Rodriguez R.V. Effects of emergent vegetation on lateral diffusion in wetlands [J]. Water Res.,2004,38:139-147.
    [31]Garcia J. Chiva J., Aguirre P. et al. Hydraulic behaviour of horizontal subsurface flow constructed wetlands with different aspect ratio and granular medium size [J]. Ecol. Eng.,2004,23(3):177-187.
    [32]Garcia J., Aguirre P,. Barragan J. et al. Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands [J]. Ecol. Eng.,2005, 25:405-418.
    [33]Holland J., J. Martin J. Granata T. et al. Effects of wetland depth and flow rate on residence time distribution characteristics [J]. Ecol. Eng.,2004,23(3):189-203.
    [34]Suliman F., Futsaether C., Oxaal U. et al. Effect of the inlet-outlet positions on the hydraulic performance of horizontal subsurface-flow wetlands constructed with heterogeneous porous media [J]. Journal of Contaminant Hydrology.2006,87(1-2): 22-36.
    [35]Suliman F., Futsaether C., Oxaal U. Hydraulic performance of horizontal subsurface flow constructed wetlands for different strategies of filling the filter medium into the filter basin [J]. Ecol. Eng.,2007,29:45-55.
    [36]Kjellin J., Worman A., Johansson H. et al. Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden. Adv [J]. Water Resour. 2007,30:838-850.
    [37]Persson J., Wittgren H.B. How hydrological and hydraulic conditions affect performance of ponds [J]. Ecol. Eng.2003,21:259-269.
    [38]Molle P., Lienard A., Grasmick A. et al. Effect of reeds feeding operations on hydraulic behaviour of vertical flow constructed wetlands under hydraulic overloads [J]. Water Res.,2006,40(3):606-612.
    [39]Worman A., Kronnas V. Effect of pond shape and vegetation heterogeneity on flow and treatment performance of constructed wetlands [J]. Journal of hydrology,2005, 301:123-138.
    [40]Garcia J., Vivar, J., Aromir M. et al. Role of hydraulic retention time and granular medium in microbial removal in tertiary treatment reed beds [J]. Water Res.,2003, 37:2645-2653.
    [41]胡康萍.人工湿地设计中的水力学问题研究[J].环境科学研究,1991,4(5):8-12.
    [42]王久贤.白泥坑人工湿地水力学计算研究[J].广东水利水电,1997,6:50-52.
    [43]付贵萍,吴振斌,任明迅等.垂直流人工湿地系统中水流规律的研究[J].环境科学学报,2001,21(6):720-725.
    [44]付贵萍,吴振斌,任明迅等.复合垂直流湿地反应动力学及水流流态的研究[J].中国环境科学,2001,21(6):535-539.
    [45]付贵萍,吴振斌,.任明迅等.反应器理论在复合垂直流构建湿地水流流态研究中的应用[J].环境科学,2002,23(4):76-80.9.
    [46]吴振斌,任明迅,付贵萍等.垂直流人工湿地水力学特点对污水净化效果的影响[J].环境科学,2001,22(5):45-4
    [47]詹德昊,吴振斌,张晟等.堵塞对复合垂直流湿地水力特征的影响[J].中国给排水,2003,19(2):1-4.
    [48]王世和,王薇,俞燕等.水力条件对人工湿地处理效果的影响[J].东南大学学报(自然科学版).2003,33(3):359-362.
    [49]张雨奎,人工湿地的水力学特性及其处理污染河水试脸研究:[硕士论文].广州:国家环境保护总局华南环境科学研究所,2006.
    [50]郑天柱,何成达,谈玲.W-SFCW和SFCW的水流特性进行试验研究[J].水资源保护,2008,24(2):18-21.
    [51]Birkinshaw S.J., Ewen J. Nitrgon transformation component for SHETRAN catchments nitrate transport midelling [J]. Journal of Hydrology,2000,230:1-7.
    [52]Kadlec R.H. An autobiotic wetland phosphorus model [J]. Ecol. Eng.,1997,8: 145-172.
    [53]Lantzke I.R., Mitchell D. S., Heritage A. D. et al. A model of factors controlling orthophosphate removal in planted vertical flow wetlands [J]. Ecol. Eng.,1999,12: 93-105.
    [54]Wood S.L., Shelley M.L. A dynamic model of bioavailability of metals in constructed wetland sediments [J]. Ecol. Eng.,1999,12:231-252.
    [55]Sim Y, Chrysikopulos C.V. Virus transport in unsaturated porous media [J]. Water Resources Research,2000,36(1):173-179.
