干细胞标志蛋白ABCG2与胶质瘤新生血管形成和患者生存预后的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分干细胞标志蛋白ABCG2与血管形成相关蛋白在组织芯片中表达关系分析
     目的:ABCG2已作为肿瘤干细胞标志物在研究,已知与肿瘤耐药相关,尚未知是否与肿瘤血管形成相关。本文旨在探讨其在胶质瘤血管形成过程中与VEGF、VEGFR和CD34的关系,证明其在血管形成中起主要作用。
     方法:构建布有90例各级别人脑胶质瘤临床标本的组织芯片,用EnVision法的免疫组化染色检测和分析ABCG2、VEGF和VEGFR(flt-1)在胶质瘤中的表达率,并以CD34单克隆抗体显示血管内皮细胞,根据CD34阳性的血管计数判定微血管密度(MVD),另用6例正常脑组织标本作为对照。
     结果:随着胶质瘤恶性程度的增加,ABCG2、VEGF、VEGFR(flt-1)和CD34阳性表达率均增高。ABCG2除Ⅰ、Ⅱ级之间无统计学差异外,其余各级别之间存在统计学差异(P<0.05);Spearman等级相关分析显示ABCG2与病理级别呈正相关;并且ABCG2表达水平与肿瘤MVD显著相关,γ=0.540,P<0.001。ABCG2阳性表达的Ⅲ、Ⅳ级肿瘤标本MVD比Ⅰ、Ⅱ级高。VEGF、VEGFR(flt-1)和ABCG2均为阳性表达的肿瘤标本MVD平均值显著高于ABCG2阴性表达者,P<0.001。
     结论:在布有不同恶性程度胶质瘤标本的同一张组织芯片上证明了目前公认的肿瘤细胞诱导肿瘤血管生成的代表性基因VEGF、VEGFR和CD34与新发现的只有干细胞才表达的基因ABCG2具有统计学上的相关性,为ABCG2阳性表达细胞具有分化成肿瘤细胞和肿瘤血管细胞的多潜能研究找到了分子依据。
     第二部分干细胞标志蛋白ABCG2与血管形成相关蛋白在组织芯片中共表达分析
     目的:在明确了干细胞标志蛋白ABCG2与血管形成相关蛋白呈正相关的基础上,进一步明确是否有共表达的细胞,为进一步研究胶质瘤干细胞为胶质瘤血管起源细胞提供图像依据。
     方法:采用免疫荧光激光扫描共聚焦技术,观察胶质瘤组织芯片中存在的ABCG2、VEGF、CD34、vWF、GFAP共表达的细胞。
     结果:胶质瘤血管中存在ABCG2和CD34、vWF共表达细胞与VEGF和CD34共表达的细胞;虽然正常脑组织中也存在ABCG2与CD34、vWF,或VEGF与CD34共表达细胞,但共表达血管数量不多;在肿瘤组织和正常脑组织中均未见ABCG2和GFAP共表达细胞。
     结论:干细胞标志蛋白ABCG2与血管内皮细胞标志蛋白CD34和vWF共表达,不与GFAP共表达。而CD34又与VEGF共表达,说明胶质瘤干细胞还具有向胶质瘤血管内皮细胞分化的能力。这种分化还与细胞分泌VEGF因子相关,但与GFAP表达无关。
     第三部分ABCG2与nestin共表达细胞参与胶质瘤血管形成
     目的:在胶质瘤干细胞研究中已经见到nestin与干细胞标志基因CD133的关系密切,本文探索它与另一个干细胞标志基因ABCG2的关系,旨在寻找两者共表达细胞在胶质瘤血管生成中的证据。
     方法:从90例常规石蜡包埋、H-E染色的胶质瘤切片标本中,挑选血管最丰富,恶性程度最高的标本,进行nestin和ABCG2免疫荧光双重染色,在激光扫描共聚焦显微镜下扫描显像,成像后对两者共表达细胞与血管的关系进行分析。
     结果:见到了一部分组成胶质瘤血管的细胞共表达nestin和ABCG2,并有明显的血管之间的异质性。其中nestin不仅在胶质瘤血管内皮细胞有表达,还在远离血管的肿瘤细胞中也见到表达。但未见nestin和GFAP在胶质瘤血管细胞中的共表达。
     结论:胶质瘤干/祖细胞不但具有向亲本肿瘤细胞分化潜能和表型,还具备向肿瘤血管细胞分化的潜能和表型,为肿瘤血管形成新理论:拟态血管和马赛克血管找到了依据。
     第四部分ABCG2可作为高风险因子影响胶质瘤患者生存期
     目的:既然第一至第三部分论证了ABCG2是胶质瘤血管生成的关键基因,那么是否与患者生存预后相关就值得关注。本部分就此进行相关分析研究。
     方法:用第一,第二部分相同的胶质瘤组织芯片进行EnVision免疫组化染色,检测和分析ABCG2与PCNA、P53、VEGF、IGFBP-2、C-MYC在胶质瘤组织中的表达,並采用COX比例风险模型逐步回归分析上述多基因与患者生存期的关系。
     结果:单因素分析显示,病理分级、ABCG2、P53和VEGF等因素与患者生存期有关(P<0.05)。而多因素分析显示切除范围、病理分级、ABCG2、P53和VEGF高表达是影响患者生存期的高风险因子。
     结论:ABCG2以高危因子的身份影响患者生存,可为把它作为靶分子治疗对象的进一步研究提供依据。
PartⅠThe correlation of expressions of stem cell marker ABCG2 with angiopoiesis associated proteins in glioma tissues analyzed by tissue-microarray.
     Object:The ABCG2 is regarded as the marker of tumor stem cells,and reported to be associated with tumors' multidrug-resistance.However,it is still unknown whether it is related to the neovascularization.In this study,we aim to explore the correlations of ABCG2 and VEGF,VEGFR and CD34 during the process of angiopoiesis in glioma,and to prove the importance of ABCG2 to angiopoiesis.
     Methods:A tissue microarray containing 90 specimens that include all pathological grades of human brain glioma tissues was constructed.The expressing of ABCG2、VEGF and VEGFR(flt-1) in brain tumor was detected by EnVision immunohistochemical staining.CD34 monoclonal antibody was used to label vascular endothelial cells and tumor microvasculars density(MVD) was evaluated according to the numbers of CD34 positive labeled microvasculars.Six normal brain tissues were employed as control.
     Results:The positive expression rates of ABCG2,VEGF,VEGFR and CD34 increased with the pathological grades.The expression of ABCG2 were statistically different(P<0.05) among each pathological grades of gliomas except the gradeⅠ—Ⅱ.Spearman rank-correlation analysis showed the positive correlation between the expression of ABCG2 and pathological grades;moreover,the expression level of ABCG2 was notably related with MVD in tumors,γ=0.540,P<0.001.The MVD in gliomas of gradeⅢ—Ⅳwere higher than that in gradeⅠ—Ⅱ.The genes of VEGF, VEGFR(flt-1) and CD34 were also analysized,which showed that the average value of MVD in tumors expressing VEGF~+,VEGFR~+(flt-1) and ABCG2~+ was significantly higher than that in the ABCG2~- tumors,P<0.001.
