不同养殖密度对两种鲆鲽鱼类生长及免疫指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国经济的快速发展,生活污水和工业废水的排放量与日俱增,导致近岸水质污染对水产养殖业产生了严重的影响,一种新型的集约化养殖模式——封闭循环水养殖逐渐被推广开来,封闭循环水养殖具有水资源重复利用、环境污染少、病害传播少、养殖产量高的优点,被誉为养殖业的一次新技术革命。本文主要探讨了封闭循环水养殖与传统流水养殖两种养殖模式下,不同养殖密度对大菱鲆生长、免疫指标的影响,以及两种模式下半滑舌鳎生长和消化、免疫酶指标的对比。主要研究结果如下:
     1.流水养殖系统中不同养殖密度对大菱鲆生长和免疫的影响
     本实验设置了5个不同密度,实验初期养殖密度分别为1.76、5.27、7.03、8.78、10.54kg/m2,经过30天的实验,随着养殖密度的增加,大菱鲆生长速度呈现降低的趋势,饵料系数增加,各密度组之间存在显著差异(P<0.01),但养殖密度对比生长率、肥满度和变异系数的影响并不显著。大菱鲆血细胞数目随密度的增加而增加,同时碱性磷酸酶和酸性磷酸酶活性也随之增加,但差异均不显著。
     2.封闭循环水系统中养殖密度对大菱鲆生长和免疫酶指标的影响
     本实验设置了4个养殖密度组,每个密度组设三个重复组,实验初期密度分别为0.66、1.26、2.56、4.00kg/m2,实验结束时密度分别为4.67、7.25、14.16、17.77kg/m2。实验结果表明,养殖密度对大菱鲆的比生长率(SGR)、增重率(WGR)、平均日增重、日增重率和饵料系数均有显著的影响(P<0.05)。随着密度的增加,大菱鲆的比生长率、增重率和平均日增重呈现下降趋势,饵料系数呈现增加趋势。不同密度大菱鲆体重的均匀性随密度增加而下降。养殖密度影响大菱鲆免疫机能,肝脏的脏器系数与养殖密度呈负相关。养殖水体中氨氮浓度极显著低于流水养殖池中氨氮浓度(P<0.01),但是亚硝酸盐浓度高于流水养殖池;生物滤膜对氨氮去除率达到33.32%,而对亚硝氮的去除率仅为4.23%。
     3.封闭循环水系统和流水系统中半滑舌鳎生长、消化和免疫指标的对比
     经过5个月的养殖试验,两种模式下鱼类死亡率都很低,在封闭循环水养殖系统中为2.89%,流水养殖死亡率为1.49%。封闭循环水养殖密度由初始14.7 kg/m2增长到37.0kg/m2,相对增重率为158.5%;而流水养殖密度由初始5.9 kg/m2增长到13.5 kg/m2,相对增重率为132.8%;封闭循环水养殖半滑舌鳎月平均增重约120g,明显高于流水养殖模式(流水养殖模式月平均增重为51.8g),两者之间存在显著性差异(P<0.05)。封闭循环水养殖池中氨氮平均浓度为0.036mg/L而流水养殖池中氨氮平均浓度为0.152mg/L;流水养殖池中亚硝氮平均浓度为0.016mg/L,循环水养殖池中亚硝氮平均浓度为0.114mg/L。两种模式下水质指标之间存在极显著的差异(P<0.01)。循环水养殖与流水养殖半滑舌鳎血清中碱性磷酸酶(AKP)、酸性磷酸酶(ACP)、溶菌酶(LSZ)活力均差异不显著(P>0.05),但半滑舌鳎胃和肠中的淀粉酶活力分别极显著高于流水养殖半滑舌鳎胃和肠中的淀粉酶活力(P<0.01),胃蛋白酶和胰蛋白酶活力分别显著高于流水养殖中半滑舌鳎胃蛋白酶和胰蛋白酶活力(P<0.05)。
With the rapid development of economy in our country in recent years, industrial wastewater and domestic sewage emissions increase greatly, which cause water quality pollution that have a serious impact on aquaculture. A new kind of higher density and super-intensive culture mode-closed re-circulating aquaculture were gradually popularized. It is advantageous to make use of resources, reduce pollution of the environment, cut off dissemination of disease and increasing the farming yield as well, which was commended as a new technique revolution of the fish farming. In this paper, we mainly study the stocking density effect on growth, digestive enzymes and immune, while compared the growth,digestive enzymes and immune of Cynoglossus semilaevis Gunther between re-circulating aquaculture and flow culture, the main conclusions are as follows:
     1. Effect of stocking density on growth and immune in Scophthalmus maximus reared in flow culture system
     We set five different experiment groups in the initial stocking densities at 1.76,5.27,7.03,8.78,10.54 kg/m2 respectively. After 30 days, result showed that the growth rate decreased but the feed conversion rate significantly increased with the stocking density higher. There was no significantly difference for SGR,CF,CV with the stocking increasing. The number of blood corpuscle and AKP,ACP activity both raised with the stocking increasing, but there was no significantly difference.
