功能梯度形状记忆合金热—力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能梯度形状记忆合金(Functionally Graded Shape Memory Alloy,简称FG-SMA)是一种新兴的功能材料,其不仅具有功能梯度材料(Functionally Graded Material,简称FGM)的连续变化的材料特性,能够消除普通层合材料中的应力集中,还具有形状记忆合金(Shape Memory Alloy,简称SMA)的独特的形状记忆效应和超弹性。FG-SMA以其独特的物理力学性能引起了材料界的广泛关注和研究,并开始被应用到许多不同的实际工程领域,这些实际应用必须以该材料的物理力学性能为前提。本文对不同载荷作用下的不同结构形式的FG-SMA的力学性能进行了研究,主要内容如下:
     首先对由弹性材料和弹塑性材料组成的FGM简支梁受均布载荷作用的弹塑性变形行为进行分析,得到这种FGM梁受力变形的理论解。文中采用幂函数来描述FGM梁中组分材料体积分数的变化情况,应用细观力学平均化的方法确定材料的整体性能。这种方法可以避免直接假设FGM的整体性能的变化,而且可以考虑不同材料的泊松比的影响。此外,对于本文研究的FGM梁,只有一相材料(弹塑性材料)发生屈服,屈服函数完全由弹塑性材料的应力确定,而非FGM的整体应力。这种方法更加接近材料的真实情况,而已有的直接假设FGM整体性能变化的方法无法真实模拟该情况。
     通过充分考虑组分材料各自的本构关系,本文给出了FG-SMA复合材料梁在纯弯曲载荷作用下的受力变形行为的理论解。其中SMA的本构关系由分段线性模型确定,这种方法可以避免直接考虑马氏体体积分数的复杂的变化形式,有效的简化计算,并考虑了SMA的拉压不对称特性。数值计算结果显示,与普通FGM(不含SMA)梁相比,FG-SMA梁能显著降低梁内的最大应力。通过与实验数据对比可知,上述方法能够较好的模拟FG-SMA复合材料的力学行为。
     将热传导的理论与复合材料力学的理论相结合,本文对受梯度温度载荷作用的FG-SMA复合材料板的热力学性能进行了研究,给出了确定板内某位置处相变状态的相变函数和计算板内热应力的方法。研究结果表明,在不同的上下表面温度作用下,板内的温度场呈非线性的分布;由于温度和材料性能的不同,板内首先发生马氏体相变的位置和区域并不固定,需要研究特定温度下的相变函数来确定板内某位置处的相变状态。与已有文献对比显示,本文给出的研究FG-SMA执力学性能的方法是准确有效的。
     功能梯度多孔形状记忆合金(Functionally Graded Porous Shape Memory Alloy,简称FGP-SMA)是一种特殊的多孔SMA,其材料内部的孔隙率沿着梯度方向不断变化。本文应用细观力学的理论,充分考虑材料的微观组成和组分材料之间的相互作用,建立了一个FGP-SMA的细观力学本构模型,该模型可预测FGP-SMA在外力和温度等复杂载荷作用下的力学行为。应用该模型对FGP-SMA圆柱在单轴压缩下的力学行为进行了研究。
     通过对多孔SMA的相变机理进行研究,本文提出了一个新的考虑了静水压力的相变势函数,建立了一个FGP-SMA的宏观唯象模型。此外,针对FGP-SMA材料的内部结构特点,介绍了一种能够用于研究FGP-SMA力学性能的有限元建模方法。数值计算结果显示,与单一孔隙率多孔sMA的应力应变关系曲线类似,FGP-SMA的平均应力随着应变的增大而平滑的增大,没有明显的相变转折点。此外,有限元分析结果显示,材料内部的马氏体相变首先发生在孔隙周围的高应力集中区域,并逐渐向其它区域扩展。
     文中建立的细观力学模型、宏观唯象模型和有限元模型均能较好的模拟FGP-SMA的力学行为,其中细观力学模型的结果比宏观唯象模型的结果更接近实验数据,但宏观唯象模型在应用时更加简便,计算简单,无需迭代。
Functionally Graded Shape Memory Alloy (FG-SMA) is a new kind of functional materials which possesses the excellent properties of both Functionally Graded Materials (FGM) and Shape Memory Alloys (SMA), such as the property of FGM to eliminate the stress singularity and the shape memory effect and pseudoelasticity of SMA. Due to its particular properties of physics and mechanics, FG-SMA has attracted wide attention and investigations. FG-SMA has potential applications in many fields, and all these applications should base on the mechanical properties of this material. In this article, the mechanical behaviors of FG-SMA with different structures under different loads are investigated in detail, and the main works are as follows:
     The elastoplastic behavior of a FGM simply supported beam consisting of elastic and elastoplastic materials under uniformly distributed load is investigated, and the theoretical solutions are obtained. A power function is used to describe the volume fractions of constituent materials, and the average property of the FGM is obtained by using the averaging method of micromechanics. This method can avoid the assumption of the varing properties of the whole material, and can consider the different Possion's ratios of different constituent materials. What's more, only the elastoplastic material in the FGM beam will yield, and the yield function is determined by the stress of the elastoplastic material only, rather than the average stress of the FGM. The method used in this work is closer to real material, while the method by assuming the variation of the whole properties of FGM can not describe this status really.