     Conclusions:VEGF,VEGFR and CD34 have been generally recognized as the representative genes inducing the angiogenesis in tumors,while ABCG2 is a novel gene which only expresses in stem cells.The results of tissue-array containing glioma specimens of different pathological grades indicated their intimate the correlations.The results also suggested that the ABCG2~+ cells had the multipotential to differentiate into tumor cells and tumor vessel cells,which explored a new direction for the research on vasculogenic mimicry in tumor.
     PartⅡThe co-expressions of stem cell marker ABCG2 with angiopoiesis associated proteins in glioma tissue microarray.
     Object:The study aimed to detecte the co-expression of ABCG2 and angiopoiesis associated proteins on base of direct correlation between them,and further to supply the research of glioma stem cells' transformation into angiocellulars in gliomas with morphological evidence.
     Methods:The co-expression of ABCG2、VEGF、CD34、vWF and GFAP in human glioma tissues by tissue-microarray was detected by laser scanning confocal microscope(LSCM).
     Results:There are co-expression cells of CD34/ABCG2,vWF/ABCG2, CD34/VEGF,VEGF/CD34 in glioma vessels,but no co-expression cells of GFAP/ABCG2.And co-expression cells of CD34/ABCG2,VEGF/CD34 were also observed in normal brain tissue,but no co-expression cells of ABCG2/GFAP,either.
     Conclusions:The co-expression of stem cells marker ABCG2 and vascular endothelia cells marker CD34 and vWF,but no co-expression ABCG2 and GFAP, indicated that glioma stem cells have ability to differentiate into glioma vascular endothelial cells for the co-expression of CD34/VEGF were also observed.The differentiation is also related with cell secretion of VEGF,but not with GFAP.
     PartⅢParticipation of cells coexpressing ABCG2 and nestin in glioma angiopoiesis
     Object:It is known that stem cells marker nestin and CD133 have close relationship in glioma stem cells.This article aims to investigate the relationship between nestin and another stem cells marker ABCG2,and to investigate the participation of cells coexpressing the two markers in glioma angiopoiesis.
     Methods:Glioma specimens with most plentiful vessels and highest pathological grades selected from 90 human glioma were immunostained against nestin and ABCG2, then observed with LSCM.
     Results:Some cells composing glioma vessels co-expressed nestin and ABCG2, and the heterogeneity among vessels were also observed.Nestin was expressed not only in the glioma vascular endothelial cells but also in tumor cells away from vessels.There were no co-expression of nestin and GFAP in glioma vessels.
     Conclusions:The glioma stem cells not noly have the potentiality to differentiate into their parent tumor cells but also into cells with phenotype of tumor vessel cells, which provide the tumor vessel formation theory:vasculogenic mimicry and mosaic vessels with new evidence.
     PartⅣAs a high risk factor,ABCG2 could effect survival of glioma patients
     Object:While ABCG2 was a key gene for glioma angiogenesis,as discussed in first part and third part,it is worthy to make clear whether ABCG2 were associated with patient prognosis,which is the object of this part.
     Methods:A tissue microarray that include all pathological grades of human brain glioma tissues was constructed,and the expressions of PCNA,P53,VEGF,IGFBP-2, C-MYC and ABCG-2 were detected by EnVision immunohistochemical staining method in the tissue microarray.Cox proportional hazards models were used
     univariable analyses,and multivariabte analyses were conducted to characterize the association between survival and both clinical and biological markers.
     Results:Univariable analyses show that histopathology grade、ABCG2、P53 and VEGF was correlated with the prognosis(P<0.05).ABCG2、P53 and VEGF immunopositivity enter the final multivariable model,and their high expression show poor prognosis.
     Conclusions:This study demonstrates ABCG2 being a high risk factor in glioma patients.This provides further evidence for target molecule theraty.
引文
1 Carmeliet P,Jain RK.Angiogenesis in cancer and other diseases.[J]Nature.2000,407:249-256.
    2 Folkman J.Clinical applications of research on angiogenesis.[J]N Engl J Med.1995,333:1757-1763
    3 Pepper MS.Manipulating angiogenesis:from basic science to the bedside.[J]Artedoseler Thrombo Vase.1997,17:605-609
    4 Gasparini G.Longo R,Fanelli M,Teieher BA.Combination of antiangiogenic therapy with other anticancer therapies:results,challenges,and open questions.[J]J Clin Oncol.2005,23(6):1295-1311.
    5 Schneider BP,Miller KD.Angiogenesis of breast cancer.[J]J Clin Oncol.2005,23(8):1782-1790
    6 Collins TS,Hurwitz HI.Targeting vascular endothelial growth factor and angiogenesis for the treatment of colorectal cancer.[J]Semin Oncol.2005,32(1):61-68
    7 Folkman J.Tumor angiogenesis:Therapeutic implications.[J]N Engl J Med.1971,285:1182-1186
    8 Ellis LM.Angiogenesis and its role in colorectal tumor and metastasis formation.[J]Semin Oncol.2004,31(6 Suppl 17):3-9
    9 O'reilly MS,Holmgren L,Shin Y,et al.Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.[J]Cell.1994,79(2):315-328
    10 Stephen BF,Gotter KC,Harris A1.Tumorangiogenesis.[J]J Pathol.1996,179:232-237
    11 Maniotis AJ,Folberg R,Hess A,et al.Vascular channel formation by human melanoma cells in vivo and vitro:vasculogenic mimicry.[J]Am J Pathol.1999, 155(3):739-752.
    12 Robert F,May J,Hendrix C.Maniotis:vasculogenie mimicry and tumor angiogenesis.[J]Am J Pathol.2000,156(2):361-381.
    13 Andrew J,Robert F,Angela H,et al.Vascular channel formation by human melanoma cells in vivo and in vitro:vasculogenic mimicry.[J]Am J Pathol.1999,55(3):739-752.
    14 Angela RH,Elisabeth AS,Lynn MG,et al.Molecular regulation of tumor cell vasculogenie mimicry by tyrosine phosphorylation:role of epithelial cell kinase (Eck/EphA2).[J]Cancer Res.2001,61:3250-3255.
    15 Yue WY,Chen ZP.Vasculogenic mimicry in astrocytoma.Journal ofhistochemistry and eytochemistry.[J]JHC express.2005,53:997-1002.
    16 Chang YS,de Tomaso E,McDonald DM,et al.Mosaic blood vessels in tumors:frequency of cancer cells in contact with flowing blood.[J]Proc Natl Acad Sei USA.2000,97(26):14608-14613.
    17 Folkman J.Can.mosaic tumor vessel facilitate molecular diagnosis of cancer ?.[J]Proc Natl Acad Sei USA.2001,98(2):398-400.
    18 Kawanami O,Jin E,Ghazizadeh M,et al.Heterogeneous distribution of thrombomodulin and von Willebrand factor in endothelial cells in the human pulmonary microvessels.[J]Nippon Med Sch.2000,67(2):118-125.
