醇胺离子液体—醇—水体系相平衡的测定与过程模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是一类新型化合物,独特的阴、阳离子构成使其拥有与传统分子溶剂不同的特性:室温呈液态,为工业操作过程的加料和储运带来了便利;良好的热稳定性和不易挥发特性,使其在使用过程中更加安全、环保,易于纯化和循环利用。本论文重点测定了含离子液体体系汽液平衡数据、研究了相关热力学模型,并对乙醇水溶液的萃取精馏进行了概念设计和过程模拟。
     利用酸碱中和法合成了三种亲水性离子液体,即:单乙醇胺甲酸盐([HMEA][HCOO]),二乙醇胺甲酸盐([HDEA][HCOO])和三乙醇胺甲酸盐([HTEA][HCOO])。利用~(13)C NMR和~1H NMR鉴定了室温离子液体[HMEA][HCOO]和[HDEA][HCOO]的结构和纯度(x≥99%);热重-差热分析结果显示,二者的热分解温度均在424K以上。可见,本文合成的醇胺类甲酸盐纯度较高、热稳定性较好;经溶解性试验,二者与乙醇、甲醇和水互溶,可用于醇-水体系的精馏分离。醇胺的价格不足咪唑价格的1/10,甲酸为大宗商品,因此醇胺甲酸盐离子液体具有价格优势,而且分子中不含卤素,无生物毒性,具有工业应用前景。
     采用CL-II型沸点仪,利用非分析拟静态方法,测定了不同离子液体含量和温度范围内,由离子液体[HMEA][HCOO]或[HDEA][HCOO]与乙醇、甲醇、水组成的6个二元体系和6个三元体系的饱和蒸汽压。离子液体的加入可以降低溶剂的蒸汽压,但对不同溶剂降低作用不同,同一种离子液体在相同的条件下与水的作用最强,与乙醇的作用最弱;甲醇和水与离子液体组成的二元体系对拉乌尔定律呈负偏差,非理想性随离子液体浓度的增加而增大;乙醇与离子液体组成的二元体系在离子液体浓度低(w≤0.1)时,对拉乌尔定律呈负偏差,随离子液体浓度的升高,对拉乌尔定律呈正偏差。
     利用NRTL模型,对测得的二元、三元体系汽液平衡数据进行了关联,关联的平均绝对相对偏差分别为0.62%和0.82%。基于二元NRTL模型参数,对含离子液体的醇-水体系等压汽液平衡相图进行了预测。结果表明:(1)所研究的两种离子液体均能显著影响乙醇对水的相对挥发度,并且对乙醇呈盐析效应;(2)随溶液中离子液体浓度的增加,共沸点逐渐向乙醇浓度增大的方向移动,当离子液体的浓度达到10wt%以上时,可以消除乙醇-水体系的共沸现象;(3)在富乙醇区,五种醇胺盐离子液体均对乙醇呈“盐析”效应;但在富水区呈“盐溶”效应;其盐效应作用顺序依次为:[HMEA][BF_4]<[HDEA][HCOO]<[HMEA][HCOO]<[HDEA][BF_4]<[HTEA][BF_4]。
     基于基团贡献思想,借鉴质量连接指数概念和电荷笼罩假设,改进了密度简捷计算模型;提出了新的基团划分方法(将与大π键等稳定结构,如咪唑环和吡啶环,紧密相连的原子团划为一个中心基团;将中心基团和与之相连的第一个支链基团划成一个大的基团)和质量连接指数计算方法。新模型对54种离子液体的密度预测的最大绝对偏差为1.83%,而原模型预测的最大绝对偏差为4.08%,新模型的预测精度较原模型提高55%。
     离子液体不易挥发,以往的研究工作中大多忽略其蒸汽压的存在。本文利用GC-PT模型对离子液体的蒸汽压进行了预测,并首次在精馏过程模拟中考虑了离子液体蒸汽压的影响。计算结果表明,在整个精馏过程中,离子液体的损耗不足0.001(质量分数)。
     利用Aspen Plus软件,对离子液体-醇-水体系的精馏分离过程进行了概念设计和过程模拟,考察了溶剂比、回流比等参数对分离效果的影响,确立了精馏工艺条件。与乙二醇为萃取剂的精馏过程相比,分离效果相同的前提下,再沸器热负荷降低28%,产品中萃取剂的夹带量降低了4个数量级,具有明显的节能效果。对工业酒精的分离模拟结果显示,当离子液体达到一定浓度时,工业酒精中的甲醇由轻组分变成重组分,与离子液体和水一起在塔釜富集,从而实现利用一个精馏塔由工业酒精制取无水乙醇的过程。
     可见,醇胺盐离子液体是一类制备方法简单、价格低廉、安全环保的新型萃取剂,可望用于乙醇-水的工业精馏分离过程。
As a kind of novel compounds, Ionic liquids (ILs) show manyunique properties in comparison with traditional molecular solventsbecause of their unique structure. Most of ILs are liquid at roomtemparature, which make them convenient for feeding and transport andthus for industry use. ILs also show good thermal stability and negligiblevapor pressure, which make them more environmental benign, safe foruse and easy for regeneration. This thesis mainly focuses on measurementof vapor-liquid equilibrium, thermodynamic modeling of theexperimental data, as well as process simulation for alcohol-water-ILdistillation systems at varying conditions.
