凹凸棒石/Fe_3O_4/碳复合材料的制备及其对苯酚的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用水热法制备了凹凸棒石/碳和凹凸棒石/Fe3O4/碳复合材料,通过在凹凸棒石表面负载碳和Fe3O4改善凹凸棒石亲有机性和磁性能,并考察了制备条件对材料微观结构和吸附性能的影响。主要内容如下:
     (1)以凹凸棒石、葡萄糖为原料,硫酸亚铁铵为催化剂,水热180℃反应12h,制得凹凸棒石/碳复合材料。葡萄糖分子在水热条件下碳化为直径50nm的碳颗粒,负载在凹凸棒石表面,复合材料中含有-CH有机官能团。随着反应温度的升高、时间的延长和催化剂投入量的增加,凹凸棒石棒束表面的碳层厚度逐渐增加。
     (2)通过静态吸附实验,凹凸棒石/碳复合材料对苯酚的去除率达到70%,是凹凸棒石原矿(18%)的3倍之多;复合材料对苯酚的吸附动力学符合准二级动力学方程,吸附热力学符合Langmuir等温吸附方程;吸附热力学参数吉布斯自由能变△G0、焓变△H0和熵变△S0均为负值,说明吸附剂对苯酚的吸附是一个自发、放热和熵减小的过程。
     (3)分别以氨水和NaOH调节pH值制备凹凸棒石/Fe3O4/碳复合材料,产物的磁化率值分别为15562.92×10-8m3/kg和16064.64×10-8m3/kg,用磁分离工序即可把该吸附材料从溶液中快速分离出来;铁的磁性氧化物部分以Fe304的形态负载到了凹凸棒石表面,其含量分别为5.44%和6.14%;碳以无定形的形态负载在凹凸棒石晶体表面;以氨水调节pH值制备的复合材料中含碳量为20.59%,对苯酚的去除率为57%;而以NaOH调节pH值所得复合材料中含碳27.78%,对苯酚的去除率为61%。
Palygorskite/carbon and palygorskite/Fe3O4/carbon composites were successfully prepared by hydrothermal method and the adsorption of phenol on the two as-prepared composites were also studied. The work was summarized as followings.
     (1) Palygorskite, glucose and metal salt as catalyst are utilized as raw materials for synthesizing palygorskite/carbon composite via hydrothermal carbonization at a mild temperature. Glucose is carbonized and then forms nanocarbon with diameter of 50 nm, which grows on the surface of palygorsktie. The composite material contains -CH groups and the thickness of carbon layer can be controlled by reaction time, reaction temperature and catalyst content.
     (2) Adsorption experiment shows that the removal efficiency of phenol by palygorskite/carbon composite is three times higher than that of unmodified palygorskite. The adsorption kinetics fits the laws of pseudo-second order kinetics. Langmuir adsorption model can be a better description of adsorption behavior of phenol on the palygorskite/ carbon nanocomposites. The thermodynamics parameters including standard Gibb's free energy changes (△G0), enthalpy (△H0), and entropy changes (△S0) are negative, indicating the adsorption thermodynamics of phenol on nanocomposites is a spontaneous and exothermic process.
     (3) The palygorskite/Fe3O4/carbon composite is synthesized by hydrothermal method, the pH value is adjusted by ammonia or sodium hydroxide. The results show that the nanocomposite can be subsequently removed from aqueous solution through a simple magnetic procedure. The magnetic iron oxides in the form of Fe3O4 are loaded onto the surface of palygorskite. The content of Fe3O4 and carbon is 5.44% and 20.59%, respectively. The removal efficiency of phenol on composite is 57% when the pH value is adjusted by ammonia. However, the removal rate is changed to 6.14%, 27.78% and 61% respectively while the pH value is adjusted by sodium hydroxide.
引文
[1]陈天虎,徐晓春,岳书仓.苏皖凹凸棒石粘土纳米矿物学及地球化学[M].科学出版社,北京,2004:1-2.
    [2]郑茂松,王爱勤,詹庚申.凹凸棒石黏土应用研究[M].化学工业出版社,北京,2007:1-5.
    [3]Bradley WF. The structural scheme of attapulgite[J]. American Mineralogist,1940, 25(6):405-410.
    [4]陈天虎,徐晓春,岳书仓.苏皖凹凸棒石粘土纳米矿物学及地球化学[M].科学出版社,北京,2004:97-98.