    19 袁红丰,裴雪淘.内皮祖细胞研究进展.[J]国外医学输血及血液分册.2002,25(2):205-208
    20 Reyes M,Dudek A,Jahagirdar B,et al.Origin of endothelial progenitors in human postnatal bone marrow.[J]J Clin Invest.2002,109(3):337-346
    21 Murohara T,Ikeda H,Duan J,et al.Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization.[J]J Clin Invest.2000,105(11):1527-1536
    1.陈忠平.肿瘤血管形成.见:黄强,陈忠平,兰青,主编.胶质瘤.北京:中国科学技术出版社,2000.49-60.
    2.Zhang S,Guo H,Zhang D,et al Microciculation patterns in different stages of melanoma growth.[J]Oncol Rely.2006,15:15-20.
    3.陈骅,黄强,董军.肿瘤起源细胞学说与争论.[J]癌症.2006,16(4):385-388.
    4.倪灿荣,李芳梅,朱明华,等.提高组织芯片切片成功率的方法和体会.[J]中华病理学杂志,2002,31(6):559-560.
    5.朱卿,黄强,翟德忠,等.针对胶质瘤发生、发展分子机制研究的组织芯片制作.[J]中华神经医学杂志.2006,5(4):338-341.
    6.Mohan A,Kandalam M,Ramkumar HL,et al.Stem cell markers:ABCG2 and MCM2 expression in retinoblastoma.[J]Br J of Ophthalmol.006,90(7):889-893.
    7.Burkhardt M,Mayordomo E,Winzer KJ,et al.Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer.[J]J Clin Pathol.2006,59(4):403-409.
    8.Weidner N,Current pathologic methods for measuring intraturnoral microvessel density with breast carcinoma and other solid tumor.[J]Breast Cancer Res Treat.1995,36(2):169-180.
    9.ZhouS,SehuetzJD,BuntingKD,et al.,The ABC transporter ABCG2/Bcrpl is expressed in a wide variety of stem eels and is a molecular determinant of the side-population phenotype.[J]Nat Med.2001,7:1028-1034.
    10.Scharenberg CW,Harkey MA,Torok-storb B.The ABCG2 transporter is an effcient Hochst 33342 effux pump and is preferentially expressed by immature human hematopoietic progenitors.[J]Blood.2002,99:507-512.
    11.TerskikhAV,Easterday MC,Li L,et al.From hematopoiesis to neuropo iesis:evidence of overlapping genetic programs.[J]Proc Nail Acad Sci USA.2001,98:7034-7039.
    12.Geschwind DH,Ou J,Easterday MC,et al.A geneticed analysis of neural progenitor diferentiation.[J]Neuron.2001,29:332-339.
    13.储亮,黄强,翟德忠,等.ABCG2在胶质瘤组织芯片中表达及意义.[J]癌症.2007,26:1090-1094.
    14.Yasuhara T,Shingo T,Date I.The potential role of vascular endothelial growth factor in the central nervous system.[J]Rev Neurosci.2004,15(4):293-307.
    15.张爱梅.血管内皮细胞生长因子与缺血性脑血管病关系的研究进展.[J]国外医学神经病学神经外科学分册.2000,27:169-172.
    16.Stoeltzing O,Liu W,Reinmuth N,et al.Angiogenesis and antiangiogenie therapy of.colon cancer liver metastasis.[J]Ann Surg Oncol.2003,10(7):722-733.
    17.Lamoreaux W J,Fitzgerakd ME,Reiner A,et al.Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibition of metalloproteinase by microvascular endothelial cells in vitro.[J]Micro Vase Res.1998,55(1):29-42.
    18.Latil A,Bieche I,Pesche S,et al.VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms.[J]Int J Cancer.2000,89(2):167-171.
    19.陈天星,杨慧,陈建伟,等.骨巨细胞瘤VEGF表达与MDV相关性研究.[J]中国现代医学杂志.2004,14:48-52.
    20.Gollmer JC,Ladoux A,Gioanmi J,et al.Expression of vascular endothelial growth factor-b in human astrocytoma.[J]Neuro-oncol.2000,2:80-86.
    21.刘晓谦,张锟,王雪,等.VEGF、bFGF、PTEN表达与胶质瘤恶性程度及预后因素的研究.[J]中华神经外科杂志.2004,20(1):14-17
    22.Valter MM,Hugel A,Huang HJ,et al.Expression of the Est-1 transcription factor in human astrocytomas is associated with Fms-like tyrosine kinase-1(Flt-1)/vascular endothelail growth factor receptor-1 synthesis and neoangiogenesis.[J]Cancer Res.1999,59(21):5608-6614.
    23.Debabrate M,Kaustubh D.Multiple regulatory pathways of vascular permeability factor/vascular endothelial growth factor(VPF/VEGF)expression in tumors.[J]Seminars in Cancer Biol.2004,14:123-130.
    24.Halens S,Kohn DB.Gene therapy using hematopoietic stem eels:sisyphus approaches the cerst.[J]Human Gene Therapy.2000,11(9):1259-1267.
    25.Fina L,Molgaard HV,Robertson D,et al.Expression of the CD34 gene in vascular endothelial cells.[J]Blood.1990,75:2417-2426.
    26.Schlingemann RO,Rietveld FJ,de Waal RM,et al.Leukocyte antigen CD34 is expressed by a subset of cultured endothelial cells and on endothelial abluminal microprocesses in the tumor stroma.[J]Lab Invest.1990;62:690-696.
    27.柏树令,赵丹.CD34抗原的生物学特性及其临床应用.[J]解剖科学进展.2005,11(1)54-56.
    28.Sing SK,Clake ID,Terasaki M,etal.Indentification of cancer stem cells in human brain tumor.[J]Cancer Research.2003,63:5821-5828.
    29,张全斌,黄强,兰青.脑胶质瘤干细胞的热点问题探讨及研究进展.[J]中华医学杂志.2005,85(26):1868-1870.
    30.Sing SK,Hawkins C,Clake ID,etal.Indentification of human brain tumor initiating cells.[J]Nature.2004,432(7015):396-401.
    31.黄强.胶质瘤起源细胞探讨.[J]中国微侵袭神经外科杂志.2003,8(8):337-340.
    32.孙志刚,黄盛东,张宝仁,等.肿瘤血管与肿瘤干细胞.[J]中华医学杂志.2006,86(39):2803-2805.
    33.肖宏,黄强,张天一,等.ABCG2与VEGF,VEGFR和CD34在胶质瘤组织芯片中的共表达.[J]中华神经外科杂志.2008;24(3):196-199.
    34.李楠等编著.激光扫描共聚焦显微术.北京:人民军医出版社,1997.
    35.Fricker MD,Oparka KJ.Imaging techniques in plant transport:meeting review.[J]Journal of Experimental Botany.1999,50:1089-1100.
    36.Sisodiya SM,Martinian L,Scheffer GL,et al.Vascular colocalization of P-glycoprotein,multidrug-resistance associated protein 1,breast cancer resistance protein and major vault protein in human epileptogenic pathologies.[J]Neuropathology and Applied Neurobiology.2006,32:51-63.
    37.Gussoni E,Soneoka Y,Strickland CD,et al.Dystrophin expression inthemdxmouse restored by stem cell transplantation.[J]Nature.1999,401:390-394.
    38.Terskikh AV,Easterday MC,Li L,et al.From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs.[J]Proc Nail Acad Sci USA.2001,98:7034-7039.