     Considering the constitutive relations of each constituent, theoretical results of the mechanical behavior of a FG-SMA beam under pure bending are given out. The constitutive relation of SMA is described by a piecewise linear model. This method can simplify the calculation effectively by avoiding directly considering the complex form of the martensite volume fraction. It can be studied that compared to common FGM, FG-SMA can decrease the maximum stress greatly. Compared to experimental results, it can also be learned that this method can describe the mechanical behaviors of FG-SMA very well.
     By combining the heat conduction theory with the theory of the mechanics of composite materials, the thermomechanical properties of a FG-SMA plate under graded temperature load is investigated, and a transformation function which can be used to determine the transformation status of a position in the plate is given out, as well as the method to calculate the thermal stress in the plate. The numerical results show that under different surface temperatures, the temperature in the plate distributes nonlinearly along the thickness direction. The position at which the martensite transformation takes place first is not fixed due to the difference of the temperature and material properties at different position of the plate, so it needs to consider the transformation function under certain surface temperatures to determine the transformation areas. Compared to the existing results, it can be learned that the method provided in this work is valid to study the thermal properties of FG-SMA.
     Functionally Graded Porous Shape Memory Alloy (FGP-SMA) is a new kind of porous SMA, in which the porosity varies along the gradient direction. According to the theory of mesomechanics, considering the interaction of the components, a mesomechanical constitutive model of FGP-SMA is established, which can be used to describe the mechanical behavior of FGP-SMA under complex loads, including stress and temperature. With this model, the mechanical behavior of a FGP-SMA cylinder under uniaxial compression is investigated.
     By investigating the transformation mechanism of porous SMA, a new transformation function considering the effect of hydrostatic stress is provided, as well as a macro phenomenological model of FGP-SMA. What's more, a new method for creating the finite element model of FGP-SMA is also given out. It can be studied from the numerical results that similar to common porous SMA, the average stress of FGP-SMA increases smoothly with the increase of strain, without an obvious turning point of transformation. Furthermore, the finite element results show that the transformation starts from the areas around the porous where the stress singularity is high, and then expand to other areas.
     The mesomechanical model, the macro phenomenological model and the finite element model provided in this work all can describe the mechanical behaviors of FGP-SMA very well, and the results of the mesomechanical model have more in common with the experimental data than the results of the macro model, while the macro model can simplify the calculation, avoiding iteration.
引文
[1]王保林,韩杰才,张幸红.非均匀材料力学.北京:科学出版社.2003.
    [2]Yamanouchi M., Koizum M., Hirai T., Shiota I. Proceedings of the first international symposium on functionally gradient materials. Japan.1990,1-15.
    [3]Koizumi M. The concept of FGM, ceramic transaction, functionally gradient materials. The Amercian Ceramic Society.1993,34:3-10.
    [4]Koizumi M. FGM activities in Japan. Composites B.1997,28:1-4.
    [5]Rabin B. H., Shiota I. Functionally gradient materials. Materials Research Bulletin.1995,20: 14-18.
    [6]余茂黎,魏明坤.功能梯度材料的研究动态.功能材料.1992,23:184-191.
    [7]Hirai T., Chen L. Recent and prospective development of functionally graded materials in Japan. Materials Science Forum.1999,308-311:509-514.
    [8]李永,宋健,张志民.梯度功能力学.北京:清华大学出版社.2003.
    [9]李碧容,雍歧龙,张国亮.功能梯度材料的发展、制备方法及应用前景.云南工业大学学报.1999,15(4):56-58.
    [10]金灯仁.PzT、PZT/ZnO系梯度功能压电陶瓷及其执行器的研制与表征.上海交通大学博士学位论文.2003.
    [11]Luo Y., Li S., Chen J. Preparation and characterization of Al2O3-Ti3SiC2 composites and its functionally graded materials. Materials Research Bulletin.2003,38(1):69-78.
    [12]冯忆艰,杜双松,程继贵,胡献国.活塞顶部功能梯度涂层的有限元模拟热分析.农业机械学报.2008,39(11):30-34.