     2. Effect of stocking density on growth and immune in Scophthalmus maximus reared in re-circulating aquaculture system
     We set four different experiment groups in the initial stocking densities at 0.66,1.26,2.56,4.OOkg/m2 respectively, every group has three parallel groups. The experiment lasted for 75 days with final stocking densities at 4.67,7.25,14.16,17.77 kg/m2 respectively. Result showed that the stocking densities for turbot had significant influences on SGR,WGR,average daily gain,rate of daily gain and feed coefficient. With the stocking density increasing, SGR,WGR,rate of daily gain decreased,but feed coefficient increased. The uniformity of weight distributing among experiment groups decreased with increasing density. The stocking density had negative relationship to liver organ coefficient. The concentration of ammonia-nitrogen in the re-circulating aquaculture pond was significant (P<0.01) lower than that in the flow cultured pond, but the concentration of nitrite-nitrogen was higher than that in the flow. The average removal rates of the ammonia-nitrogen by bio-filter were 33.32%, but that of the nitrite-nitrogen were only 4.23%.
     3.Comparing of digestive enzymes and immune of Cynoglossus semilaevis Gunther between re-circulating aquaculture and flow culture
     During the 5 months experiment, the mortality rate was low in both system,2.88% in the RS and 1.49% in the FTS. Stocking density increased progressively from 14.7 to 37.0 kg/m2 in the RS and from 5.9 to 13.5 kg/m2 in the FTS. The relative growth rate was 158.5%in the RS, compared to132.8%in the FTS. Average monthly weight gain was better in the RS than FTS,120g and 51.8 g respectively. There was significant difference(P<0.05)between the two rearing systems at the end of the experiment. NH3-N concentrations were much lower in the RS (0.036mg/L) than in the FTS(0.152mg/L) and conversely NO2--N concentration(0.114mg/L) was more than sixth higher than that in the FTS(0.016mg/L). There were significant differences(P<0.01)between the RS and the FTS water quality. The AKP, ACP, LSZ activity in blood serum of Cynoglossus semilaevis Gunther were no significantly difference (P>0.05) between re-circulating aquaculture and flow culture, but amylase activity in stomach and intestinal of Cynoglossus semilaevis Gunther in re-circulating aquaculture were significant (P<0.01) higher than those in flow culture, protease activity in stomach and trypsin activity in intestinel were significant (P<0.05) higher than those in flow culture.
引文
[1]雷霁霖.我国大菱鲆养殖现状、问题和对策.中国水产,2003,11:25-27
    [2]邵邻相,谢炜,叶菲菲.养殖密度对地图鱼幼鱼生长发育的影响[J].水产科学,2005,24(4):7-9
    [3]庄平,李大鹏,王明学.养殖密度对史氏爵稚鱼生长的影响[J].应用生态学,2002,13(6):735-738
    [4]区又君,李加儿,丁彦文.人工培育条件下真细仔稚鱼的生物学特性[C].全国首届青年水产学术研讨会论文集.上海:同济大学出版社,1995:315-324
    [5]Yagi A,Makino I,Nishok A,etal.Aloe mannan polysaccharides from Aloe arborescence var. nataensis[J]. Planta Medica,1977,31:18
    [6]区又君,李加儿.人工培育条件下鲻鱼早期发育的生理生态研究.热带海洋,199817(4):29-36
    [7]Marchand F,Boisclair D. Influence of fish density on the energy allocation paten of juvenile brook trout (Salvelinus fontinahs) [J]. Can J Fish Aquat Sci,1988,55:796-805