    39.Geschwind DH,Ou J,Easterday MC,et al.A geneticed analysis of neural progenitor differentiation.[J]Neuron.2001,29:332-339.
    40.Uchida K,Mukai M,Okano H,et al.Possible oncogenicity of subventricular zone neural stem cells:case report.[J]Neurosurgery.2004;55:977-987.
    41.Kondo T,Setoguchi T,Taga T.Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line.[J]Proc Natl Acad Sci USA.2004,101(3):781-786
    42.王金鹏,黄强,张全斌,等.人脑胶质瘤干细胞SHG44s的克隆及初步鉴定.[J]中国肿瘤临床.2005,32(11):604-606+610
    43.Miranville A,Heeschen C,Sengenes C,et al.Improvement of postnatal neovascularization by human adipose tissue-derived stem cells.[J]Circulation.2004,110:349-355.
    44.Brown M,Bicknell R,Hart I,et al.Absract of 41st meeting of the British microcircution society.[J]Microcirculation.2004,11:527-558.
    45.Hemmati HD,Nakano I,Lazaref JA,et al.Cancerou stem cells can arise from pediatric brain tumors.[J]Proc Nail Acad Sci USA.2003,100:15178-15183
    46.Galli R,Binda E,Orfanelli U,et al.Isolation and characterization of tumorigenic,stem-like neural precursors from human glioblastoma.[J]Cancer Res.2004,64(19):7011-21
    47.Lendahl U,Zimmerman LB,Mckay R.CNS stem cells express a new class of intermediate filament protein.[J]Cell.1990,60(4):585-595.
    48.季晓燕,黄强,董军,等.脑肿瘤干细胞体外分化的形态、标志物及细胞增殖动力学特征.[J]中华医学杂志.2006,86(23):1604-1609.
    49.Maniotis AJ,Folberg R,Hess A,et al.Vascular channel formation by human melanoma cells in vivo and vitro:vasculogenic mimicry.[J]Am J Pathol 1999,155(3):739-752.
    50.Chang YS,de Tomaso E,McDonald DM,et al.Mosaic blood vessels in tumors:frequency of cancer cells in contact with flowing blood.[J]Proc Natl Acad Sci USA. 2000, 97 (26): 14608-14613.
    51. Folkman J . Can mosaic tumor vessel facilitate molecular diagnosis of cancer ?. [J] Proc Natl Acad Sci USA. 2001, 98(2): 398-400.
    52. Hockfield S. Mckay RDG. Identification of major cell-classes in the developing mammalian nervous system. [J] Neurosci.1985,5: 3310-3328.
    53. Dahlstrand J, Zimmerman LB, McKay RD, et al. Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. [J] Cell Sci. 1992,103: 589-597.
    54. Fuch E. Intermediate filaments and disease: mutation that cripple cell strength. [J] Cell Biol. 1994,125:511-516.
    55. Frederiksen K. Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. [J] JNeurosci. 1988, 8:1144-1151.
    56. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. [J] Science. 1992,255:1707-1710.
    57. Morshead CM, Reynolds BA, Craig CG, et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. [J] Neuron. 1994,13:1071-1082.
    58. Redies C, Lendahl U, McKay RD. Differentiation and heterogeneity in T-antigen immortalized precursor cell lines from mouse cerebellum. [J] J Neurosci Res. 1991, 30:601-615.
    59. Renfranz PJ, Cunningham MG, McKay RD. Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. [J] Cell. 1991. 66:713-729.
    60. Dahlstrand J, Collins VP, Lendahl U. Expression of the class VI intermediate filament nestin in human central nervous system tumors. [J] Cancer Res. 1992, 52:5334-5341.
    61. Molecular Pathomechanisms and New Trends in Drug Research Harwood (2003) Academic Publishers, The Netherlands.
    62. Glavinas H, Cserepes J. and Sarkadi B. The role of ABC transporters in drug resistance, metabolism and toxicity. [J] Curr. Drug Deliv. 2004,1(16): 27-42.
    63.Zhou,S.,Schuetz,J.D.,Bunting,K.D.,et al.The ABC transporter Bcrp1/ABCG2is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype.[J]Nature Medicine.2001,7:1028-1034.
    64.Aronica E,Gorter A,Redeker S,et al.Localization of breast cancer resistance protein(BCRP) in microvessel endothelium of human control and epileptic brain.[J]Epilepsia.2005,46(6):849-857.
    65.Krishnamurthy,P.,Ross,D.D.,Nakanishi,T.,et al.The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme.[J]Journal of Biological Chemistry.2004,279:24218-24225.
    66.Pomeroy SL,Tamayo P,Gaasenbeek M,et al.Prediction of central nervous system embryonal tumour outcome based on gene expression.[J]Nature(Lond).2002,415:436-442.
    67.Therneau TM GP,Pankratz VS.Penalized survival models and frailty.[J]J Computational Graphical Statistics.2003,12:156-175.
    68.Gilbertson RJ,Pearson AD,Perry RH,et al.Prognostic significance of the c-erbB-2oncogene product in childhood medulloblastoma.[J]Br J Cancer.1995,71:473-477.
    69.Zeltzer PM,Boyett JM,Finlay JL,et al.Metastasis stage,adjuvant treatment,and residual tumor are prognostic factors for medulloblastoma in children:conclusions from the Children's Cancer Group 921 randomized phase Ⅲ study.[J]J Clin Oncol.1999,17:832-845.
    70.Frank AJ,Hernan R,Hollander A,et al.The TP53-ARF tumor suppressor pathway is frequently disrupted in large/cell anaplastic medulloblastoma.[J]Brain Res Mol Brain Res.2004,121:137-140.
    71.Debabrate M,Kaustubh D.Multiple regulatory pathways of vascular permeability factor/vascular endothelial growth factor(VPF/VEGF)expression in tumors.[J]Seminars in Cancer Biol.2004,14:123-130.
    72.马晓东,周定标,童新元,等.幕上低级别星形细胞瘤生存分析.[J]中华神经外科杂志.1997,13:82-84.
    73.王勇,罗其中,费智敏,等.颅内星形细胞瘤术后生存期影响因素分析.[J]肿 瘤.1996,16(3):395-398.
    74.Salminen E,Nuutinen JM,Huhtola S.Multivariate analysis of prognostic factors in 106 patients with malignant glioma.[J]Eur J Cancer,1996,32A:1918.
    75.Wakimoto H,Aoyagi M,Nakayama T,et al.Prognostic significance of Ki-67labeling indices obtained using MIB-1 monoclonal antibody in patients with supratentorial astrocytomas.[J]Cancer.1996,77:373-380.
    76.Perry A,Jenkins RB,Fallon JR,et al.Clinicopathologic study of 85 similarly treated patients with anaplastic astrocytic tumors.[J]Cancer.1996,86:672-683.
    77.Nazzaro JM,Neuwelt EA.The role of surgery in the management of supratentorial intermediade and high-grade astrocytomas in adults.[J]J Neurosurg.1990,73:331-344.
    78.Lunsford LD.Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas.[J]Neurosurgery:1997,41:1036-1037.
    1.Sparreboom A,Danesi R,Ando Y,et al..Pharmacogenomics of ABC transporters and its role in cancer chemotherapy.[J]Drug Resist Updat.2003,6(2):71-84.