    [13]Ghorbanpour Arani A., Kolahchi R., Mosallaie Barzoki A. A., Loghman A. Electro-thermo-mechanical behaviors of FGPM spheres using analytical method and ANSYS software. Applied Mathematical Modelling.2012,36:139-157.
    [14]张艳艳,果立成,白晓明,于红军.热载荷作用下含裂纹功能梯度板的有限元分析.哈尔滨工业大学学报.2011,43(1):12-15.
    [15]Kim J. H., Paulino G H. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. International Journal for Numerical Methods in Engineering. 2002,53:1903-1935.
    [16]Kurdjumov G.V., Khandros L. G.First reports of the thermoelastic behaviour of the martensitic phase of Au-Cd alloys. Doklady Akademii Nauk SSSR.1949,66:211-213.
    [17]Buehler W. J., Gilfrich J. V., Wiley R. C. Effects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of Applied Physics.1963,34(5): 1475-1482.
    [18]Weschler M. S., Lieberman D. S.,Read J. R. On the theory for the formation of martensite. Transaction of ASME.1976,5:1503-1515.
    [19]Sittner P., Takakura M., Hara Y., Tokuda M. On transformation pathways of general stress controlled thermoelastic martensitic transformation in shape memory alloys. Journal de Physique IV.1996, VI:357-366.
    [20]朱玉萍.形状记忆合金材料的细观力学模型若干问题研究.北京交通大学博士学位论文.2007.
    [21]Vandemeer R., Ogle J., Northcutt W. J. A phenomenological study of the shape memory effect in polycrystalline uranium-niobium alloys. Metallurgical Transactions A.1984,12A:733-742.
    [22]贡长生,张克立.新型功能材料.北京:化学工业出版社.2001.1.
    [23]刘兵飞.多孔形状记忆合金的相变机理和力学性能研究.北京交通大学博士学位论文.2012.
    [24]刘芹,任建亭,姜节胜,郭运强.SMA本构模型及其应用的研究进展.力学进展.2007,37:189-204.
    [25]Patoor E., Lagoudas D. C., Entchev P. B., Brinson L. C., Gao X. Shape memory alloys, Part I: General properties and modeling of single crystals. Mechanics of Materials.2006,38(5-6): 391-429.
    [26]Lagoudas D. C., Entchev P. B., Popov P., Patoor E., Brinson L. C., Gao X. Shape memory alloys, Part Ⅱ:Modeling of polycrystals. Mechanics of Materials.2006,38(5-6):430-462.
    [27]Raniecki B., Lexcellent C. Thermodynamics of isotropic pseudoelasticity in shape memory alloys. European Journal of Mechanics-A/Solids.1998,17(2):185-205.
    [28]Raniecki B., Rejzner J., Lexcellent C. Anatomization of hysteresis loops in pure bending of ideal pseudoelastic SMA beams. International Journal of Mechanical Sciences.2001,43(5): 1339-1368.
    [29]Rejzner J., Lexcellent C., Raniecki B. Pseudoelastic behaviour of shape memory alloy beams under pure bending:experiments and modeling. International Journal of Mechanical Sciences. 2002,44(4):665-686.
    [30]Qidwai M. A., Lagoudas D. C. On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. International Journal of Plasticity.2000,16: 1309-1343.
    [31]Lexcellent C., Vivet A., Bouvet C., Calloch S., Blanc P. Experimental and numerical determinations of the initial surface of phase transformations under biaxial loading in some polycrystalline shape-memory alloys. Journal of the Mechanics and Physics of Solids.2002, 50(12):2717-2735.
    [32]Brinson L. C. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of Intelligent Material Systems and Structures.1993,4:229-242.
    [33]Leclercq S., Lexcellent C. A general macroscopic description of the thermomechanical behavior of shape memory alloys. Journal of the Mechanics and Physics of Solids.1996,44(6): 953-980.
    [34]Lagoudas D. C., Shu S. G.Residual deformation of active structures with SMA actuators. International Journal of Mechanical Sciences.1999,41:595-619.
    [35]Popov P., Lagoudas D. C. A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of selfaccommodated martensite. International Journal of Plasticity.2007,23(10-11):1679-1720.
    [36]Lexcellent C., Bourbon G.Thermodynamical model of cyclic behavior of Ti-Ni and Cu-Zn-Al shape memory alloys under isothermal undulated tensile tests. Mechanics of Materials.1996, 24:59-73.
    [37]Fischer F., Oberaigner E., Tanaka K., Nishimura F. Transformation induced plasticity revised an updated formulation. International Journal of Solids and Structures.1998,35(18): 2209-2227.