     Three hydrophilic ILs, viz. mono-(2-hydroxyethyl) ammoniumformic [HMEA][HCOO], di-(2-hydroxyethyl) ammonium formic[HDEA][HCOO] and tri-(2-hydroxyethyl) ammonium formic[HTEA][HCOO], have been synthesized via acid base neutralizationreaction. Their structures are identified by~(13)C NMR and~1H NMR and the purities are estimated above0.99(mole fraction). Their thermal stabilitiesare studied by TG-DTA, and their decomposition temperatures are allabove424K. In summary, the ILs can be used in the separation ofalcohol-water system for their good dissolubility in ethanol, methanol andwater. The ILs synthesized show other advantages like low cost and leasttoxicity to the environmemt.
     Using vapor-liquid equilibrium still (CL-II), vapor pressure atvarying IL contents and temperatures were measured for6binary and6ternary systems containing an IL and ethanol, methanol and water. Theresults indicate that ILs can depress the vapor pressure of the solvent butto differing degree with respect to different solvents. For an IL at fixedother conditions its effect is the strongest to water and weakest to ethanol.The binary systems of IL with methanol and water all show a negativedeviation from the Raoult's law, and the non-ideality increases with theincreasing IL-content. The ethanol-IL binary system shows a negativedeviation from the Raoult's law in the lower IL content region(w≤0.1),but also a positive deviation in the higher IL content region.
     The NRTL model was used to correlate the vapor pressure data ofbinary and ternary systems with the average absolute relative deviation(AARD) of0.62%and0.82%, respectively. Based on NRTL parameters,isobaric vapor-liquid equilibrium for ethanol-water has been estimated.The results indicate that (1) both ILs can enhance the relative volatiles of ethanol to water, and showed a salting-out effect to ethanol.(2) Theazeotropic point for the ethanol-water mixture shifts upwards as theincrease of the IL-content, and finally removed completely as ILconcentration above10wt%.(3) All5ILs based on (2-hydroxyethyl)ammonium showed a salting-out effect for ethanol aqueous solution inthe ethanol-rich region, but showed a salting-in effect in the water-richregion, and their salt effect follows the order of [HMEA][BF_4]<[HDEA][HCOO]<[HMEA][HCOO]<[HDEA][BF_4]<[HTEA][BF_4].
     Based on group contribution method and the ionic screening chargeconcept, the group segmentation method was improved, and accordinglythe accuracy of the density model with mass connectivity index parameteris increased greatly. The applicability of the present model was furthertested for54different ILs in a wide temperature range, its biggestinaccuracy is found to be1.83%, while the biggest inaccuracy is4.08%for the original model.
     Vapor pressure of ionic liquids is generally neglected in previousresearches due to their extremely low volatility. However, Vapor pressurehas been estimated here by the GC-PT equation of state, and integrated tothe present simulation process for the first time. As indicated by thesimulation results, the loss of ionic liquids in the separation process isnegligible being lower than0.001in terms of mass fraction.
     Concept design and process simulation were made for the extractive distillation separation of ethanol-water-IL system using Aspen Plussimulation software, the influences of process parameters, e.g. solventratios and reflux ratio, on separation effect were investigated, and theoptimal distillation conditions were determined. The separationperformance of ionic liquid and conventional glycol solvent is comparedand analyzed in terms of product purity and energy consumption. It isshowed that the heat duty of the reboiler using ionic liquid solventdecreases about28%, and the IL entraiment in distillate is lowered by4orders of magnitude in comparison with the conventional glycol solvent,showing a promising energy saving effect. Under the help of ionic liquids,the methanol component in the industrial ethanol solution is convertedfrom a lighter to a heavier component, and accumulated in the reboilertogether with the ionic liquid, which is helpful to obtain anhydrousethanol without methanol contamination.
     In conclusion, the (2-hydroxyethyl) ammonium based ionic liquidsare a novel class of extractive solvents with the advantages of facialpreparation, lower price, environmental benign, and safe for use, so it isexpected to be useful as solvents in ethanol-water separation process.
引文
[1]杨立民.高油价给巴西乙醇汽油带来巨大商机[J].中国石化,2005,(6):24.
    [2]丁宏.乙醇汽油全面登场--发展我国替代能源系列报道之二[J].中国石油石化,2002,(11):48-49.
    [3]李军,孙兰义,胡有元,等.用共沸精馏隔壁塔生产无水乙醇的研究[J].现代化工,2008,28(S1):93-95,97.
    [4]梁利和.三塔流程苯共沸法生产高纯度无水乙醇技术的研究[J].中国酿造,2010,(4):144-145.
    [5]崔现宝,杨志才,冯天扬.萃取精馏及进展[J].化学工业与工程,2001,18(4)215-220.
    [6]宋海华,孙伟,王秀丽,等.萃取精馏溶剂选择的研究进展[J].化学工业与工程,2002,19(1):83-88.
    [7]段占庭,雷良恒,周荣琪,等.加盐萃取精馏的研究(I):用乙二醇加醋酸钾制取无水乙醇[J].石油化工,1980,(6):350-353.
    [8]叶庆国,韩平.加盐萃取精馏技术进展[J].化学工业与工程技术,2009,30(2):44-47.
    [9]张祝蒙,李东风.加盐萃取精馏技术的研究进展[J].石油化工,2008,37(9):955-959.
    [10]雷志刚,王洪有,许峥,等.萃取精馏的研究进展[J].化工进展,2001,20(9):6-9.
    [11]张志刚,徐世民,李鑫钢,等.间歇萃取精馏技术的研究进展[J].化工进展,2004,23(9):933-937.
    [12] Wilkes J S, Zaworotko M J. Air and water stable1-ethyl-3-methylimidazolium based ionicliquids [J]. J. Chem. Soc. Chem. Commun.,1992,13:965-967.
    [13] Holbrey J, Seddon K. Ionic liquids [J]. Clean Prod. Proc.,1999,1(4):223-236.