    2.Mitomo H,Kato R,Ito A,et al.A functional study on polymorphism of the ATP-binding cassette transporter ABCG2:critical role of arginine-482 in methotrexate transport.[J]Biochem J.2003,373:767-774.
    3.de Vries NA,Zhao J,Kroon E,et al.P-glycoprotein and breast cancer resistance protein:two dominant transporters working together in limiting the brain penetration of topotecan. [J] Clin Cancer Res. 2007,13(21):6440-6449.
    4. Breedveld P, Zelcer N, Pluim D, et al. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. [J] Cancer Res. 2004 , 64(16):5804-5811.
    5. Ji Y, Morris ME.Membrane transport of dietary phenethyl isothiocyanate by ABCG2 (breast cancer resistance protein). [J] Mol Pharm. 2005,2(5):414-419.
    6. Senior, A.E., Al-Shawi, M.K. and Urbatsch, I.L. The catalytic cycle of P-glycoprotein. [J] FEBS Lett. 1995,377: 285-289.
    7. Dean, M. (2003) in: ABC Proteins: From Bacteria to Man(Higgins, C.F., Ed.), pp. 47-61, Academic Press, San Diego.
    8. Bates, S.E. (2003) in: ABC Proteins: From Bacteria to Man(Higgins, C.F., Ed.), pp. 359-391, Academic Press, San Deigo.
    9. Higgins, C.F. and Linton, K.J. (2003) in: ABC Proteins: FromBacteria to Man (Higgins, C.F., Ed.), Academic Press, San Deigo.
    10. Soto-Cerrato V, Llagostera E, Montaner B, et al. Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin. [J] Biochem Pharmacol. 2004, 68(7):1345-1352.
    11. Dietrich CG, Geier A, Salein N, et al. Consequences of bile duct obstruction on intestinal expression and function of multidrug resistance-associated protein 2. [J] Gastroenterology. 2004,126(4):1044-1053.
    12. Woehlecke H, Pohl A, Alder-Baerens N, et al.Enhanced exposure of phosphatidylserine in human gastric carcinoma cells overexpressing the half-size ABC transporter BCRP (ABCG2). [J] Biochem J. 2003 ,376:489-495.
    13. Kowalski P, Farley KM, Lage H, et al. Effective knock down of very high ABCG2 expression by a hammerhead ribozyme. [J] Anticancer Res. 2004 , 24(4):2231-2235.
    14. Molecular Pathomechanisms and New Trends in Drug Research Harwood (2003) Academic Publishers, The Netherlands.
    15. Glavinas H, Cserepes J, Sarkadi B. The role of ABC transporters in drug resistance, metabolism and toxicity. [J] Curr. Drug Deliv. 2004,1(16): 27-42.
    16. Hori S, Ohtsuki S, Tachikawa M, et al. Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). [J] J Neurochem. 2004,90(3):526-536.
    17. Zhang W, Mojsilovic-Petrovic J, Andrade MF, et al.. The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. [J] FASEB J. 2003 ,17(14):2085-2087.
    18. Eisenblatter T, Huwel S, Galla HJ. Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. [J] Brain Res. 2003 ,971(2):221-231.
    19. Suvannasankha A, Minderman H, O'Loughlin KL, et al. Breast cancer resistance protein (BCRP/MXR/ABCG2) in acute myeloid leukemia: discordance between expression and function. [J] Leukemia. 2004 ,18(7): 1252-1257.
    20. Fetsch PA, Abati A, Litman T, et al.Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. [J] Cancer Lett. 2006,235(1):84-92.
    21. Burger H, van Tol H, Brok M, et al. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. [J] Cancer Biol Ther. 2005,4(7):747-752.
    22. Nieth C, Lage H.Induction of the ABC-transporters Mdr1/P-gp (Abcb1), mrp1 (Abcc1), and bcrp (Abcg2) during establishment of multidnig resistance following exposure to mitoxantrone. [J] J Chemother. 2005,17(2):215-223
    23. Ozvegy C, Litman T, Szakacs G, et al. Function characterization of the human multidnig transporter, ABCG2, expressed in insect cells. [J] Biochem. Biophys. Res. Commun. 2001,285: 111-117.
    24. Ozvegy C, Varadi A, Sarkadi B. Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidnig transporter. [J] Biol. Chem. 2002,277(50):47980-47990.
    25. Allikmets R, Schriml LM, Hutchinson A, et al. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidnig resistance. [J] Cancer Res. 1998, 58: 5337-5339.
    26. Doyle LA, Yang W, Abruzzo, LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. [J] Proc. Natl. Acad. Sci. USA. 1998, 95(26): 15665-15670.
    27. Miyake K ,Mickley L, Litman T, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells. [J] Cancer Res. 1999, 59:8-13.
    28. Litman T, Druley TE, Stein WD, et al. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. [J] Cell. Mol. Life Sci. 2001, 58: 931-959.
    29. Volk EL, Farley KM, Wu Y, et al. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. [J] Cancer Res.2002, 62: 5035-5040.
    30. Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. [J] Proc. Natl. Acad. Sci. USA. 2002, 99, 15649-15654.
    31. Antonius E, van Herwaarden AE, Jonker JW, et al. The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b] pyridine. [J] Cancer Res. 2003, 63: 6447-6452.
    32. Robey RW, Steadman K, Polgar O, et al. Pheophorbide a is a specific probe for ABCG2 function and inhibition. [J] Cancer Res. 2004,64:1242-1246.
    33. Krishnamurthy P, Schuetz JD.Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol. 2006;46:381-410.
    34. Nakagawa R, Hara Y, Arakawa H, et al. ABCG2 confers resistance to indolocarbazole compounds by ATP-dependent transport. [J] Biochem. Biophys. Res. Commun. 2002,299(4): 669-675.
    35. Volk EL and Schneider E. Wild-Type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. [J] Cancer Res. 2003, 63: 5538-5543.
    36. Cascorbi LRole of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs.Pharmacol Ther. 2006,112(2):457-473.
    37. Scherrmann JM.Expression and function of multidrug resistance transporters at the blood-brain barriers.Expert Opin Drug Metab Toxicol. 2005 ,1(2):233-246.
    38. Clark R, Kerr ID, Callaghan R.Multiple drugbinding sites on the R482G isoform of the ABCG2 transporter. Br J Pharmacol. 2006,149(5):506-515.
    39. Limtrakul P, Chearwae W, Shukla S, et al.Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol Cell Biochem. 2007,296(1-2):85-95.
    40. Schrickx JA, Fink-Gremmels J. Danofloxacin-mesylate is a substrate for ATP-dependent efflux transporters. Br J Pharmacol. 2007,150(4):463-469.
    41. Janvilisri T, Venter H, Shahi S, et al. Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis . [J] Biol. Chem. 2003, 278(23): 20645-20651.
    42. Varadi A, Tusnady GE, Sarkadi B. (2003) in: ABC Proteins: From Bacteria to Man (Higgins, C.F., Ed.), pp. 37—46, Academic Press, San Deigo.
    43. Knutsen T, Koneti Rao V, Ried T, et al. Amplification of 4q21-q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. [J] Genes Chromosomes Cancer. 2000,27:110-116.