    [8]Vijayan M M,Leatberland J F. Effect of stocking density on growth and stress response in brook char [J].Aquaculture,1988,75:159~170
    [9]Barton B A, Iwama G K. Physiologieal changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids.Armual Revlew of Fish Diseases, 1991,10:3-26
    [10]Iglesias J,Olmedo M,Otero J J.,Peleteiro J B, Solorzano M R. Growth under laboratory conditions of turbots from the Ria deVigo(north-west Spain).Mar Biol.,1978,96:11~17
    [11]Irwin S,O'Halloran J,Fits Gerald R D.Stocking density,growth and growth variation in juvenile turbt.Aquaculhire,1999,178:77~88
    [12]Jones A,Brown A G,Douglas M T,Thompson S J,Whitfield R J.Progress towards developing methods for the intensive farming of turbot in cooling water from a nuelear power station,In:Coehe,A.G.(Ed.),Proceedings of world Symposium on New Developments in the Utillsation of Heated Effluents and of Recirculation Systems for Intensive Aquaculture. Vol.2, Tech.Pap.FAO European Inland Fisheries Commission,FAO,Rome,39:481-496
    [13]黄耀桐,刘永坚.草鱼肠道、肝胰脏活性初步研究.水生生物学报,1988,12(4):328-333
    [14]倪寿文,桂远明,刘焕亮.草鱼、鲤、链、鳙和尼罗非鲫肝胰脏和肠道蛋白酶活性的初步探讨.动物学报,1993,39(2):160-168
    [15]尾崎久雄.鱼类消化生理[M].上海:上海科学技术出版社,1985,22-410
    [16]倪寿文等.草鱼、鲤、鲑、鳙和尼罗非卿肝胰脏和肠道蛋白酶活性的初步探讨[J].动物学报,1993,39(2):160-168
    [17]北御门.消化酵素的研究[J].日水志,1960,26(7):691-695
    [18]黄耀桐.草鱼肠道、肝胰脏蛋白酶活性初步研究[J].水生生物学报,1988,12(4):328-333
    [19]Agrawal VP. Digestive enzymes of three telcose fishes[J]. Acta Physiol hung,1975,46:93~98
    [20]叶元土.温度、pH值对南方大口鲶、长吻鮠蛋白酶和淀粉酶活力的彤响[J].大连水产学院学报,1998,13(2):17-23
    [21]倪寿文等.草鱼、鲤、鲑、鳙的淀粉酶比较研究[J].大连水产学院学报,1992,7(1):24-31
    [22]Cousin J C B,Baudin-Laurencin F.,Gabaudan J. Ontogeny of enzymatic activities in fed and fasting turbot, Scopthalmus maximus L.J.Fish.Biol,1987,30:15~33
    [23]Bouhlic M,Gabaudan J.Histological study of the organogenesis of digestive system and swim bladder of the Dover sole.Aquaculture,1992,102:373~396
    [24]Ribeiro L,Zambonino Infante J L.,Cahu C L,etal.Development of digestive enzymes in larvae of solea. Aquaculture,1999,179:465-473
    [25]Kawai S,Ikeda S.Studies on digestive enzymes of fish. Bull Jap Soc Sci Fish,1972,38:265-270
    [26]谭北平.太湖几种肉食性鱼类消化酶活性的初步研究[J],湖北农学院学报,1995,(4):26-30
    [27]黄峰.鲢、鳙胰蛋白酶的研究[J].水产学报,1996,20(1):68-70.
    [28]王亚楠,孔晓瑜,史成银.鱼类抗病毒非特异性免疫机制研究进展.动物医学进展,2008,29(5):99-103
    [29]张永安,孙宝剑,聂品.鱼类免疫组织和细胞的研究概况.水生生物学报,2000,24(6):348-353
    [30]Dalmo R A, Bogwald J. Non-specific defence mechanisms in fish with particular reference to the reticuloendo the lisl system.J Fish Dis,1997,(20):241-273
    [31]张永安,聂品.鱼类体液免疫因子研究进展.水产学报,2000,24(4):376-381
    [32]Grinde B,Jolles,Jolles P.Purification and characterization of two lysozymes from rainbow trout(salmogairdneri). Eur J Biochem,1998,173:169~273
    [33]Bulet P,Hetu C,Dimarcq J L,etal. Antimicrobial peptides in insects;stucture and function.Dev Comp Immunol,1999,23:329~34
    [34]Mor K,Nakanishi T,Suzuki T,etal.Defense mechanisms in invertebrates and fish. Tanpakushitsu Kakusankoso,1989,34(3):214~223