    [14]李汝雄.绿色溶剂--离子液体的合成与应用[M].北京:化学工业出版社,2004.6,21-24,27.
    [15] Huddleston J G, Willauer H D, Swatloski R P, et al. Room temperature ionic liquids as novelmedia for clean l liquid e a [J]. C. C.,1998(16):17651766.
    [16] Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquid and CO2[J]. Na,1999,399:2829.
    [17] Zhao H, Xia S, Ma P. Use of ionic liquids as 'green' solvents for extractions [J]. J. Chem.Technol. Biot.,2005,80(10):1089-1096.
    [18] Wu W, Han B, Gao H, et al. Desulfurization of flue gas: SO2absorption by an ionic liquid [J].Angew. Chem.,2004,116(18):2469-2471.
    [19] Eβ J,Wasserscheid P,Jess A. Deep desulfurization of oil refinery streams by extraction withionic liquids [J]. Green Chem.,2004,6:316-322.
    [20] Huang C, Chen B, Zhang J, et al. Desulfurization of gasoline by extraction with new ionicliquids [J]. Energy Fuels,2004,18:1862-1864.
    [21] Hasib-Ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO2capture–development andprogress [J]. Chem. Eng. Process: Process Intensification,2010,49(4):313-322.
    [22]邓东顺,王祈宁,崔艳红,等.离子液体在CO2捕集中的应用进展[J].化学通报,2011,74(8):701-708.
    [23] Keskin S, Kayrak-Talay D, Akman U, et al. A review of ionic liquids towards supercriticalfluid applications [J]. J. Supercrit. Fluid,2007,43(1):150-180.
    [24]韩彬,张丽华,梁振,等.离子液体在分离领域的研究进展[J].中国科学:化学,2010,40(10):1487-1495.
    [25] Wasserscheid P, Keim W. Ionic liquids: n “s” transition metal catalysis [J].Angew. Chem. Int. Ed.,2000,39(21):3772-3789.
    [26] Welton T. Ionic liquids in catalysis [J]. Coord. Chem. Rev.,2004,248(21-24):2459-2477.
    [27] McEwen A B, Ngo H L, Lecompte K, et al. Electrochemical properties of imidazolium saltelectrolytes for electrochemical capacitor applications [J]. J. Electrochem. Soc.,1999,146:16871695.
    [28] Ohno H. Molten salt type polymer e [J]. E. A a,2001,46(1011):14071411.
    [29] Maki-Arvela P, Anugwom I, Virtanen P, et al. Dissolution of lignocellulosic materials and itsconstituents using ionic liquids-A review [J]. Ind. Crop. Prod.,2010,32(3):175-201.
    [30]赵地顺,李贺,付林林,等.咪唑类离子液体溶解纤维素的研究进展[J].化工进展,2011,30(7):1529-1536.
    [31] Freemantle M. BASF's smart ionic liquid [N]. Chem. Eng. News,2003(13):9.
    [32] Dymond J, Malhotra R. The Tait equation:100years on [J]. Int. J. Thermophys.,1988,9(6):941-951.
    [33] Machida H, Sato Y, Smith Jr R L. Pressure-volume-temperature (pVT) measurements ofionic liquids ([BMIm+][PF6-],[BMIm+][BF4-],[BMIm+][OcSO4-]) and analysis with theSanchez-Lacombe equation of state [J]. Fluid Phase Equilibria,2008,264(1-2):147-155.
    [34] Gu Z, Brennecke J F. Volume expansivities and isothermal compressibilities of imidazoliumand pyridinium-based ionic liquids [J]. J. Chem. Eng. Data,2002,47(2):339-345.
    [35] Gomes De Azevedo R, Esperanca J, Szydlowski J, et al. Thermophysical and thermodynamicproperties of ionic liquids over an extended pressure range:[BMIm][NTf2] and [HMIm][NTf2][J]. J. Chem. Thermodyn.,2005,37(9):888-899.
    [36] Gardas R L, Freire M G, Carvalho P J, et al. ρT measurements of imidazolium-based ionicliquids [J]. J. Chem. Eng. Data,2007,52(5):1881-1888.
    [37] Yaws C L. Chemical properties handbook [M]. McGraw-Hill Book Co.,1999.185.
    [38] Gardas R L, Coutinho J A P. Extension of the Ye and Shreeve group contribution method fordensity estimation of ionic liquids in a wide range of temperatures and pressures [J]. FluidPhase Equilibria,2008,263(1):26-32.
    [39] Valderrama J O, Robles P A. Critical properties, normal boiling temperatures, and acentricfactors of fifty ionic liquids [J]. Ind. Eng. Chem. Res.,2007,46(4):1338-1344.
    [40] Valderrama J O, Sanga W W, Lazzus J A. Critical properties, normal boiling temperature, andacentric factor of another200ionic liquids [J]. Ind. Eng. Chem. Res.,2008,47(4):1318-1330.
    [41] Valderrama J O, Rojas R E. Critical properties of ionic liquids [J]. Ind. Eng. Chem. Res.,2009,48(14):6890-6900.
    [42] Palomar J, Ferro V R, Torrecilla J S, et al. Density and molar volume predictions usingCOSMO-RS for ionic liquids. an approach to solvent design [J]. Ind. Eng. Chem. Res.,2007,46(18):6041-6048.
    [43] Trohalaki S, Pachter R, Drake G, et al. Quantitative structure-property relationships formelting points and densities of ionic liquids [J]. Energy Fuels,2005,19(1):279-284.
    [44] Shariati A, Peters C J. High-pressure phase behavior of systems with ionic liquids:measurements and modeling of the binary system fluoroform+1-ethyl-3-methylimidazoliumhexafluorophosphate [J]. J. Supercrit. Fluid,2003,25(2):109-117.