    [56]Khatiwada N.R., Polprasert C. Kinetics of feccal coliform removal in constructed wetlands [J]. Wat. Sci. Tech.,1999,40(3):109-116.
    [57]Wynn T.M., Liehr S.K. Development of a constructed subsurface-flow wetland simulation model [J]. Ecol. Eng.,2001,16:519-536.
    [58]Langergraber G. Development of a simulation tool for subsurface flow constructed wetlands. Wiener Mitteilungen 169, Vienna.2001.
    [59]Langergraber G, Giraldi D., Mena J. et al. Recent developments in numerical modelling of subsurface flow constructed wetlands [J]. Science of the Total Environment,2009,407:3931-3943.
    [60]Rousseau D.P.L., Vanrolleghem P. A., Pauw N.D. Model-based design of horizontal subsurface flow constructed wetlands:a review [J]. Water Res.,2004,38(1): 1484-1493.
    [61]Kadlec R.H. The inadequacy of first-order treatment wetland models [J]. Ecol. Eng., 2000,15:105-119.
    [62]Kadlec R.H. Deterministic and stochastic aspects of constructed wetland performance and design [J]. Wat. Sci. Tech.,1997,35(5):149-156.
    [63]Wong T.H.F., Somes N.L.G. A stochastic approach to designing wetlands for
    stormwater pollution control [J]. Wat. Sci. Tech.,1995,32(1):14551.
    [64]Boiler M. Small wastewater treatment plants-a challenge to wastewater engineers [J]. Wat. Sci. Tech.,1997,35(6):1-12.
    [65]Grismer M.E., Tausendschoen M., Sheperd H.L. Hydraulic characteristics of a subsurface constructed wetland for winery effluent treatment [J]. Water Environ. Res.,2001,73(4):466-477.
    [66]Stein O.R., Biederman J.A., Hook. P.B et al. Plant species and temperature effects on k-C* first-order model for COD removal in batch-loaded SSF wetlands [J]. Ecol. Eng.,2006,26:100-112.
    [67]Meyer D., Sommer T., Thomas M., Schmitt T.G et al. Development of a long-term pollution-load model to simulate CWs for CSO treatment. In: Mander U, Koiv M, Vohla C, editors.2nd International Symposium On "Wetland pollutant dynamics and control WETPOL 2007"-extended abstracts, Tartu, Estonia 2007, vol. I.2007, 11:9.
    [68]史云鹏,周琪.人土湿地污染物去除动力学模型研究进展[J].工业用水与废水,2002,33(6):12-15.
    [69]张军,周琪,何蓉.人工湿地污染物去除的数学模型[J].韶关学院学报(自然科学版),2003,24(12):63-67.
    [70]闻岳,周琪.水平潜流人工湿地模型[J].应用生态学报,2007,18(2):456-462.
    [71]刘佳,张奇,高海鹰.模拟降解去除人工湿地营养物[J].环境污染与防治,2006,28(9):698-702.
    [72]孔令裕,倪晋仁.人工湿地去污模型的通体结构特征[J].生态学报,2007,27(4):1428-1433.
    [73]朱永青,林卫青.人工湿地数学模型模拟与应用[J].环境污染与防治,2007,29(2):155-157.
    [74]朱永青.人工湿地净化机制数学模型模拟及应用:[硕士论文].上海:东华大学,2006.
    [75]于涛,吴振斌,徐栋等.潜流型人工湿地堵塞机制及其模型化[J].环境科学与技术,2006,29(6):74-76.
    [76]李雪娟,和树庄,杨海华.人工湿地堵塞机制及其模型化的研究进展[J].环境科学导刊,2008,27(1):1-4.
    [77]黄绢.人工湿地的运行调控及氮转移规律研究:[硕士论文].南京:东南大学,2004.
    [78]闻岳.水平潜流人工湿地净化受污染水体研究:[博士论文].上海:同济大学,2007.
    [79]戚景南.潜流人工湿地水力学模型及污染物去除动力学模拟:[硕士论文].重庆:西南大学,2008.
    [80]范立维,潜流人工湿地水力学特性及其处理废水中有机污染物的研究:[博士论文].北京:北京工业大学,2008.
    [81]Wallace S.D., Knight R.L. Small-scale constructed wetland treatment system: feasibility, design criteria, and O&M requirments. WERF. London:IWA,2006.
    [82]王世和.人工湿地污水处理理论与技术.北京:科学出版社,2007.
    [83]Seidel K. Abgau von bacterium coli durch hohere wasserpflanzen. Naturwiss,1964, 51:395.