    [5]吴国华,丁文江,罗吉荣.凹凸棒粘土对消失模涂料流变性的影响[J].硅酸盐学报,2002,20(1):81-85.
    [6]郑茂松,王爱勤,詹庚申.凹凸棒石黏土应用研究[M].化学工业出版社,北京,2007:47-51.
    [7]Blanco C, Herrero J, Mendioroz S, et al. Infrared studies of surface acidity and reversible folding in palygorskite[J]. Clays and Clay Minerals,1988,36(4):364-368.
    [8]Windsor S A, Tinker MH. Electro-fluorescence polarization studies of the ineraction of fluorescent dyes with clay minerals in suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1999,148(1-2):61-73.
    [9]Lure MA, Kurets IZ, Reznikov SA, et al. Formation and physicochemical and catalytic properties of the Mo-containing catalysts for hydrotreatment based on various supports:Ⅲ effect of support on adsorption and conversion of thiophene[J]. Kinetics and Catalysis,1998,39(4):542-546.
    [10]Rong JF, Li HQ, Jing ZH, et al. Novel organic/inorganic nanocomposite of polyethylene:Ⅰ. Preparation via in situ polymerization approach[J]. Journal of Applied Polymer Science,2001,82(8):1829-1837.
    [11]尹琳,陆现彩,艾飞.Ti-凹凸棒石催化剂对染料废水的臭氧氧化降解的影响[J].硅酸盐学报,2003,31(1):66-69.
    [12]Tian M, Qu CD, Feng YX, et al. Structure and properties of fibrillar silicate/SBR composites by direct blend process[J]. Journal of Materials Science,2003,38(24): 4917-4924.
    [13]金叶玲,钱运华,陈静,等.凹凸棒石在双组分聚氨酯涂料中的应用[J].应用化工,2005,34(10):601-603.
    [14]胡盛,杨眉,沈上越,等.凹凸棒石的改性及其在天然橡胶的饿应用[J].硅酸盐学报,2008,36(6):858-861.
    [15]钱运华,金叶玲,吴洁,等.凹凸棒石黏土填充橡胶研究[J].非金属矿,2000,23(6):25-26.
    [16]Wang XH, Zheng Y, Wang AQ, et al. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites[J]. Journal of Hazardous Materials,2009,168(2-3):970-977.
    [17]Frini-Srasra N, Srasra, E. Acid treatment of south tunisian palygorskite:removal of Cd(II) from aqueous and phosphoric acid solutions[J]. Desalination,2010,250(1): 26-34.
    [18]Fan QH, Li Z, Zhao HG, et al. Adsorption of Pb(Ⅱ) on palygorskite from aqueous solution:effects of pH, ionic strength and temperature[J]. Applied Clay Science,2009, 45(3):111-116.
    [19]Fan QH,Shao DD, Lu Y, et al. Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(Ⅱ) to Na-attapulgite[J]. Chemical Engineering Journal,2009,150(1):188-195.
    [20]Zhao YJ, Chen Y, Li MS. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite[J]. Journal of Hazardous Materials,2009,171(1-3): 640-646.
    [21]Frost RL, Xi YF, He HP. Synthesis, characterization of palygorskite supported Zero-Valent iron and its application for methylene blue adsorption[J]. Journal of Colloid and Interface Science,2010,341(1):153-161.
    [22]吴国华,丁文江,罗吉荣.凹凸棒粘土对消失模涂料流变性的影响[J].硅酸盐学报,2002,20(1):81-85.
    [23]王国平,徐庆柏.凹凸棒石的特性及其在电焊条中应用研究[J].非金属矿,1996,19(5):31-33.
    [24]易发成,田煦,郑自立,等.坡缕石的热学性质研究[J].非金属矿,1997,20(5):29-31.
    [25]周平.利用天然凹凸棒石处理造纸黑液[J].中国非金属矿工业导刊,2000,10(4):14-16.
    [26]Lilian Z, Abate G, Dos SL, et al. Montmorillonite as an adsorbent for extraction and concentration of atrazine, propazine, deethylatrazine, deisopropylatrazine and hydroxyatrazine[J]. Analytica Chimica Acta,2006,579(1):81-87.
    [27]Abate G, Santos LBO, Colombo Sandro M, et al. Removal of fulvic acid from aqueous media by adsorption onto modified vermiculite[J]. Applied Clay Science,2006, 32(3-4):261-270.