    [45] Goharshadi E, Moosavi M. Thermodynamic properties of some ionic liquids using a simpleequation of state [J]. J. Mol. Liq.,2008,142(13):41-44.
    [46] Esperanca J, Guedes H, Blesic M, et al. Densities and derived thermodynamic properties ofionic liquids.3. Phosphonium-based ionic liquids over an extended pressure range [J]. J.Chem. Eng. Data,2006,51(1):237-242.
    [47] Ye C, Shreeve J M. Rapid and accurate estimation of densities of room-temperature ionicliquids and salts [J]. J. Phys. Chem. A,2007,111(8):1456-1461.
    [48] Jacquemin J, Ge R, Nancarrow P, et al. Prediction of ionic liquid properties. I. Volumetricproperties as a function of temperature at0.1MPa [J]. J. Chem. Eng. Data,2008,53(3):716-726.
    [49] Jacquemin J, Nancarrow P, Rooney D W, et al. Prediction of ionic liquid properties. II.volumetric properties as a function of temperature and pressure [J]. J. Chem. Eng. Data,2008,53(9):2133-2143.
    [50] Qiao Y, Ma Y, Huo Y, et al. A group contribution method to estimate the densities of ionicliquids [J]. J. Chem. Thermodyn.,2010,42:852-855.
    [51] Wang J, Li C, Shen C, et al. Towards understanding the effect of electrostatic interactions onthe density of ionic liquids [J]. Fluid Phase Equilibria,2009,279(2):87-91.
    [52] Wang J, Li Z, Li C, et al. Density prediction of ionic liquids at different temperatures andpressures using a group contribution equation of state based on electrolyte perturbationtheory [J]. Ind. Eng. Chem. Res.,2010,49(9):4420-4425.
    [53] Sun N, He X, Dong K, et al. Prediction of the melting points for two kinds of roomtemperature ionic liquids [J]. Fluid Phase Equilibria,2006,246(12):137-142.
    [54]蒋栋,王媛媛,刘洁,等.咪唑类离子液体结构与熔点的构效关系及其基本规律[J].化学通报,2007,70(5):371375.
    [55] Huo Y, Xia S, Zhang Y, et al. Group contribution method for predicting melting points ofimidazolium and benzimidazolium ionic liquids [J]. Ind. Eng. Chem. Res.,2009,48(4):2212-2217.
    [56]熊焰,丁靖,虞大红,等.质量连接性指数改进的基团贡献法预测咪唑类离子液体的熔点[J].化工学报,2011,62(12):3316-3322.
    [57] Lazzús J A. A group contribution method to predict the melting point of ionic liquids [J].Fluid Phase Equilibria,2012,313(15):1-6.
    [58]张星辰,等.离子液体--从理论基础到研究进展[M].北京:化学工业出版社,2009.38.
    [59] Fredlake C P, Crosthwaite J M, Hert D G, et al. Thermophysical properties ofimidazolium-based ionic liquids [J]. J. Chem. Eng. Data,2004,49(4):954-964.
    [60] Huddleston J G, Visser A E, Reichert W M, et al. Characterization and comparison ofhydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazoliumcation [J]. Green Chem.,2001,3(4):156-164.
    [61] Ye C, Shreeve J N M. Syntheses of very dense halogenated liquids [J]. J. Org. Chem.,2004,69(19):6511-6513.
    [62] Sun S, Wei Y, Fang D, et al. Estimation of properties of the ionic liquid BMIZn3Cl7[J]. FluidPhase Equilibria,2008,273(12):27-30.
    [63] Carvalho P J, Regueira T, Santos L M N B F, et al. Effect of water on the viscosities anddensities of1-butyl-3-methylimidazolium dicyanamide and1-butyl-3-methylimidazoliumtricyanomethane at atmospheric pressure [J]. J. Chem. Eng. Data,2010,55(2):645-652.
    [64] Kim K S, Shin B K, Lee H. Physical and electrochemical properties of1-butyl-3-methylimidazolium bromide,1-butyl-3-methylimidazolium iodide, and1-butyl-3-methylimidazolium tetrafluoroborate [J]. Korean J. Chem. Eng.,2004,21(5):1010-1014.
    [65]杨家振,张庆国,黄明,等.稀散金属室温离子液体BMIInCl4的性质研究[J].高等学校化学学报,2005,26(10):18731876.
    [66] Sun J, Forsyth M, MacFarlane D R.Room-temperature molten salts based on the quaternaryammonium ion [J]. J. Phys. Chem. B,1998,102(44):8858-8864.
    [67] Gardas R L, Freire M G, Carvalho P J, et al. High-pressure densities and derivedthermodynamic properties of imidazolium-based ionic liquids [J]. J. Chem. Eng. Data,2007,52(1):80-88.
    [68] Kuhlmann E,Himmler S, Giebelhaus H, et al. Imidazolium dialkylphosphates-a class ofversatile, halogen-free and hydrolytically stable ionic liquids [J]. Green Chem.,2007,9(3):233-242.
    [69] Tariq M, Carvalho P J, Coutinho J A P, et al. Viscosity of (C2-C14)1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids in an extendedtemperature range [J]. Fluid Phase Equilibria,2011,301(1):22-32.
    [70] Gardas R L, Coutinho J A P. A group contribution method for viscosity estimation of ionicliquids [J]. Fluid Phase Equilibria,2008,266:195-201.
    [71] Reid R C, Prausnitz J M, Sherwood T K. The properties of gases and liquids [M].4th edn.New York: McGraw-Hill,1987.