    [84]Seidel K. (1966). Reinigung von Gewassern durch hohere pflanzen. Natrurwiss.53: 289-297.
    [85]Seidel K., Happel H. and Graue G. Contributions to Revitalisation of Waters (2nd Edition). Siftung Limnologische Arbeitsgruppe Dr Siedel eV, Krefeld, Germany. 1978.
    [86]Brix H. Use of constructed wetlands in water pollution control:Historicl development, present status, and future perspectives [J]. Wat. Sci. Tech.,1994, 30(8):209-223.
    [87]詹德昊.复合垂直流构建湿地长期安全运行机理与对策研究:[博士论文].武汉:中国科学院水生生物研究所,2003.
    [88]U.S.EPA. Design Guiding principles for constructed treatment wetlands: Providing water quality and wildlife habitat, EPA 843/B-00/003, U. S. EPA office of Wetlands, Oceans, and Watersheds: Washington, DC.2002.
    [89]U.S.EPA. Free Water surface wetlands for wastewater treatment: a technology assessment. EPA 832-R-99-002, U. S. EPA Office of Water: Washington, DC.1999.
    [90]Reed S.C., Brown D. Subsurface flow wetlands- A performance evaluation [J]. Water Environmental Research.1995,67(2):244-248.
    [91]U.S.EPA. Subsurface flow constructed wetlands for wastewater treatment: a technology assessment. EPA 832-R-93-008, U. S. EPA Office of Water: Washington, DC.1993.
    [92]Haberl R., Perfler R. Nutrient removal in a reed bed system [J]. Wat. Sci. Tech.. 1991,23:729-737.
    [93]Haberl R., Perfler R., Mayer H. Constructed wetlands in Europe [J]. Wat. Sci. Tech., 1995,32(3):305-316.
    [94]Sun G., Gray K.R., Biddlestone A. J. et al. Treatment of agriclutural waste water in a combined tidal flow-down flow reed bed system [J]. Wat. Sci. Tech.,1999,40(3): 139-146.
    [95]U.S.EPA. Constructed wetlands treatment of municipal wasterwaters. EPA 625-R-99-010, U. S. EPA Office of Research and Development: Washington, DC. 2000.
    [96]Cooper P.F. et al, Constructed wetlands for wastewater treatment, Michigan; Lewis Publishers InC.,1989:153-172.
    [97]Reed S.C., Brown D. Subsurface flow wetlands- A performance evaluation [J]. Water Environmental Research.1995,67(2):244-248.
    [98]Liehr S.K., Kozub D.D., Rash J.K. et al. Constructed wetlands treatment of high nitrogen landfill leachate, Project Number 94-IRM-U, Water Environment Research Federation:Alexandria, Virginia,2000.
    [99]王皓.设计和运行参数对湿地污水处理系统效能的影响研究:[硕士论文].重庆:西南大学,2007.
    [100]Garcia J., Aguirre P., Mujeriego R. et al. Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater [J]. Water Res.,2004,38:1669-1678.
    [101]Vymazal J., Brix H., Cooper P.F. et al. Constructed Wetlands for Wastewater Treatment in Europe. Backhuys Publishers, Leiden, The Netherlands,1998.
    [102]Vymazal J., Algae and nutrient cycling in wetlands. Lewis Publisher, CRC Press, Boca Raton, FL., United States,1995.
    [103]Gisvold B., Odegaard H., Follesdal M. Enhanced removal of ammonium by combined nitrification/adsorption in expanded clay aggregate filters [J]. Wat. Sci. Tech.,2000,41(4-5):409-416.
    [104]Liebowitz B.L., Collins A.G, Theis T.L. et al. Subsurface flow wetland for wastewater treatment at Minoa, New York. New York State Energy Research and Development Authority, New York, United States,2000.
    [105]Brix. H. Functions of macrophytes in constructed wetlands [J]. Wat. Sci. Tech., 1994,29(4):71-78.
    [106]Brix. H. Plants used in constructed wetlands and their functions [C]. Proceedings of the 1st international seminar on the use of aquatic macrophytes for wasterwater treatment in constructed wetlands. Instituto da Conservacao de Natureza and Instituto da Auga: Lisbon, Portugal,2003.
    [107]成水平,况琪军,夏宜睁.湖泊科学.香蒲、灯心草人工湿地的研究一Ⅰ净化污水的效果[J].1997,9(4):351-358.
    [108]Kuschk P., Wieβner A., Kappelmeyer U. et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate [J]. Water Res.,2003,37:4236-4242.