    [38]Lexcellent C., Leclerq S., Gabry B., Bourbon G.The two way shape memory effect of shape memory alloys:An experimental study and a phenomenological model. International Journal of Plasticity.2000,16:1155-1168.
    [39]Abeyaratne R., Kim S. Cyclic effects in shape-memory alloys:a onedimensional continuum model. International Journal of Solids and Structures.1997,34(25):3273-3289.
    [40]Bo Z., Lagoudas D. C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I:Theoretical Derivations. International Journal of Engineering Science.1999, 37:1089-1140.
    [41]Lagoudas D., Bo Z. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, part Ⅱ:Material characterization and experimental results for a stable transformation cycle. International Journal of Engineering Science.1999,37:1141-1173.
    [42]Bo Z., Lagoudas D. C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part Ⅲ:Evolution of plastic strains and twoway shape memory effect. International Journal of Engineering Science.1999,37:1175-1203.
    [43]Bo Z., Lagoudas D. C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part Ⅳ:Modeling of minor hysteresis loops. International Journal of Engineering Science.1999,37:1205-1249.
    [44]Lagoudas D. C., Entchev P. B. Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys, Part I:Constitutive model for fully dense SMAs. Mechanics of Materials.2004,36(9):865-892.
    [45]Shaw J. A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities. International Journal of Solids and Structures.2002,39(5):1275-1305.
    [46]Patoor E., Amrani M. E., Eberhardt A., Bervieller M. Determination of the origin for the dissymmetry observed between tensile and compression tests on shape memory alloys. Journal de Physique IV.1995,5(C2):495-500.
    [47]Sittner P., Novak V. Anisotropy of Cu-based shape memory alloys in tension/compression thermomechanical loads. Journal of Engineering Materials and Technology.1999,121(1): 48-55.
    [48]Gall K., Sehitoglu H., Chumlyakov Y. I., Kireeva I.V. Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi. Acta Materialia.1999, 47(4):1203-1217.
    [49]Sittner P., Lukas P., Novaka V, Daymondc M. R., Swallowe G.M. In situ neutron diffraction studies of martensitic transformations in NiTi polycrystals under tension and compression stress. Materials Science and Engineering:A.2004,378(1-2):97-104.
    [50]Adharapurapu R., Jiang F. Response of NiTi shape memory alloy at high strain rate:A systematic investigation of temperature effects on tension-compression asymmetry. Acta Materialia.2006,54(17):4609-4620.
    [51]Dolce M., Cardone D. Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion. International Journal of Mechanical Sciences.2001,43(11):2631-2656.
    [52]Sun Q. P., Li Z. Q. Phase transformation in superelastic NiTi polycrystalline micro-tubes undertension and torsion-from localization to homogeneous deformation. International Journal of Solids Structures.2002,39:3797-3809.
    [53]Thamburaja P., Anand L. Superelastic behavior in tension-torsion of an initially-textured Ti-Ni shape-memory alloy. International Journal of Plasticity.2002,18:1607-1617.
    [54]Grabe C., Bruhns O. T. Tension/torsion tests of pseudoelastic polycrystalline NiTi shape memory alloys under temperature control. Materials Science and Engineering:A.2008, 481-482:109-113.
    [55]Peng X., Pi W., Fan J. A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs. International Journal of Plasticity.2008,24:966-990.
    [56]Lim T. J., McDowell D. L. Mechanical behavior of a Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading. Journal of Engineering Materials and Technology.1999,121(1):9-18.
    [57]Bouvet C., Calloch S., Lexcellent C. Mechanical behavior of a Cu-Al-Be shape memory alloy under multiaxial proportional and nonproportional loadings. Journal of Engineering Materials and Technology.2002,124(1):112-124.
    [58]Thamburaja P., Anand L. Polycrystalline shape-memory materials:effect of crystallographic texture. Journal of the Mechanics and Physics of Solids.2001,49:709-737.
    [59]Grabe C., Bruhns O. T. Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes. International Journal of Plasticity.2009,25:513-545.
    [60]Entchev P. B., Lagoudas D. C. Modeling porous shape memory alloys using micromechanical averaging techniques. Mechanics of Materials.2001,34:1-24.
    [61]李丙运,GjunterV. E.生物医用多孔Ti-Ni形状记忆合金的研究进展.材料研究学报.2000,14:561-569.
    [62]邓松华,杨贤金,朱胜利,崔振铎.多孔NiTi形状记忆合金的生物医学特性及其医用前景.金属热处理.2003,28(12):12-15.