    [72] Gardas R L, Coutinho J A P. Group contribution methods for the prediction of thermophysicaland transport properties of ionic liquids [J]. AIChE J.,2009,55(5):1274-1290.
    [73] Seddon K R, Stark A, Torres M J. Influence of chloride, water, and organic solvents on thephysical properties of ionic liquids [J]. Pure Appl. Chem.,2000,72(12):2275-2287.
    [74] Janssen C H C, Kroon M C, Metz S J, et al. Extraction of sodium chloride from water andsolubility of water in hydrophobic trialkylammonium alkanoate-based ionic liquids [J]. J.Chem. Eng. Data,2010,55:3391-3394.
    [75] Gutowski K E, Broker G A, Willauer H D, et al. Controlling the aqueous miscibility of ionicliquids:aqueous biphasic systems of water-miscible ionic liquids and water-structuring saltsfor recycle,metathesis,and separations [J]. J. Am. Chem. Soc.,2003,125(22):6623-6633.
    [76] Swatloski R P, Visser A E, MatthewReichert W, et al. On the solubilization of water withethanol in hydrophobic hexafluorophosphate ionic liquids [J]. Green Chem.,2002,4:81-87.
    [77] Paulechka Y U, Kabo G J, Blokhin A V, et al. Thermodynamic properties of1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state [J]. J. Chem. Eng.Data,2003,48(3):457-462.
    [78] Kabo G J, Blokhin A V, Paulechka Y U, et al. Thermodynamic properties of1-butyl-3-methylimidazolium hexafluorophosphate in the condensed state [J]. J. Chem. Eng.Data,2004,49(3):453-461.
    [79] Paulechka Y, Zaitsau D, Kabo G, et al. Vapor pressure and thermal stability of ionic liquid1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [J]. Thermochim. Acta,2005,439(1-2):158-160.
    [80] Zaitsau D H, Verevkin S P, Paulechka Y U, et al. Comprehensive study of vapor pressuresand enthalpies of vaporization of cyclohexyl esters [J]. J. Chem. Eng. Data,2003,48(6):1393-1400.
    [81] Earle M, Esperanca J, Gilea M, et al. The distillation and volatility of ionic liquids [J]. Nature,2006,439(7078):831-834.
    [82]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社.2006.6-9,163-180,294-297.
    [83]周星风,兰贵金.动态法测定等温汽液平衡的装置[J].石油化工,1989,18(2):112-116.
    [84]罗美,郑典模,邱祖民.沸点法测定汽液平衡[J].江西科学,2001,19(4):225-229.
    [85] D ker M, Gmehling J. Measurement and prediction of vapor-liquid equilibria of ternarysystems containing ionic liquids [J]. Fluid Phase Equilibria,2005,227(2):255-266.
    [86] Kato R, Gmehling J. Measurement and correlation of vapor-liquid equilibria of binarysystems containing the ionic liquids [EMIM][(CF3SO2)2N],[BMIM][(CF3SO2)2N],[MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water [J]. Fluid PhaseEquilibria,2005,231(1):38-43.
    [87]冉晓萌,王海川,王宝华,等.乙醇-水-l,3-二甲基咪唑磷酸二甲酯盐三组分物系的汽液平衡测定及关联[J].石油化工,2011,40(11):1196-1199.
    [88]王文华,冯咏梅,夏尚文.[EMIM][BF4]对乙醇-水体系相平衡的影响[J].酿酒科技,2006,(2):34-36.
    [89]史奇冰,郑逢春,李春喜,等.用NRTL方程计算含离子液体体系的汽液平衡[J].化工学报,2005,56(5):751756.
    [90] Zhao J, Li C, Wang Z. Vapor pressure measurement and prediction for ethanol+methanoland ethanol+water systems containing ionic liquids [J]. J. Chem. Eng. Data,2006,51(5):1755-1760.
    [91] Geng W, Zhang L, Deng D, et al. Experimental measurement and modeling of vapor-liquidequilibrium for ternary system water+ethanol+1-butyl-3-methylimidazolium chloride [J]. J.Chem. Eng. Data,2010,55:1679-1683.
    [92] Zhang L, Ge Y, Ji D, et al. Experimental measurement and modeling of vapor liquidequilibrium for ternary systems containing ionic liquids: a case study for the system water+ethanol+1-hexyl-3-methylimidazolium chloride [J]. J. Chem. Eng. Data,2009,54(8):2322-2329.
    [93]李卫坤.离子液体在萃取分离乙醇-水中的绿色应用[D].浙江:浙江工业大学,2008.
    [94] Calvar N, Gonzalez B, Gomez E, et al. Vapor liquid equilibria for the ternary system ethanol+water+1-butyl-3-methylimidazolium chloride and the corresponding binary systems at101.3kPa [J]. J. Chem. Eng. Data,2006,51(6):2178-2181.
    [95] Calvar N, Gonzalez B, Gomez E, et al. Study of the behaviour of the azeotropic mixtureethanol-water with imidazolium-based ionic liquids [J]. Fluid Phase Equilibria,2007,259(1):51-56.
    [96] AV,Miguel P J,Vercher E,et al. Isobaric vapor-liquid equilibria for ethyl acetate+ethanol+1-ethyl-3-methylimidazolium trifluoromethanesulfonate at100kPa [J]. J. Chem.Eng. Data,2007,52:2325-2330.
    [97] A V,Miguel P J,Vercher E,et al. Isobaric vapor-liquid equilibria for methylacetate+methanol+1-ethyl-3-methylimidazolium trifluoromethanesulfonate at100kPa [J].J. Chem. Eng. Data,2007,52:915-920.