    [28]Pantani O, Calamai L, Fusi P. Influence of clay minerals on adsorption and degradation of a sulfonylurea herbicide (Cinosulfuron)[J]. Applied Clay Science,1994, 8(5):373-387.
    [29]Haydn H. Murray. Traditional and new applications for kaolin, smectite and palygorskite: a general over view[J]. Applied Clay Science,2000,17(5-6):207-221.
    [30]包军杰,余贵芬,牛牧晨.邻硝基苯酚在有机改性凹凸棒土上的吸附行为[J].环境化学,2007,26(3):339-342.
    [31]Barrer RM, Mackenzie N, Macleod D. Sorption by attapulgite Selectivity shown by attapulgite, sepiolite, and montmorillonite for paraffins[J]. Journal of Physical Chemistry,1954,58(7):568-572.
    [32]Byrappa K, Adschiri T Hydrothermal technology for nanotechnology[J]. Progress in Crystal Growth and Characterization of Materials,2007,53(2):117-166.
    [33]Chen QW, Qian YT, Chen Zuyao, et al. Hydrothermal epitaxy of highly oriented tio2 thin-films on silicon[J]. Applied Physics Letters,1995,66(13):1608-1610.
    [34]Shi E, Cho CR, Jang MS, et al. The formation mechanism of barium-titanate thin-film under hydrothermal conditions[J]. Journal of Materials Research,1994,9(11): 2914-2918.
    [35]Mi YZ, Hu WB.Synthesis of carbon micro-spheres by a glucose hydrothermal method[J]. Materials Letters,2008,62(8-9):1194-1196.
    [36]Sun XM, Li YD. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie,2004,43(5):597-601.
    [37]Sun XM, Li YD. Ag@C Core/Shell structured nanoparticles:controlled synthesis, characterization, and assembly[J]. Langmuir,2005,21(13):6019-6024.
    [38]Sun XM, Liu JF, Li YD. Oxides@C core-shell nanostructures:one-Pot synthesis, rational conversion, and Li storage property[J]. Chemistry of Materials,2006,18(15): 3486-3494.
    [39]Qian HS, Yu SH, Luo LB, et al. Synthesis of uniform Te@ carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by thehydrothermal carbonization of glucose[J]. Chemistry of Materials,2006,18(8): 2102-2108.
    [40]Gong JY, Yu SH, Qian HS, et al. PVA-assisted hydrothermal synthesis of copper@carbonaceous submicrocables:thermal stability, and their conversion into amorphous carbonaceous submicrotubes[J]. Journal of Physical Chemistry C,2007, 111(6):2490-2496.
    [41]Li FS, Wang Y, Wang T. Synthesis of Fe3O4 particle-chain microwires in applied magnetic field[J]. Journal of Solid State Chemistry,2007,180(4):1272-1276.
    [42]Xu J, Yang HB, Fu WY, et al. Preparation and characterization of carbon fibers coated by Fe3O4 nanoparticles. Materials Science and Engineering B,2006,132(3):307-310.
    [43]Hironori I, Kosuke T, Takuya N, et al. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis[J]. Journal of Colloid and Interface Science,2007,314(1):274-280.
    [44]Zheng YH, Cheng Y, Bao F, et al. Synthesis and magnetic properties of Fe3O4 nanoparticles[J]. Materials Research Bulletin,2006,41(3):525-529.
    [45]王春艳,王保国,米镇涛.磁分离技术用于处理含油污水[M].北京:化学工业出版社,2000:68-69.
    [46]Chen Dairong, Xu Ruren. Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powder[J]. Material Research Bull,1998,33(7):1015-1021.
    [47]刘奕,高勇谦,郭范.磁性Fe3O4六方片状晶体和单晶纳米棒的水热合成[J].人工晶体学报,2005,34(5):782-785.
    [48]吴明在,张启花,刘艳美,等.水热法制备Fe3O4粒子及其形貌控制[J].安徽大学学报(自然科学版),2009,33(3):60-64.
    [49]Fan R, Chen X, Gui Z, et al. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4[J]. Material Research Bull,2001,36(3-4):497-502.
    [50]国家环保局.水和废水分析检测方法(第三版)[M].北京:中国环境科学出版社,1986,407-408.
    [51]Rengaraj S, Moon SH, Sivabalan R, et al. Agricultural solid waste for the removal of organics:adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Management,2002,22(5):543-548.