    [35]Boman H G,Faye I,Gudmundsson G H, etal. Cell-free immunity in cecropia. A model system for antibacterial proteins. Eur J Biochem,1991,20(l):23~31
    [36]Mbrishima I,Yamada K,Ueno T.Bacterial peptidoglycan as elicitor of antibacterial protein synthesis in larvae of the silkworm,Bombyx mori. Insect Biochem Mol Biol,1992,22:363-367
    [37]Fujimoto S,Toshimori-Tsuda T,Kishimoto K,etal.Protein purification, cDNA cloning and gene expression of lysozyme from eri-silkworm, Samia cynthia ricini.Comp Biochem and Physio Part B,2001,128:709~718
    [38]王雷,李光友,毛远新等.口服免疫性药物对养殖中国对虾病害防治作用的研究.海洋与湖沼,1994,25(5):481-486
    [39]丁美丽,林林,李广友等.有机污染对中国对虾体内外环境影响的研究,海洋与湖沼,1997,28(1):7-11
    [40]Rotllant J, Pavlidis M, Kentouri M, etal.Non-specific immune responses in the red porgy pagrus after crowding stress[J].Aquaculture.1997,156:279~290
    [41]王文博,李爱华,王建国等.拥挤胁迫对草鱼非特异性免疫功能的影响.水产学报,2004,28(2):139-144
    [42]Fevoldens E,Roedkh,Fjalestad KT.A combined salt and confinement stress enhances mortality in rainbowtrout (Oncorhynchus mykiss) selected for high stress responsiveness [J]. Aquaculture,2003,216:67~76
    [43]何海琪,孙凤.中国对虾酸性和碱性磷酸酶的特性研究.海洋与湖沼,1992,23(5):13-16
    [44]Aspersion B,Hartemink R,Chlebowski J F.Alkaline phosphatase from Atlantic cod(Gadus morhua):Kinetic and structural properties which indicate adaptation to low temperatures. Comp Biochem Physiol,1995,110(B):315~329
    [45]周定刚,郑维明,钟妮娜.催产时鳝卵磷酸酶活性的变化及其与排卵的关系.水生生物学报,1993,17(2):145-148
    [46]Anan Y,Kunito T,Ikemoto T,etal.Elecated concentrations of trace elements in Caspian seals(Phoca caspica)found stranded during the mass mortality events in 2000.Arch Environ metal Contam Toxicol,2002,42:354~362
    [47]Covelli S,Faganeli J,Horvat M,etal.Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity(Gulf of Trieste.northern Adriatic Sea).Appl Geochem, 2001,16:541~558
    [48]Mora S D,Sheikholeslami M R,Wyse E,etal.An assessment of metal contamination in coastal sediments of the Caspian Sea.Mar Pollut Bull,2004,48:61~77
    [49]Novikoff A B. The cell. New York:Academic Press Inc,1961,2:424
    [50]刘晓云,绳秀珍,姜明.中国对虾中肠盲囊的研究.海洋水产研究,1998,19(1):1-7
    [51]陈瑛,邱子健,隋淑光,史新柏.棘尾虫酸性磷酸酶的定位及诱导表达.动物学报,2003,49(2):218-223
    [52]魏炜,张洪渊,石安静.育珠蚌酸性磷酸酶活力与免疫反应关系的研究.水生生物学报,2001,25(4):413-415
    [53]Pipe R K. Hydrolytic enzymes associated with the granular haemocytes of the marine mussel mytilus edulis. Histochem,1990,22:596~603
    [54]张红绪,刘丹丹,李春梅,李翔,邢文会.碱性磷酸酶与酸性磷酸酶在小鼠前胃癌癌变过程中的表达及意义.河南师范大学学报,2004,32(3):70-72
    [55]杨增明,谭景和,秦鹏春.蝌蚪皮肤细胞中磷酸酶定位的电子显微镜研究.电子显微学报,1991,3:250-254
    [56]陈玉银,黎军英,吴玉澄.家蚕中肠酸性磷酸酶细胞化学的研究.蚕业科学,1999,25(3):154-157
    [57]雷霁霖.我国海水工厂化养鱼概述[J].现代渔业信息,1998,13(7):4-10
    [58]北京市水产研究所.工厂化中国农村创新的探索与实践.北京:科技出版社,1999,120-131
    [59]彭树锋,王云新,叶富良,张海发.国内外工厂化养殖简述.渔业现代化,2007,2:12-13
    [60]罗国芝,朱泽闻.我国循环水养殖模式发展的前景分析.中国水产,2008,2:75-77
    [61]王波,雷霁霖.工厂化养殖的大菱鲆生长特性.水产学报,2003,27(4):358-363
    [62]孙中之,闫永祥.大菱鲆工厂化试验.海洋水产研究,2003,24(1):6-10
    [63]马爱军,雷霁霖,陈四清等.大菱鲆营养需求与饵料研究进展.海洋与湖沼,2003,34(4):450-458
    [64]Irwin S.The relationship between individual consumption and growth in juvenile turbot. Aquaculture,2002,204:65~74