    [63]白玉俊,陈蕴博,徐庆莘.医用多孔Ni-Ti形状记忆合金的研究与应用进展.材料导报.2002,9:11-12.
    [64]Gyunter V. E. Superelastic Shape memory implants in maxillofacial surgery, traumatology, orthopaedics and neurosurgery. Tomsk, Russia:Tomsk university publishing house.1995.
    [65]Qidwai M. A., Entchev P. B., Lagoudas D. C., DeGiorgi V. G.Modeling of the thermomechanical behavior of porous shape memory alloys. International Journal of Solids and Structures.2001,38:8653-8671.
    [66]Sirikul W., Nipon D., Lek S. Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique. Materials Science and Engineering:A.2009,515(1-2):93-97.
    [67]Zhao Y., Taya M., Kang Y. S., Kawasaki, A. Compression behavior of porous Ni-Ti shape memory alloy. Acta. Materials.2005,53(2):337-343.
    [68]Entchev P. B., Lagoudas D. C. Modeling of transformation induced plasticity and its effect on the behavior of porous shape memory alloys. Part Ⅱ:Porous SMA Response.Mechanics of Materials.2004,36(9):893-913.
    [69]Entchev P. B., Lagoudas D. C. Modeling porous shape memory alloys using micromechanical averaging techniques. Mechanics of Materials,2002,34(1):1-24.
    [70]Martynova I., Skorohod V., Solonin S., Goncharuk S. Shape memory and superelasticity behavior of porous Ti-Ni material. Journal de Physique IV.1991,1(C4):421-426.
    [71]Nemat-Nasser S., Su Y., Guo W. G., Isaacs J. Experimental characterization and micromechanical modeling of superelastic response of a porous Ni-Ti shape memory alloy. Journal of the Mechanics and Physics of Solids.2006,53:2320-2346.
    [72]陆荣林,孙庆平,方如华.多孔Ni-Ti形状记忆合金的力学性能的实验研究.力学季刊.2001,22(2):270-272.
    [73]Panico M., Brinson L. C. Computational modeling of porous shape memory alloys. International Journal of Solids and Structures.2008,45:5613-5626.
    [74]Toi Y., Choi D. Constitutive modeling of porous shape memory alloy considering strain rate effect. Journal of Computational Science and Technology.2008,2(4):511-522.
    [75]Sayed T., Giirses E., Siddiq A. A phenomenological two-phase constitutive model for porous shape memory alloys. Computational Materials Science.2012,60:44-52.
    [76]Olsen J. S., Zhang Z. L. Effect of spherical micro-voids in shape memory alloys subjected to uniaxial loading. International Journal of Solids and Structures.2012,49:1947-1960.
    [77]朱玉萍.形状记忆合金力学本构模型的若干问题研究.北京交通大学博士后研究工作报告.2010.
    [78]Yin Y. J., Xue M. D., Yu S. W. Lower bound and upper bound rigid plastic constitutive models for porous materials:comparison and examination. JSME International Journal Series A.2001, 44(1):45-56.
    [79]Qu J. M., Cherkaoui M. Fundamentals of micromechanics of solids. New Jersey:John Wiley &Sons, Inc.,2006.
    [80]朱祎国.形状记忆合金及其复合材料的本构关系.大连理工大学博士学位论文.2002.
    [81]Furuya Y, Sasaki A., Taya M. Enhanced mechanical properties of NiTi shape memory fiber/Al matrix composite. Materials Transactions, JIM.1993,34:224-227.
    [82]Furuya Y. Design and material evaluation of shape memory composite. Journal of Intelligent Material Systems and Structure.1996,7:321-330.
    [83]启明NiTi形状记忆合金丝增强镁合金基复合材料.金属功能材料.2006,13(1):47-47.
    [84]Lagoudas D. C., Tadjbaksh I. G. Active flexible rods with embedded SMA fibers. Smart Materials and Structures.1992,1:162-167.
    [85]Maclean B. J., Carpenter B. F., Draper J. L., Misra M. S. Shape memory actuated compliant control surface. Smart Structures and Intelligent Systems.1993,1917:809-818.
    [86]Paine J. S. N. Adaptive composite hydraulic cylinder using shape memory alloy fibers. Air Force Report.1993,4, WL-TR-93-7020, DTIC No. AD-B172 880.
    [87]Chaudhry Z., Rogers C. A. Response of composite beams to an internal actuator force. Journal of Mechanical Design.1992,114(3):343-348.
    [88]Chaudhry Z., Rogers C. A. Bending and shape control of beams using SMA actuators. Journal of Intelligent Systems and Structures.1991,2:581-602.
    [89]孙国钧.形状记忆合金增强复合材料梁的弯曲.复合材料学报.1995,12(4):119-124.