    [109]Zhu T., Jenssen P.D., Maehlum T. et al. Phosphorus sorption and chemical characteristics of lightweight aggregates(LWA)-potentiol filter media in treatment wetlands [J]. Wat. Sci. Tech.,1997,35(5):103-108.
    [110]Mansell R.S. Experimental and simulated P transport in soil using a multireaction model [J]. Soil Sci.,1992,153(3):185-194.
    [111]叶剑锋.垂直潜流人工湿地中污染物去除机理研究:[博士论文].上海:同济大学,2007.
    [112]廖新第,骆世明.香根草和风车草人工湿地对猪场废水氮磷处理效果的研究[J].应用生态学报,2002,13(6):719-722.
    [113]曹向东,王宝贞,蓝云兰等.强化塘-人工湿地复合生态塘系统中氮和磷的去除规律[J].环境科学研究,2000,13(2):15-19.
    [114]李科德,胡正嘉.人工模拟芦苇床系统处理污水的效能[J].华中农业大学学报,1994,13(5):511-517.
    [115]李科德,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学,1995,15(2):140-144.
    [116]沈耀良,王宝贞.人工湿地系统的除污机理[J].江苏环境科技,1997,10(3):1-6.
    [117]Lu X.Q., Zhan D.H., Wu Z.B. Study on sand clogging in two-stage vertical flow constructed wetlands [C]. In: 3rd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2009. Beijing. IEEE Xplore,2009.
    [118]Gerba C.P., Thurston J.A., Falabi J.A. et al. Optimization of artificial wetland design for removal of indicator organisms and pathogenic protozoa [J]. Wat. Sci. Tech.,1999,40(4):363-368.
    [119]Thurston J.A., Gerba C.P., Foster K.E. et al. Fate of indicator microorganisms, Giardia and Cryptosporidium in subsurface flow constructed welands [J]. Water Res.,2001,35(6):1547-1551.
    [120]Mandi L., Bouhoum K., Ouazanni N. Application of constructed wetlands for domestic wastewater treatment in an arid climate[J]. Wat. Sci. Tech.,1998,38(1): 379-387.
    [121]Dombeck G.D., Perry M.W., Phinney J.T. Mass balance on water column trace metals in a free-surface-constructed wetlands in Sacramento, California [J]. Ecol. Eng.,1998,10:313-339.
    [122]Mays P.A. and Edwards GS. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage [J]. Ecol. Eng., 2001,16:487-500.
    [123]Levenspiel O. Chemical Reaction Engineering (Second Edition). John Wiley & Sons, New York, N.Y,1972:578.
    [124]Werner T.M., Kadlec R.H. Application of residence time distributions to stormwater treatment systems [J]. Ecol. Eng.,1996,7(3):213-234.
    [125]Thackston E.L., Shields J.F.D., Schroeder P.R. Residence time distributions of shallow basins [J]. ASCE J. Environ. Eng.1987,113(6):1319-1332.
    [126]Kadlec R.H. and Knight R.L. Treatment Wetlands. CRC Press, Boca Raton, FL, 1996.893.
    [127]中华人民共和国水利部.中华人民共和国国家标准:土方试验方法标准(GB/T50123-1999).北京:中国计划出版社,1999.
    [128]Brix H. Do macrophytes play a role in constructed treatment wetlands [J]? Wat. Sci. Tech.,1997,35(5):11-17.
    [129]Brix H. Treatment of wastewater in the rhizosphere of wetland plants-The root-zone method [J]. Wat. Sci. Tech.,1987,19,107-118.
    [130]国家环境保护局《水和废水监测分析方法》编委会.水和废水检测分析方法(第四版).北京:中国环境科学出版社,2003.
    [131]Sakadevank, Bavor H.J. Phosphate adsorption characteristics of soils, slag and zeolite to be used as substrates in constructed wetland systems [J]. Water Res., 1998,32(2):393-399.
    [132]Dunne E.J, Culleton N., Donovan G.O. et al. Phosphorus retention and sorption by constructed wetland soil in southeast Ireland [J]. Water Res.,2005,39:4355-4362.
    [133]McNevin D., Barford J., Hage J. Adsorption and biological degradation of ammonium and sulfide on peat [J]. Wat. Sci. Tech.,1999,33(6):1449-1459.
    [134]U.S.EPA. Design manual-constructed wetlands and aquatic plant systems for municipal wastewater treatment, EPA 625/11-88/022, U. S. EPA, Cincinnati, Ohio, 1988.
    [135]Water Pollution Control Federation, Manual of Practice: Natural Systems. MOP FD-16 WPCF,1990.