    [98] A V, Miguel P J, Vercher E, et al. Ionic liquids as entrainers in extractivedistillation: Isobaric vapor-liquid equilibria for acetone+methanol+1-ethyl-3-methylimidazolium trifluoromethanesulfonate [J]. J. Chem. Eng. Data,2007,52:141-147.
    [99] Orchilles A V, Miguel P J, Vercher E, et al. Isobaric vapor liquid equilibria for1-propanol+water+1-ethyl-3-methylimidazolium trifluoromethanesulfonate at100kPa [J]. J. Chem. Eng.Data,2008,53(10):2426-2431.
    [100] A V, Miguel P J, Vercher E, et al. Using1-ethyl-3-methylimidazoliumtrifluoromethanesulfonate as an entrainer for the extractive distillation of ethanol+watermixtures [J]. J. Chem. Eng. Data,2010,55:1669-1674.
    [101] Calvar N, Gonzalez B, Gomez E, et al. Vapor-liquid equilibria for the ternary systemethanol+water+1-ethyl-3-methylimidazolium ethylsulfate and the corresponding binarysystems containing the ionic liquid at101.3kPa [J]. J. Chem. Eng. Data,2008,53:820-825.
    [102] Calvar N, Gonzalez B, Gomez E, et al. Vapor-liquid equilibria for the ternary systemethanol+water+1-butyl-3-methylimidazolium methylsulfate and the corresponding binarysystems at101.3kPa [J]. J. Chem. Eng. Data,2009,54:1004-1008.
    [103] Calvar N, Gomez E, Gonzalez B, et al. Experimental vapor-liquid equilibria for the ternarysystem ethanol+water+1-ethyl-3-methylpyridinium ethylsulfate and the correspondingbinary systems at101.3kPa: study of the effect of the cation [J]. J. Chem. Eng. Data,2010,55:2786-2791.
    [104] Chapeaux A,Simoni L D,Roman T S,et al. Extraction of alcohols from water with1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [J]. Green Chem.,2008,10:1301–1306.
    [105]李春利,李聚魁,刘艳稳,等.离子液体对乙腈-水共沸物系汽液平衡的影响[J].化工进展,2011,30(12):2611-2614.
    [106] Pereiro A B, Araújo J M, Esperanca J M, et al. Ionic liquids in separations of azeotropicsystems–A review [J]. J. Chem. Thermodyn.,2012,46:2–28.
    [107]巴斯富股份公司.作为用于分离接近沸点或共沸混合物的选择性添加剂的离子液体[P].CN1524006A,2004-08-25.
    [108] Jork C, Seiler M, Beste Y, et al. Influence of ionic liquids on the phase behavior of aqueousazeotropic systems [J]. J. Chem. Eng. Data,2004,49(4):852-857.
    [109] Seiler M, Jork C, Kavarnou A, et al. Separation of azeotropic mixtures using hyperbranchedpolymers or ionic liquids [J]. AIChE J.,2004,50(10):2439-2454.
    [110] Ge Y, Zhang L, Yuan X, et al. Selection of ionic liquids as entrainers for separation of(water+ethanol)[J]. J. Chem. Thermodyn.,2008,40(8):1248-1252.
    [111] Shen C,Ma X Y,Lu Y Z,et al. Effect of mono-,di-and tri-(2-hydroxyethyl) ammoniumTetrafluoroborate Protonic Ionic Liquids on Vapor Liquid Equilibra of Ethanol AqueousSolution [J]. J. Chem. Thermodyn.,2011,43(3):452-457.
    [112] Zhao J, Dong C, Li C, et al. Isobaric vapor–liquid equilibria for ethanol–water systemcontaining different ionic liquids at atmospheric pressure [J]. Fluid Phase Equilibria,2006,242:147-153.
    [113] Braddy AC,Janáky T,Prokai L. Immobilized artificial membrane chromatography coupledwith atmospheric pressure ionization mass spectrometry [J]. J. Chromatogr. A,2002,966:81-87.
    [114] Wang B, Lin J, Wu F,et al. Stability and selectivity of supported liquid membranes withionic liquids for the separation of organic liquids by vapor permeation [J]. Ind. Eng. Chem.Res.,2008,47:8355-8360.
    [115] Shen C,Ma X Y,Lu Y Z,et al. Effect of ionic liquid1-methylimidazolium chloride on thevapor liquid equilibra of water,methanol,ethanol and {water+ethanol} mixture [J]. J. Chem.Thermodyn.,2011,43:1748-1753.
    [116] Wang J F, Li X M, Meng H, et al. Boiling temperature measurement for water, methanol,ethanol, and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-,di-, or tri-ethanolamine at101.3kPa [J]. J. Chem. Thermodyn.,2009,41(2):167-170.
    [117] Zakariya R.A, Zhao J, Li CX,et al. Determination of vapor pressures for binary and ternarymixtures containing ionic liquid1-propyl-3-methylimidazolium bromide [J]. Chinese. J.Chem. Eng.,2005,13:791-795.
    [118] Zhao J, Jiang X, Li C, et al. Vapor pressure measurement for binary and ternary systemscontaining a phosphoric ionic liquid [J]. Fluid Phase Equilibria,2006,247(1-2):190-198.
    [119] Li Q, Xing F, Lei Z, et al. Isobaric vapor-liquid equilibrium for isopropanol+water+1-ethyl-3-methylimidazolium tetrafluoroborate [J]. J. Chem. Eng. Data,2008,53(1):275-279.
    [120] Shen C,Li X M,Lu Y Z,et al. Effect of ionic liquid triethylmethylammoniumdimethylphosphate on the vapor pressure of water,mathanol,ethanol and their binary mixtures[J]. J. Chem..Eng. Data,2011,56(5):1933-1940.