    [90]Yoshid H. Creation of enviromentally responsive composite with embedded Ti-Ni alloy as effectors. Advanced Composite Materials.1995,5:1-16.
    [91]Roh J. H., Kim K. S., Lee I. Shape adaptive airfoil actuated by a shape memory alloy and its aerodynamic characteristics. Mechanics of Advanced Materials and Structures.2009,16: 260-274.
    [92]Yang S. M., Roh J. H., Han J. H., Lee I. Experimental studies on active shape control of composite structures using SMA actuators. Journal of Intelligent Material Systems and Structures.2006,17:767-777.
    [93]Sohn J. W., Han Y. M., Choi S. B., Lee Y. S., Han M. S. Vibration and position tracking control of a flexible beam using SMA wire actuators. Journal of Vibration and Control.2009,15: 263-281.
    [94]Rogers C. A. Active vibration and structural acoustic control of shape memory alloy hybrid composites:Experimental results. Journal of the Acoustical Society of America.1990,88(6): 2803-2811.
    [95]Turner T. L. Structural acoustic response of a shape memory alloy hybrid composite panel. SPIE's 9th Annual International Symposium on Smart Structures and Materials.2002,4701: 592-603.
    [96]Wang X. M. Shape memory alloy volume fraction of pre-stretched shape memory alloy wire-reinforced composites for structural damage repair. Smart materials and structures.2002, 11:590-595.
    [97]BirmanV., Chandrashekhara K., Sain S. An approach to optimization of shape memory alloy hybrid composite plates subjected to low-velocity impact. Composite:Part B.1996,27B: 439-446.
    [98]Paine J. S. N., Rogers C. A. The response of SMA hybrid composite materials to low velocity impact. Journal of Intelligent Material Systems and Structures.1994,5(4):530-535.
    [99]Paine J. S. N., Rogers C. A. High velocity impact response of composite with surface bonded Nitinol SMA hybrid layers. American Institute of Aeronautics and Astronautics.1995,6: 1409-2084.
    [100]吴莹.SMA拟弹性对增强复合材料层合板抗弯曲与低速冲击响应分析.华中科技大学博士学位论文.2009.
    [101]Zhang Y., Zhao Y. P. A study of composite beam with shape memory alloy arbitrarily embedded under thermal and mechanical loadings. Materials and Design.2007,28: 1096-1115.
    [102]Gilat R., Aboudi J. Dynamic response of active composite plates shape memory alloy fibers in polymeric or metallic matrices. International Journal of Solids and Structures.2004,41: 5717-5731.
    [103]Su Z., Mai H., Lu M., Ye L.Thermo-mechanical behaviour of shape memory alloy reinforced composite laminate (NiTi glass fibre epoxy). Composite Structures.1999,47:705-710.
    [104]Gao X., Turner T. L., Burton D., Brison L. Finite element analysis of adaptive-stiffening and shape-control SMA hybrid composites. Journal of Engineering Materials and Technology. 2006,128(3):285-293.
    [105]徐晓明.形状记忆合金复合材料变截面板簧的研究与设计.山东科技大学硕士学位论文.2011.
    [106]Epps J. J., Chopra I. In-flight tracking of helicopter rotor blades using shape memory alloy actuators. Smart Materials and Structures.2001,10:104-111.
    [107]Park G., Muntges D. E., Inman D. J. Self-repairing joints employing shape memory alloy actuators. Smart Materials and Structures.2003,12:33-37.
    [108]闫云聚.压电类智能结构振动最优控制分析和智能结构优化设计研究.西北工业大学博士学位论文.1998.
    [109]Kuribayashi K. A new actuator of a joint mechanism using tini alloy wire. International Journal of Robotics Research.1986,4:47-58.
    [110]Gharaybeh M. A., Burdea G. C. Investigation of a shape memory alloy actuator force-feedback masters. Advanced Robotics.1995,9(3),317-329.
    [111]杨凯,辜承林.记忆合金柔性机械手研究.机械科学与技术.2004,23(6):634-636.
    [112]Sottos N. R., Kline G.E. Analysis of phase transformation fronts in SMA composites. Proceedings of SPIE.1996,2715:427-438.
    [113]Birman V., Hopkins D. A. Micromechanics of composites with shape memory alloy fibers in unifornl thermal fields. AIAA Journal.1996,34:1905-1912.
    [114]Stalmans R., Delaey L., Van H. J. Modeling of adaptive composite materials with embedded shape memory alloy wires. Materials Research Society Symposium Proceedings.1997,459: 119-130.
    [115]Aboudi J. The response of shape memory alloy composites. Smart Materials and Structures. 1997,6:1-9.