    44. Kage K, Tsukahara S, Sugiyama T, et al. Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. [J] Int. J. Cancer. 2002,97: 626-630.
    45. Honjo Y, Hrycyna CA, Yan QW, et al. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. [J] Cancer Research. 2001, 61: 6635-6639.
    46. Zamber CP, Lamba JK, Yasuda K, et al. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. [J] Pharmacogenetics. 2003,13: 19-28.
    47. Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. [J] International Journal of Cancer. 2004,109: 238-246.
    48. Sparreboom A, Gelderblom H, Marsh S, et al. Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. [J] Clinical Pharmacology and Therapeutics. 2004, 76: 38-44.
    49. Ujhelly O, Ozvegy C, Varady G, et al. Application of a human multidrug transporter(ABCG2) variant as selectable marker in gene transfer to progenitor cells. [J] Human Gene Therapy. 2003,14: 403-412.
    50. Bailey-Dell KJ, Hassel B, Doyle LA, et al. Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. [J] Biochimica et Biophysica Acta. 2001,1520: 234-241.
    51. Velamakanni S, Wei SL, Janvilisri T, et al. ABCG transporters: structure, substrate specificities and physiological roles: a brief overview. [J] J Bioenerg Biomembr. 2007,39(5-6):465-471.
    52. Ee PL, Kamalakaran S, Tonetti D, et al. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. [J] Cancer Research. 2004:64,1247-1251.
    53. Gutmann H, Hruz P, Zimmermann C, et al. Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. [J] Biochem Pharmacol. 2005,70(5):695-699.
    54. Adachi T, Nakagawa H, Chung I, et al. Nrf2-dependent and -independent induction of ABC transporters ABCC1, ABCC2, and ABCG2 in HepG2 cells under oxidative stress. [J] J Exp Ther Oncol. 2007,6(4):335-348.
    55. Scheffer GL, Maliepaard M, Pijnenborg A, et al. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan- resistant cell lines. [J] Cancer Res. 2000,60: 2589-2593.
    56. Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. [J] Cancer Res. 2001,61: 3458-3464.
    57. Suzuki M, Suzuki H, Sugimoto Y, et al. ABCG2 transports sulfated conjugates of steroids and xenobiotics. [J] J Biol Chem. 2003, 20, 278(25):22644-22649.
    58.Shimano K,Satake M,Okaya A,et al.Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1.[J]Am J Pathol.2003,163(1):3-9.
    59.Rajagopal A,Simon SM.Subcellular localization and activity of multidrug resistance proteins.[J]Mol Biol Cell.2003,14(8):3389-3399.
    60.Xu J,Liu Y,Yang Y,et al.Characterization of oligomeric human half-ABC transporter ATP-binding cassette G2.[J]J Biol Chem.2004,7,279(19):19781-18789.
    61.Ozvegy-Laczka C,Cserepes J,Elkind NB,et al.Tyrosine kinase inhibitor resistance in cancer:role of ABC multidrug transporters.[J]Drug Resist Updat.2005,8(1-2):15-26.
    62.Aronica E,Gorter JA,Redeker S,et al.Localization of breast cancer resistance protein(BCRP) in microvessel endothelium of human control and epileptic brain.[J]Epilepsia.2005,46(6):849-857.
    63.Deichmann M,Thome M,Egner U,et al.The chemoresistance gene ABCG2(MXR/BCRP1/ABCP1) is not expressed in melanomas but in single neuroendocrine carcinomas of the skin.[J]J Cutan Pathol.2005,32(7):467-473.
    64.Hirano M,Maeda K,Matsushima S,et al.Involvement of BCRP(ABCG2) in the biliary excretion of pitavastatin.[J]Mol Pharmacol.2005,68(3):800-807.
    65.Rao VK,Wangsa D,Robey RW,et al.Characterization of ABCG2 gene amplification manifesting as extrachromosomal DNA in mitoxantrone-selected SF295 human glioblastoma cells.[J]Cancer Genet Cytogenet.2005,15,160(2):126-133.
    66.Zhou S,Morris JJ,Barnes Y,et al.Bcrp1 gene expression is required for normal numbers of side population stem cells in mice,and confers relative protection to mitoxantrone in hematopoietic cells in vivo.[J]Proc.Natl.Acad.Sci.USA.2002,99:12339-12344.
    67.Nezasa K,Tian X,Zamek-Gliszczynski MJ,et al.Altered hepatobiliary disposition of 5(and 6)-carboxy-2',7'-dichlorofluorescein in Abcg2(Bcrp1) and Abcc2(Mrp2) knockout mice.[J]Drug Metab Dispos.2006,34(4):718-723.
    68. Sawicki WT, Kujawa M, Jankowska-Steifer E, et al. Temporal/spatial expression and efflux activity of ABC transporter, P-glycoprotein/Abcb1 isoforms and Bcrp/Abcg2 during early murine development. [J] Gene Expr Patterns. 2006, 6(7):738-746.
    69. Zamek-Gliszczynski MJ, Nezasa K, Tian X, et al. The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. [J] Mol Pharmacol. 2006,70(6):2127-2133.
    70. Koshiba S, Ito T, Shiota A, et al. Development of polyclonal antibodies specific to ATP-binding cassette transporters human ABCG4 and mouse Abcg4: site-specific expression of mouse Abcg4 in brain. [J] J Exp Ther Oncol. 2007,6(4):321-333.
    71. Mizuno N, Suzuki M, Kusuhara H, et al. Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance protein (BCRP1/ABCG2) knockout mice. [J] Drug Metab Dispos. 2004 ,32(9):898-901.
    72. Kruijtzer CM, Beijnen JH, Rosing H, et al. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. [J] Clin. Oncol. 2002,20(13): 2943-2950.
    73. Ee PL, Kamalakaran S, Tonetti D, et al. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. [J] Cancer Res. 2004,64(4):1247-1251.
    74. Annereau JP, Szakacs G, Tucker CJ, et al. Analysis of ATP-binding cassette transporter expression in drug-selected cell lines by a microarray dedicated to multidrug resistance. [J] Mol Pharmacol. 2004,66(6):1397-1405..
    75. Cooray HC, Blackmore CG, Maskell L et al. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. [J] Neuro Report. 2002,13(16): 2059-2063.
    76. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. [J] Blood. 2002,99: 507-512.
    77. Kim M, Turqnuist H, Jackson J, et al. The multidrug resistance transporter ABCG2(breast cancer resistance protein 1)effluxes Hochst 33342 and is overexpressed in hematopoietic stem cells. [J] Clin Cancer Res. 2002, 8: 22-28
    78. Summer R, Kotton DN, Sun X, et al. Side population cells and Bcrp1 expression in lung. [J] Am J. Physiol. Lung Cell. Mol. Physiol. 2003,285: L97-L104.
    79. Lechner A, Leech CA, Abraham EJ, et al. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. [J] Biochem. Biophys. Res. Commun. 2002,293:670-674.
    80. Turner JG, Gump JL, Zhang C, et al.ABCG2 expression, function, and promoter methylation in human multiple myeloma. [J] Blood. 2006,108(12):3881-3889.