    [121] Jiang X, Wang J, Li C, et al. Vapour pressure measurement for binary and ternary systemscontaining water methanol ethanol and an ionic liquid1-ethyl-3-ethylimidazoliumdiethylphosphate [J]. J. Chem. Thermodyn.,2007,39(6):841-846.
    [122] Chowdhury S A., Scott J L, MacFarlane D R. Ternary mixtures of phosphonium ionicliquids+organic solvents+water [J]. Pure Appl. Chem.,2008,80(6):1325-1335.
    [123] Wang J, Li C, Wang Z. Measurement and prediction of vapor pressure of binary and ternarysystems containing1-ethyl-3-methylimidazolium ethyl sulfate [J]. J. Chem. Eng. Data,2007,52(4):1307-1312.
    [124] Mokhtatani B, Gmehling J.(Vapor+liquid) equilibria of ternary systems with ionic liquidsusing headspace gas chromatography [J].J. Chem. Thermodyn.,2010,42:1036-1038.
    [125] Wang J F, Li C X, Wang Z H, et al. Vapor pressure measurement for water, methanol,ethanol, and their binary mixtures in the presence of an ionic liquid1-ethyl-3-methylimidazolium dimethylphosphate [J]. Fluid Phase Equilibria,2007,255(2):186-192.
    [126]王均凤.含离子液体体系热力学性质的测定及模型化研究[D].北京:北京化工大学,2008.
    [127] Hu X, Yu J,Liu H. Separation of THF and waer by room temperature ionic liuids [J]. WaterSci. Technol.,2006,53(11):245-249.
    [128] Zhang L, Han J, Deng D, et al. Selection of ionic liquids as entrainers for separation ofwater and2-propanol [J]. Fluid Phase Equilibria,2007,255(2):179-185.
    [129] Zhang L, Deng D, Han J, et al. Isobaric vapor-liquid equilibria for water+2-propanol+1-butyl-3-methylimidazolium tetrafluoroborate [J]. J. Chem. Eng. Data,2007,52(1):199-205.
    [130] Zhang L, Han J, Wang R, et al. Isobaric vapor-liquid equilibria for three ternary systems:water+2-propanol+1-ethyl-3-methylimidazolium tetrafluoroborate, water+1-propanol+1-ethyl-3-methylimidazolium tetrafluoroborate, and water+1-propanol+1-butyl-3-methylimidazolium tetrafluoroborate [J]. J. Chem. Eng. Data,2007,52:1401-1407.
    [131] Zhang L, Qiao B, Ge Y, et al. Effect of ionic liquids on (vapor+liquid) equilibrium behaviorof (water+2-methyl-2-propanol)[J]. J. Chem. Thermodyn.,2009,41(1):138-143.
    [132] Zhang D, Deng Y, Li C, et al. Separation of ethyl acetate-ethanol azeotropic mixture usinghydrophilic ionic liquids [J]. Ind. Eng. Chem. Res.,2008,47(6):1995-2001.
    [133] Li Q, Zhang J, Lei Z, et al. Isobaric vapor-liquid equilibrium for ethyl acetate+ethanol+1-ethyl-3-methylimidazolium tetrafluoroborate [J]. J. Chem. Eng. Data,2009,54:193-197.
    [134] Li Q, Zhang J, Lei Z, et al. Selection of ionic liquids as entrainers for the separation of ethylacetate and ethanol [J]. Ind. Eng. Chem. Res.,2009,48(19):9006-9012.
    [135]李群生,张继国,王宝华,等.离子液体应用于乙酸乙酯-乙醇体系萃取精馏的流程模拟[J].化工进展,2009,28(增刊):288-290.
    [136] Pereior A B, Deive F J, Esperanca J M S S,et al. Alkylsulfate-based ionic liquids to separateazeotropic mixtures [J]. Fluid Phase Equilibria,2010,294:49-53.
    [137] Pereiro A B,Rodriguez A. Purification of hexane with effective extraction using ionic liquidas solvent [J]. Green Chem.,2009,11:346-350.
    [138] Pereiro A B,Tojo E,Rodr′guez A, et al. HMImPF6ionic liquid that separates the azeotropicmixture ethanol+heptanes [J]. Green Chem.,2006,8:307–310.
    [139] Cláudia C C,Alexandre P U,Günter E, et al. On the extraction of aromatic compounds fromhydrocarbons by imidazolium ionic liquids [J]. Int. J. Mol. Sci.2007,8:593-605.
    [140]李群生,付永泉,朱炜,等.甲醇-碳酸二甲酯-离子液体等压汽液平衡数据测定[J].北京化工大学学报:自然科学版,2011,38(6):11-15.
    [141] Alberto A, Héctor R, Ana S, Use of a green and cheap ionic liquid to purify gasolineoctane boosters [J]. Green Chem.,2007,9:247-253.
    [142] The University of York(Walker A J). Ionic liquids containing protonated primary,secondary or tertiary ammonium ions [P]. GB2412912A,2005-10-12.
    [143] Yuan X L, Zhang S J, Lü X M. Hydroxyl ammonium ionic liquids: Synthesis, Propertiesand Solubility of SO2[J]. J. Chem. Eng. Data,2007,52(2):596-599.
    [144]翟林智,钟秦,杜红彩,等.醇胺类离子液体合成及其烟气脱硫特性[J].化工学报,2009,60(2):450-454.
    [145] Zhao C, Burrell G, Torriero A A J, et al. Electrochemistry of room temperature protic ionicliquids [J]. J. Phys. Chem. B,2008,112(23):6923-6936.
    [146] Bicak N. A new ionic liquid:2-hydroxy ethylammonium formate [J]. J. Mol. Liq.,2005,116:15-18.