    [136]林诚.一个描述停留时间分布的三参数流动模型[J].福州大学学报(自然科学版).1993,21(6):81-84.
    [137]李现波,杨勇,马院红等.潜流式湿地系统停留时间分布实验结果分析[J].环境污染与防治,2008,30(2):64-86.
    [138]Shepherd H.L., Tchobanoglous G., Grismer M.E. Time-dependent retardation model for chemical oxygen demand removal in a subsurface-flow constructed wetland for winery wastewater treatment [J]. Water Environment Research,2001, 73(5):597-606.
    [139]Drizo A., Frost C.A. Smith K.A. et al. Phosphorus and ammonium removal by constructed Wetlands with horizontal subsurface flow, using shale as a substrate [J]. Wat. Sci. Tech.,1997,35:95-102.
    [140]Kadlec R.H., Reddy K.R. Temperature effects in treatment wetlands [J]. Water Environment Research,2001,75(5):543-557.
    [141]Jenkins G and Greenway M. The hydraulic efficiency of fringing vegetation in constructed wetlands [J]. Ecol. Eng.,2005,25:61-72.
    [142]International Ground Water Modeling Center. HYDROUS-2D Simulating water flow, heat, and solute transport in two-dimensional variably saturated media. Reverside, Calif.:IGWC.1999.
    [143]Van Genuchten M.T., Simunek J. Evaluation of pollutant transport in the unsaturated zone; in: P.E. Rijtema, Elias V. (eds.):Regional approaches to water pollution in the environment, Kluwers Academic Publishers, The Netherlands, 1995:139-172.
    [144]Grosse W., Wissing F., Perfler R. et al. Biotechnological approach to water quality improvement in tropical and subtropical areas for reuse and rehabilitation of aquatic ecosystems. final report, INCO-DC Project Contract n: ERBIC18CT960059, Cologne, Germany,1999.
    [145]Henze M., Grady C.P.L., Gujer W., et al. Activated Sludge Model No.1- IAWPRC Scientific and Technical Report No.1. London: IAWPRC,1987.
    [146]Henze M., Gujer W., Mion T. et al. Activated Sludge Model No.2. IAWPRC Scientific and Technical Report No.3. London: IWAQ,1995.
    [147]Henze M., Gujer W., Mion T. et al. Activated Sludge Model 2D [J]. Water Sci. Tech.,1999,39(1):165-182.
    [148]Gujer W., Henze M., Mino T. et al. Activated Sludge Model No.3 [J]. Water Sci. Tech.,1999,39(1):183-193.
    [149]Nowak O., Svardal K., Schweighofer F. The dynamic behaniour of nitrifying activated sludge system influenced by inhibiting wastewater compounds [J]. Water Sci. Tech.,1995,31(2):115-124.
    [150]Ossenbruggen P.J., Spanjers H., Klapwik A. Assessment of a two-step nitrification model for activated sludge [J]. Water Res.,1996,30:939-953.
    [151]Iacopozzi I., Innocenti V., Marsili-Libelli S. et al. A modified Actived Sludge Model No.3 (ASM3) with two-step nitrification-denitrification [J]. Environmental Modelling & Software 2007,22:847-861.
    [152]Henze M., Gujer W., Mion T. et al. Activated Sludge Models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report No.9. IWA Publishing, London, UK.,2000.
    [153]Marsili-Libelli S., Ratini P., Spagni A. et al. Implementation, study and calibration of a modified ASM2d for the simulation of sbr processes [J]. Water Sci. Tech., 2001,43(3):69-76.
    [154]Luckner L., Schestakow W.M. Migration processes in the soil and groundwater zone. Leipzig, VEB.,1991.
    [155]Horn H., Hempel D.C. Modeling mass transfer and substrate utilization in the boundary layer of biofilm systems [J]. Water Sci. Tech.,1998,37(4-5):139-147.
    [156]Martin J.F., Reddy K.R. Interaction and spatial distribution of wetland nitrogen processes [J]. Ecological Modelling,1997,105:1-21.
    [157]McBride G.B., Tanner C.C. Modelling biofolm transformations in constructed wetland mesocosms with fluctuating water level [J]. Ecol. Eng.,2000,14(1-2): 93-106.
    [158]Zhang T.C., Bishop P.L. Density, porosity and pore structure of biofilms [J]. Water Res.,1994,28(11):2267-2277.
    [159]Hoehn R.C., Ray A.D. Effects of thickness on bacterial film [J]. Wat. Pollut. Control Fed,1973,45:2302-2320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700