    [116]Song G.Q., Sun Q. P., Cherkanu M. Role of microstructure in the thermomechanical behavior of SMA composites. Journal of Engineering Materials and Technology ASME.1999,121: 86-92.
    [117]Cherkanui M., Sun Q. P., Song G. Q. Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement. Internation Journal of Solids and Structure. 2000,37:1577-1594.
    [118]Kawal M. Effects of matrix inelasticity on the overall hysteretic behavior of TiNi-SMA fiber composites. International Journal of Plasticity.2000,16:263-282.
    [119]Lu Z. K., Wang G. J. A two-level micromechanical theory for a shape-memory alloy reinforced composite. International Journal of Plasticity.2000,16:1289-1307.
    [120]Wang J., Sze K. Y., Shan Y. P. Studying the thermomechanical behavior of SM composites with aligned SMA short fibers by micromechanical approaches. Smart Materials and Structures.2001,10:990-999.
    [121]Tsai X. Y., Chen L. W. Dynamic stability of a shape memory alloy wire reinforced composite beam. Composite Structures.2002,56:235-241.
    [122]朱祎国,吕和祥,杨大智.SMA长纤维增强弹塑性基体复合材料的力学性能.复合材料学报.2002,19:89-93.
    [123]张臻,沈亚鹏,王健.形状记忆合金短纤维增强弹塑性基体复合材料的力学行为.复合材料学报.2004,21:173-178.
    [124]Lee J. K., Taya M. Strengthening mechanism of shape memory alloy reinforced metal matrix composite. Scripta Materialia.2004,51:443-447.
    [125]Lee J. K., Kim G. D. A theoretical comparison of two possible shape memory processes in shape memory alloy reinforced metal matrix composite. Journal of Mechanical Science and Technology.2005,19:1460-1468.
    [126]Marfia S., Sacco E. Micromechanics and homogenization of SMA-wire reinforced materials. Journal of Applied Mechanics-Transactions of the ASME.2005,72:259-268.
    [127]Matria S. Micro-macro analysis of shape memory alloy composites. International Journal of Solids and Structures.2005,42:3677-3699.
    [128]Yang S. Y, Goo B. C., Kim H. J. Mechanical behavior of shape memory alloy composites. Advances in Fracture and Strength, PTS 1-4. Key Engineering Materials.2005,297-300: 1551-1555.
    [129]Murasawa G., Tohgo K., Ishii H. The effect of fiber volume fraction and aspect ratio on the creation of internal stress in the matrix and deformation for short-fiber shape memory alloy composite. Smart Materials and Structures.2006,15:33-40.
    [130]Zhang R. X., Ni Q. Q., Natsuki T., Iwamoto M. Mechanical properties of composites filled with SMA particles and short fibers. Composite Structures.2007,79:90-96.
    [131]徐耀祖.形状记忆材料.上海:上海交通大学出版社.2002.
    [132]杜善义,王彪.复合材料细观力学.北京:科学出版社.1998.
    [133]Sutou Y., Omori T., Furukawa A. Development of medical guide wire of Cu-Al-Mn base superelastic alloy with functionally graded characteristics. Journal of Biomedical Materials Research Part B. Applied Biomaterials.2004,69:64-69.
    [134]Bruck H. A., Moore C. L., Valentine T. M. Bending actuation in polyurethanes with a symmetrically graded distribution of one-way shape memory alloy wires. Experimental Mechanics.2004,44:62-70.
    [135]Burkes D. E., Moore J. Microstructure and kinetics of a functionally graded NiTi-TiCx composite produced by combustion synthesis. Journal of Alloys and Compounds.2007,430: 274-281.
    [136]Fu Y., Du H., Zhang S. Functionally graded TiN/TiNi shape memory alloy films. Materials Letters.2003,57:2995-2999.
    [137]Tian H., Schryvers D. Fabrication and characterization of functionally graded Ni-Ti multilayer thin films. Functional Materials Letters.2009,2(2):61-66.
    [138]Cole D., Bruck H., Roytburd A. Fabrication and characterization of graded shape memory alloy thin films. Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics.2007,3:1616-1622.
    [139]Cole D., Bruck H., Roytburd A. Nanomechanical Characterisation of Graded NiTi Films Fabricated Through Diffusion Modification. Strain.2009,45(3):232-237.
    [140]Cole D., Bruck H., Roytburd A. Nanoindentation studies of graded shape memory alloy thin films processed using diffusion modification. Journal of Applied Physics.2008,103:064315-1-4.