    [147]纪俊荣,袁海涛,王建英,等.醇胺类离子液体的合成及表征[J].河北工业科技,2010,27(5):285-287.
    [148] Iglesias M, Torres A, Gonzalez Olmos R, et al. Effect of temperature on mixingthermodynamics of a new ionic liquid:{2-Hydroxy ethylammonium formate (2-HEAF)+short hydroxylic solvents}[J]. J. Chem. Thermodyn.,2008,40:119-133.
    [149]中国科学院过程工程研究所(张锁江,袁晓亮,陈玉焕,等).用醇胺羧酸盐离子液体吸收SO2气体的方法[P]. CN1698928A,2005-11-23.
    [150]朱登磊,任根宽.萃取精馏制取无水乙醇的过程优化研究[J].化工技术与开发,2009,38(12):42-44.
    [151]王洪海,李春利,方静,等.加盐萃取精馏制取无水乙醇过程的模拟[J].石油化工,2008,37(3):258-261.
    [152] Pereiro A B, Rodriguez A. Applications of ionic liquids in azeotropic mixturesseparations[M]. Ionic Liquids: Applications and Perspectives. Kokorin A(Ed.), ISBN:978-953-307-248-7.2011,225-242.
    [153]谢扬,沈庆扬. ASPEN PLUS化工模拟系统在精馏过程中的应用[J].化工生产与技术,1999,6(3):17-22,28.
    [154] Okoturo O O, VanderNoot T J. Temperature dependence of viscosity for room temperatureionicliquids [J]. J. Electroanal. Chem.,2004,568:167–181.
    [155] Xu Y, Li H, Wang C, et al. Bubble points measurement for (triethyl orthoformate+diethylmalonate)[J]. J. Chem. Thermodyn.,2004,36(11):971-976.
    [156] Verevkin S P, Safarov J, Bich E, et al. Thermodynamic properties of mixtures containingionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binarymixtures with1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl)imide [J]. FluidPhase Equilibria,2005,236(1-2):222-228.
    [157] Renon H, Prausnitz J. Local compositions in thermodynamic excess functions for liquidmixtures [J].
    [158] Gmehling J, Onken U. Vapor-liquid equilibrium data collection [M]. Vol.1, Part1.Frankfurt: DECHEMA.1977.53,154.
    [159] Gmehling J, Onken U. Vapor-liquid equilibrium data collection [M]. Vol.1, Part2a.Frankfurt: DECHEMA.1977.60.
    [160] Valderrama J O, Reategui A, Rojas R E. Density of ionic liquids using group contributionand artificial neural networks [J].
    [161] Valderrama J O, Rojas R E. Mass connectivity index, a new molecular parameter for theestimation of ionic liquid properties [J]. Fluid Phase Equilibria,2010,297(1):107-112.
    [162] Valderrama J O, Martinez G, Rojas R E. Predictive model for the heat capacity of ionicliquids using the mass connectivity index [J]. Thermochimica Acta,2011,513(1-2):83-87.
    [163] Shen C,Li C X,Li X M,et al. Estimation of densities of ionic liquids using Patel-Tejaequation of state and critical properties determined from group contribution method [J].Chem. Eng. Sci.,2011,66(12):2690-2698.
    [164] Arlt W, Spuhl O,Klamt A. Challenges in thermodynamics [J]. Chem. Eng. Process: ProcessIntensification,2004,43(3):221-238.
    [165] Padua A A H, Gomes M F C, Lopes J N A C. Molecular solutes in ionic liquids:a structuralperspective [J]. Acc. Chem. Res.,2007,40:1087-1096.
    [166]徐智策,王建英,王晓玲,等.1-烷基-3-甲基咪唑硫酸氢盐系列离子液体的热力学性质[J].高等学校化学学报,2011,8:1860-1864.
    [167] a ń K, C J, Ra a D, a. L-liquid phase equilibrium of(piperidinium-based ionic liquid+an alcohol) binary systems and modelling with NRHB andPCP-SAFT [J]. Fluid Phase Equilibria.,2011,305(1):43-52.
    [168] Kilaru P, Baker G A, Scovazzo P. Density and surface tension measurements ofimidazolium-, quaternary phosphonium-, and ammonium-based room-temperature7ionicliquids:data and correlations [J]. J. Chem. Eng. Data,2007,52:2306-2314.
    [169]耿彦芳,刘鑫,虞大红,等.[C4mim][BF4]与乙醇胺和N,N-二甲基乙醇胺混合体系的密度、黏度和电导率[J].华东理工大学学报(自然科学版),2009,35(3):400-406.
    [170] Geng Y,Wang T,YU D,et al. Densities and viscosities of the ionic liquid [C4mim][PF6]+N,N-dimethylformamide binary mixtures at293.15K to318.15K [J]. Chinese. J. Chem.Eng.,2008,16(2):256-262.
    [171] Soriano A N, Bonifacio T D Jr, Li M H. Density and refractive index measurements of1-ethyl-3-methylimidazolium-based ionic liquids [J]. J. Taiwan Inst. Chem. E.,2010,41:115-121.
    [172]范杰平,曹婧,孔涛,等.离子液体的合成、纯化及回收方法研究进展[J].南昌大学学报(工科版),2009(4)31:334-338.
    [173]张佳珺,詹怀宇,林春香,等.纤维素吸附剂制备过程中离子液体的回收与再利用[J].造纸科学与技术,2011,2:36-45.
    [174]白润生,杨慧文,胡熙恩,等.甲醇-乙醇-水三元系精馏分离流程研究[J].化学工程,2001,(29)3,8-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700