    81. Mogi M, Yang J, Lambert JF, et al. Akt signaling regulates side population cell phenotype via Bcrpl translocation. [J] Biol. Chem. 2003,278: 39068-39075.
    82. Mutoh K, Tsukahara S, Mitsuhashi J, et al. Estrogen-mediated post transcriptional down-regulation of P-glycoprotein in MDR1-transduced human breast cancer cells. [J] Cancer Sci. 2006,97(11):1198-1204.
    83. Vander Borght S, Libbrecht L, Katoonizadeh A, et al. Breast cancer resistance protein (BCRP/ABCG2) is expressed by progenitor cells/reactive ductules and hepatocytes and its expression pattern is influenced by disease etiology and species type: possible functional consequences. [J] J Histochem Cytochem. 2006 , 54(9): 1051-1059.
    84. Tunici P, Irvin D, Liu G, et al. Brain tumor stem cells: new targets for clinical treatments? [J] Neurosurg Focus. 2006 ,20(4):E27.
    85. Plotnikov EY, Marei MV, Podgornyi OV, et al. Functional activity of mitochondria in cultured neural precursor cells. [J] Bull Exp Biol Med. 2006,141(1):142-146.
    86. Mouthon MA, Fouchet P, Mathieu C, et al. Neural stem cells from mouse forebrain are contained in a population distinct from the 'side population. [J] J Neurochem. 2006,99(3):807-817.
    87. Priebsch A, Rompe F, Tonnies H, et al. Complete reversal of ABCG2-depending atypical multidrug resistance by RNA interference in human carcinoma cells. [J] Oligonucleotides.2006,16(3):263-274.
    88.McDevitt CA,Collins RF,Conway M,et al.Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2.[J]Structure.2006,14(11):1623-1632.
    89.Lopez JP,Wang-Rodriguez J,Chang C,et al.Gefitinib inhibition of drug resistance to doxorubicin by inactivating ABCG2 in thyroid cancer cell lines.[J]Arch Otolaryngol Head Neck Surg.2007,133(10):1022-1027.
    90.Yamashita M,Hirano S,Kanemaru S,et al.Side population cells in the human vocal fold.[J]Ann Otol Rhinol Laryngol.2007,116(11):847-852.
    91.Xie Y,Xu K,Linn DE,et al.The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells.[J]J Biol Chem.2008,283(6):3349-3356.
    92.Ahmed F,Arseni N,Glimm H,et al.Constitutive expression of the ATP-binding cassette transporter ABCG2 enhances the growth potential of early human hematopoietic progenitors.[J]Stem Cells.2008,26(3):810-818.
    93.Baharvand H,Heidari M,Ebrahimi M,et al.Proteomic analysis of epithelium-denuded human amniotic membrane as a limbal stem cell niche.[J]Mol Vis.2007,13:1711-1721.
    94.Lopez JP,Wang-Rodriguez J,Chang C,et al.Gefitinib inhibition of drug resistance to doxorubicin by inactivating ABCG2 in thyroid cancer cell lines.[J]Arch Otolaryngol Head Neck Surg.2007,133(10):1022-1027.
    95.Miranville A,Heeschen C,Sengen e s C,et al.Improvement of postnatal neovascularization by human adipose tissue derived stem cells.[J]Circulation.2004;110:349-355.
    96.Aronica E,Gorter A,Redeker S,et al.Localization of breast cancer resistance protein(BCRP) in microvessel endothelium of human control and epileptic brain.[J]Epilepsia.2005,46(6):849-857.
    97.Krishnamurthy P,Ross DD,Nakanishi T,et al.The stem cell marker Bcrp/ABCG2enhances hypoxic cell survival through interactions with heme.[J]Journal of Biological Chemistry.2004,279:24218-24225.
    98.Bunting KD,Zhou S,Lu,T.et al.Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo.[J]Blood.2000,96(3):902-909.
    99.Hafkemeyer P,Licht T,Pastan I,et al.Chemoprotection of hematopoietic cells by a mutant P-glycoprotein resistant to a potent chemosensitizer of multidrug-resistant cancers.[J]Hum.Gene Ther.2000,11(3):555-565.
    100.Sellers SE,Tisdale JF,Agricola BA,et al.The effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells.[J]Blood.2001,97(6):1888-1891.
    101.Wada M.Single nucleotide polymorphisms in ABCC2 and ABCB1 genes and their clinical impact in physiology and drug response.[J]Cancer Lett.2006,234(1):40-50
    102.Gupta A,Dai Y,Vethanayagam RR,et al.Cyclosporin A,tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein(ABCG2) and reverse resistance to mitoxantrone and topotecan.[J]Cancer Chemother Pharmacol.2006,58(3):374-383.
    103.Morrow CS,Peklak-Scott C,Bishwokarma B,et al.Multidrug resistance protein 1(MRP1,ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux.[J]Mol Pharmacol.2006,69(4):1499-1505.
    104.Ishikawa T,Ikegami Y,Sano K,et al.Transport mechanism-based drug molecular design:novel camptothecin analogues to circumvent ABCG2-associated drug resistance of human tumor cells.[J]Curr Pharm Des.2006,12(3):313-25.
    105.Kusuhara H,Sugiyama Y.ATP-binding cassette,subfamily G(ABCG family).[J]Pflugers Arch.2007,453(5):735-744.
    106.Cramer J,Kopp S,Bates SE,et al.Multispecificity of Drug Transporters:Probing Inhibitor Selectivity for the Human Drug Efflux Transporters ABCB1 and ABCG2.[J]Chem Med Chem.2007,2(12):1783-1788.
    107.Calcagno AM,Kim IW,Wu CP,et al.ABC drug transporters as molecular targets for the prevention of multidrug resistance and drug-drug interactions.[J]Curr Drug Deliv.2007,4(4):324-33.
    108.Sakurai A,Tamura A,Onishi Y,et al.Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCG2:therapeutic implications.[J]Expert Opin Pharmacother.2005,6(14):2455-2473.
    109.Ishikawa T,Sakurai A,Kanamori Y,et al.High-speed screening of human ATP-binding cassette transporter function and genetic polymorphisms:new strategies in pharmacogenomics.[J]Methods Enzymol.2005,400:485-510.
    110.Saito H,Hirano H,Ishikawa T.High-speed screening and quantitative SAR analysis of human ABC transporter ABCG2 for molecular modeling of anticancer drugs to circumvent multidrug resistance.[J]Mini Rev Med Chem.2007,7(10):1009-1018.
    111.Schiedlmeier B,Schilz AJ,Kuhlcke K,et al.Multidrug resistance 1 gene transfer can confer chemoprotection to human peripheral blood progenitor cells engrafted in immunodeficient mice.[J]Hum.Gene Ther.2002,13(1):233-242.
    112.Balazs S,Csilla O L,Katalin N,et al.ABCG2 - a transporter for all seasons.[J]FEBS Letters.2004,567:116-120.
    113.Rabindran SK,He H,Singh M,et al.Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C.[J]Cancer Research.1998,58:5850-5858.
    114.Allen JD,van Loevezijn A,Lakhai JM,et al.Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C.[J]Molecular Cancer Therapeutics.2002,1:417-442.