    [52]Aksu Z, Yener J. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Management,2001,21(8):695-702.
    [53]陈天虎,徐晓春,岳书仓.苏皖凹凸棒石粘土纳米矿物学及地球化学[M].科学出版社,北京,2004:65-69.
    [54]Huang JH, Wang XG, Jin QZ. Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attppulgite[J]. Journal of Environmental Management,2007, 84(2):229-236.
    [55]包军杰,余贵芬,蒋新,等.改性凹凸棒石对模拟含酚废水处理机制的研究[J].环境化学,2006,25(1):216-220.
    [56]庆承松,宋浩,陈天虎,等.凹凸棒石/γ-Fe2O3/C纳米材料的制备与表征[J].硅酸盐学报,2009,37(4):64-69.
    [57]Leboda R, Charmas B, Chodorowski S, et al. Improved carbon-mineral adsorbents derived from cross-linking carbon-bearing residues in spent palygorskite[J]. Microporous and Mesoporous Materials,2006,87(3):207-216.
    [58]Bakandritsos A, Simopoulos, A, Petridis D. Carbon nanotube growth on a swellable clay matrix[J]. Chemistry of Materials,2005,17(13):3468-3474.
    [59]Cui XJ, Antonietti M, Yu SH. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates[J]. Small, 2006,2(6):756-759.
    [60]Sun XM, Li YD. Hollow carbonaceous capsules from glucose solution[J]. Journal of Colloid and Interface Science,2005,291(1):7-12.
    [61]张玉军.物理化学[M].郑州大学出版社,郑州,2006:245-246.
    [62]Hu B, Wang K, Liu L, et al. Functional carbonaceous materials from hydrothermal carbonization of biomass and energy storage, The 9th International Symposium On Green Chemistry in China,2008.
    [63]Mohamed F, Khater W, Mostafa R. Characterization and phenols sorptive properties of carbons activated by sulphuric acid[J]. Chemical Engineering Journal,2006,116(1): 47-52.
    [64]Chen YM, Lin T, Huang C, et al. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida[J]. Journal of Hazardous Materials, 2007,148(3):660-670.
    [65]陈天虎.凹凸棒石粘土吸附废水中污染物机理探讨[J].高校地质学报,2000,6(2):265-270.
    [66]周济元,丁步彬,顾金龙,等.再论凹凸棒石黏土应用现状及高附加值产品开发[J].非金属矿,2006,29(5):1-5.
    [67]陈天虎,冯有亮,史晓莉.凹凸棒石与酸反应产物和结构演化的研究[J].硅酸盐学报,2003,31(10):959-964.
    [68]Wang J, Chen QW, Zeng C, et al. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Advanced Materials 2004,16(2):137-140.
    [69]Deng JG, He CL, Peng YX, et al. Magnetic and conductive Fe3O4-polyaniline nanoparticles with core-shell structure[J]. Synthetic Metals 2003,139(2):295-301.
    [70]Huang ZB, Tang FQ. Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles[J]. Journal of Colloid and Interface Science,2004, 275(1):142-147.
    [71]Zhu HL, Yang DR, Zhu LM. Hydrothermal growth and characterization of magnetite (Fe3O4) thin films[J]. Surface & Coatings Technology,2007,201(12):5870-5874.
    [72]Fan N, Ma XC, Liu XZ, et al. The formation of a layer of Fe3O4 nanoplates between two carbon films[J]. Carbon,2007,45(9):1839-1846.
    [73]杨瑞成,郧栋,穆元春.纳米Fe3O4磁流体的制备及表征[J].兰州理工大学学报,2008,34(1):22-25.
    [74]Hironori I, Kosuke T, Takuya N, et al. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic propertiesby controlled hydrolysis[J]. Journal of Colloid and Interface Science,2007,314(1):274-280.
    [75]Tsai WT, Lai CW. Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth[J]. Journal of Hazardous Materials,2006,134(1-3):144-148.
    [76]Leboda R, Charmas B, Chodorowski S, et al. Improved carbon-mineral adsorbents derived from cross-linking carbon-bearing residues in spent palygorskite[J]. Microporous and Mesoporous Materials,2006,87(3):207-216.
    [77]Pollard STP, Sollars CJ, Perry R. A clay-carbon adsorbent derived from spent bleaching earth:Surface characterisation and adsorption of chlorophenols from aqueous solution[J]. Carbon,1992,30(8):639-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700