    [65]Irwin S.Stoking density,growth and growth variation in juvenile turbot.Aquaculture,2002, 178:77~88
    [66]Danielssen.Effect of dietary protein levels in diets for turbot to market.Fish Nutrition in Practice,1991,60:89~96
    [67]雷霁霖,马爱军,陈超等.大菱鲆养殖现状与可持续发展[J].中国工程科学,2005,7(5):30-34
    [68]Andrews J W, Knight L H, Page J W, etal. Interactions of stocking density and water turnover on growth and food conversion of channel catfish reared in intensively stocked tanks[J].Prog Fish2 Cul,1971,33:197~203
    [69]Fagerlund U H M,Mcbride J R,Stone E T.Stress-related effects of hatchery rearing density on coho salmon [J].Transactions of the American Fisheries Society,1981,110:644~649
    [70]廖锐,区又君,勾效伟.养殖密度对鱼类福利影响的研究进展Ⅰ.死亡率、生长、摄食以及应激反应.南方水产,2006,2(6):76-80
    [71]庄平,李大鹏,严安生.拥挤胁迫和环境因子对史氏鲟生长的调控作用.中国水产科学,1998,26(10):55-56
    [72]Smith H T, Schreck C B,Maughan O E. Effect of population density and feeding rate on the fathead minnow (Pimephales promelas) [J].Journal of Fish Biology,1978,12:449~455.
    [73]Martin RM,WertheimerA.Adult production of chinook salmon reared at different densities and released as two amolt sizes[J]. Progressive Fish2 Culturist,1989,51:194~200
    [74]李大鹏,庄平,严安生等.光照、水流和养殖密度对史氏鲟幼鱼摄食、行为和生长的影响[J].水产学报,2004,28(1):54-61
    [75]黄宁宇,夏连军,么宗利.养殖密度和温度对白斑狗鱼在设施养殖中生长的影响[J].水产学报,2006,30(1):76-80
    [76]Celikkale M S,MemisD,ErcanE,etal.Growth performance of juvenile Russian sturgeon (Acipenser gueldenstaedtii Brandt&Ratzenburg,1833) at two stocking densities in netcages[J]. Appl Ichthyol,2005,21:14~18
    [77]Fox M G, Flowers D D. Effect of fish density on growth, survival and food consumption by juvenile walleyes in rearing ponds[J].Transactions of the American Fishery Society,1990,119: 112~121
    [78]Blackburn J, ClarkeW C. Lack of density effect on growth and smolt quality in zero age coho salmon[J]. Aquacultural engineering,1990,9 (2):121~130
    [79]Montero D,Izquierdo M S,Tort L,etal.High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream,Sparuaurata, juveniles[J].Fish Physiol Biochem,1999,20(1):53~60
    [80]Ruyet J P,Pichavant K,Vacher C,etal.Effect of O2 supersaturation on metabolism and growth in juvenile turbot.Aquaculture,2002,205:373-383
    [81]陈福华.赤点石斑鱼增生性肾脏病的血液病理观察.热带海洋,1997,16(3):49-53
    [82]丁彦文,艾红.微生物在水产养殖中的应用[J].湛江海洋大学学报,2000,20(1):68-73
    [83]刘鹰.欧洲循环水养殖技术综述.渔业现代化,2006,2(6):47-49
    [84]Irwin S,O'Halloran J,Fitz Gerald R D.Stocking density,growth and growth variation in juvenile turbot, Scophthalmus maximus.Aquaculture,178:77~88
    [85]臧维玲,王永涛,戴习林等.河口区室内幼虾养殖循环水处理技术与模式.水产学报,2003,27(2):151-158
    [86]Laanbroek H J,Gerards S.Competition for limiting amounts of oxygen between Nitrosomanas europaea and Nitrobacteria winogradskyi grown in mixed continuous cultures.Arch Microbiology,1993,159:453~459
    [87]Westerman P W.Evaluation of various biofilters in an intensive recirculating fish production facility.Trans Am-Soc Agric Eng,1996,39:723~727
    [88]宋奔奔,傅松哲,刘志培等.水体中添加两种菌剂对凡纳滨对虾存活、生长及消化酶活力的影响.海洋科学,2009,(33):1-5
    [89]马爱军,王新安,庄志猛等.半滑舌鳎与摄食行为相关的特定感觉器官研究.海洋与湖沼,2007,38(3):240-245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700