    115.Doyle LA,Ross DD.Multidrug resistance mediated by the breast cancer resistance protein BCRP(ABCG2).[J]Oncogene.2003,22:7340-7358.
    116.Kim WS,Weickert CS,Garner B.Role of ATP-binding cassette transporters in brain lipid transport and neurological disease.[J]J Neuro chem.2008,104(5):1145-1166.
    117.Girardin F.Membrane transporter proteins:a challenge for CNS drug development.[J]Dialogues Clin Neurosci.2006,8(3):311-321.
    118.Reya T,Morrison ST,Clarke MF,et al.Stem cells,cancer and cancer stem cells.[J]Nature.2001,414(6859):105-111.
    119.Ignatova TN,Kukekof VG,Laywell ED.et al.Human cortical glial tumors contain neural stem cells expressing astroglial and neural markers in vitro.[J]Glia.2002,39(3):193-206.
    120.Singh SK,Clarke ID,Terasaki M,et al.Identification of a cancer stem cell in human brain tumors.[J]Cancer Res.2003,63(181):5821-5828.
    121.黄强,朱玉德,董军,等.人脑胶质瘤组织中分离和培养脑肿瘤干细胞.[J]中华肿瘤杂志.2006,28(5):331-333.
    122.张全斌,黄强,兰青.脑肿瘤干细胞的热点不问题探讨及研究进展.[J]中华医学杂志.2005,85(26):1868-1870.
    123.Reya T,Clevers H.Wnt signaling in stem cells and cancer.[J]Nature.2005,434(7035):843-850.
    124.Parkin D M,Bray F,Ferlay J,et al.Estimating the word cancer burden:[J]Globocan 2000.Int J Cancer.2001,94:153-156.
    125.Bissell MJ,Rizki A,and Mian IS.Tissue architecture:The ultimateregulator of breast epithelial function.[J]Curr.Opin.Cell Biol.2003,15(6):753-762.
    126.Marco Conti,Minnie Hsieh,Jy-Young Park.Role of the Epidermal Growth Factor Network in Ovarian Follicles.[J]Molecular Endocrinology.2006,20(4):715-723.
    127.Thiery JP,.Chopin D.Epithelial cell plasticity in development and tumor progression.[J]Cancer Metastasis Rev.1999,18(1):31-42.
    128.Tang BL.ADAMTS:a novel family of extracellular matrix proteases.[J]Biochem Cell Biol.2001,33(1):33-44.
    129.Fowlkes JL,Winkler MK.Exploring the interface between metallo-proteinase activity and growth factor and cytokine bioavailability.[J]Cytokine Growth Factor Rev,2002,13(3):277-87.
    130.Hess AR,Seftor EA,Seftor RE,et al.Phosphoinositide3-kinase regulates membrane Type 1-matrix metalloproteinase(MMP) and MMP-2 activity during melanomacell vasculogenic mimicry.[J]Cancer Res.2003,63(16):4757-4762.
    131.Hendrix MJ,Seftor EA,Kirschmann DA,et al.Remodeling of the microenvironment by aggressive melan-oma tumor cells.[J]Ann N Y Acad Sci.2003,99(5):151-161.
    132.Kaur B,Khwaja FW,Severson EA,et al.Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis.[J]Neuro-oncol.2005,7(2):134-153
    133.Gritti A,Vescovi AL,Galli R.Adult neural stem cells:plasticity and development potential.[J]J Physiol Paris.2002,96:81-90.
    134.陈骅,黄强,董军,等.肿瘤起源细胞学说与争论.[J]癌症.2006,25(6):779-784.
    135.Rattis F M,Voermans C,Reya T.Wnt signaling in the stem cell niche.[J]Curr Opin Hematol.2004,11(2):88-94
    136.Reya T,Clevers H.Wnt signaling in stem cells and cancer.[J]Nature.2005,434(7035):843-850.
    137.Conti L,Pollard S M,Gorba T,et al.Niche-independent symmetrical self-renewal of a mammalian tissue stem cell.[J]PLos Biol.2005,3(9):e283.
    138.Raff MC.Glial cell diversification in the rat optic nerve.[J]Science.1989,243(4897):1450-1455.
    139.Jamieson CH,Ailles LE,Dylla SJ,et al.Granulocyte/macrophage progenitors as candidate leukemic stem cells in blast-crisis CML.[J]N Engl J Med.2004,351:657667.
    140.Singh SK,Hawkins C,Clarke ID,et al.Identification of human brain tumor initiation cells.[J]Nature.2004,432:396-401
    141.Zheng X,Shen G,Yang X,et al.Most C6 cell are cancer stem ells:evidence from clonal and population analyses.[J]Cancer Res.2007,67(8):3691-3697.
    142.Zheng QB,Ji XY,Hang Q,et al.Differentation profile of brain tumor stem cells:a comparaive study with neural stem cells.[J]Cell Research.2006,16(12):909-915.
    143.黄强.胶质瘤生成细胞及其在胶质瘤起源中的作用.[J]中华神经外科杂志.2006,22(12):773-774.
    144.Recht L,Jiang TC,Savarese T,et al.Neural stem cell and neuro-oncology:quo vadis?[J]Cellular Biochem.2003,88(1):11-19.
    145.林志雄 黄强.神经胶质瘤微生态系统研究.[J]中国肿瘤.2005,14(2):82-84.
    146.Shook D,Keller R.Mechanisms,mechanics and function of epithelial mesenchymal transitions in early development.[J]Mechanisms of Development.2003,120(11):1351-1383.
    147.De Wever O,Mareel M.Role of tissue stroma in cancer cell invasion.[J]J Pathol.2003,200(4):429-447.
    148.Thiery JP,Chopin D.Epithelial cell plasticity in development and tumor progression.[J]Cancer Metastasis Rev.1999,18(1):31-42.
    149.Savagner P.Leaving the neighborhood:molecular mechanisms involved during epithelial mesenchymal transition.[J]Bio Essays.2001,23:912-923.
    150.Plisov SY,Ivanov SV,Yoshino K,et al.Mesenchymal-epithelial transition in the developing metanephric kidney:gene expression study by differential display.[J]Genesis.2000,27(1):22-31.
    151.Maniotis AJ,Folberg R,Hess A,et al.Vascular channel formation by human melanoma cells in vivo and vitro:vasculogenic mimicry.[J]Am J Pathol.1999,155(3):739-752.
    152.Zhang S,Guo H,Zhang D,et al.Microcirculation patterns in different stages of melanoma growth.[J]Oncol Rep.2006,15(1):15-20.
    153.Chang YS,di Tomaso E,McDonald DM,et al.Mosaic blood vessels in tumors:frequency of cancer cells in contact with flowing blood.[J]Proc Natl Acad Sci USA.2000,97(26):14608-14613.
    154.Folkman J.Can mosaic tumor vessels facilitate molecular diagnosis of cancer?[J]Proc Natl Acad Sci USA.2001,98(2):398-400.
    155.Yue WY,Chen ZP.Vasculogenic mimicry in astrocytoma.Journal of histochemistry and cytochemistry.[J]JHC express.2005,53:997-1002.
    156.储亮,黄强,翟德忠,等.ABCG2在胶质瘤组织中的表达及意义.[J]癌症,2007,26(10):1090-1094.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700