    [141]Cole D., Jin H., Lu W., Alexander L., Roytburd A., Bruck H. Reversible nanoscale deformation in compositionally graded shape memory alloy films. Applied Physics Letters. 2009,94:193114-1-3.
    [142]Meng Q., Yang H., Liu Y, Nam T. Compositionally graded NiTi plate prepared by diffusion annealing. Scripta Materialia.2012,67:305-308.
    [143]Bogdanski D., Koller M., Muller D., Muhr G., Bram M., Buchkremer H. P., Stover D., Choi J., Epple M. Easy assessment of the biocompatibility of Ni-Ti alloys by in vitro cell culture experiments on a functionally graded Ni-NiTi-Ti material. Biomaterials.2002,23: 4549-4555.
    [144]Meng Q., Liu Y., Yang H., Shariat B., Nam T. Functionally graded NiTi strips prepared by laser surface anneal. Acta Materialia.2012,60:1658-1668.
    [145]Meng Q., Liu Y, Yang H., Nam T. Laser annealing of functionally graded NiTi thin plate. Scripta Materialia.2011,65:1109-1112.
    [146]Birnbaum A. J., Satoh G., Yao Y.L. Functionally grading the shape memory response in NiTi films:laser irradiation. Journal of Applied Physics.2009,106(4):043504-1-8.
    [147]Mahmud A. S., Liu Y., Nam T. Gradient anneal of functionally graded NiTi. Smart Materials and Structures.2008,17:015031-1-5.
    [148]Hu T., Chen L., Wu S. L., Chu C. L., Wang L. M., Yeung K. W. K., Chu P. K. Graded phase structure in the surface layer of NiTi alloy processed by surface severe plastic deformation. Scripta Materialia.2011,64:1011-1014.
    [149]Hu T., Wen C. S., Lu J., Wu S. L., Xin Y. C., Zhang W. J., Chu C. L., Chung J. C. Y, Yeung K. W. K., Kwok D. T. K., Chu P. K. Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy. Journal of Alloys and Compounds.2009, 482:298-301.
    [150]Shariat B. S., Liu Y, Rio G. Hystoelastic deformation behaviour of geometrically graded NiTi shape memory alloys. Materials and Design.2013,50:879-885.
    [151]Zhang Y. P., Li D. S., Zhang X. P. Gradient porosity and large pore size NiTi shape memory alloys. Scripta Materialia.2007,57:1020-1023.
    [152]张宇鹏,张新平,钟志源.梯度孔隙率与大孔隙尺寸NiTi形状记忆合金制备及其相变和超弹性行为.金属学报.2007,43(11):1221-1227.
    [153]Falk F. Model free energy mechanics and thermodynamics of shape memory alloys. Acta Metallurgica.1980,28:1773-1780.
    [154]Falk F. One-dimensional model of shape memory alloys. Archives of Mechanics.1983,35: 63-84.
    [155]Maugin C. S. Existence of solitary waves in martensitic alloys. International Journal of Engineering Science.1991,29:243-258.
    [156]Achenbach M., Muller I. Creep and yield in martensite transformations.Ingenieur Archiv.1983, 53:73-83.
    [157]Graesser E. J., Cozzarelli F. A. A proposed three dimensional constitutive for SMAs. Journal of Intelligent Material Systems and Structures.1994,5:78-89.
    [158]Boyd J., Lagoudas D. C. A thermodynamical constitutive model for shape memory materials. International Journal of Plasticity.1996,12(6):805-842.
    [159]Tanaka K. A thermomechanical sketch of shape memory effect:one-dimensional tensile behavior. Res Mechanica.1986,18:251-263.
    [160]Sato Y, Tanaka K. Estimation of energy dissipation in alloys due to stress induced martensitic transformation. Res Mechanica.1988,18:251-263.
    [161]Tanaka K., Sato Y. Phenomenological descripation of the mechanical behavior of shape memoty alloys.Tranaction of JSME.1992,53:1368-1373.
    [162]Raniecki B., Lexcellent C., Tanaka K. Thermodynamic models of pesudoelastic behavior of shape memory alloys. Archives of Mechanics.1992,44:3-9.
    [163]Lin P., Tobushi H., Tanaka K. Deformation properties associated with martensitic and R-phase transformation in TiNi shape memory alloy. Transaction of JSME.1994,60:126-133.
    [164]Liang C., Rogers C. A. A multi-dimensional thermomechanical constitutive relations or shape memory materials. Journal of Engineering Mathematics.1992,26:429-443.
    [165]Liang C., Rogers C. A. One-dimensional thermomechanical constitutive relations for shape memory materials. Journal of Intelligent Material Systems and Structures.1990,1:207-234.
    [166]Boyd J. G., Lagoudas D. C.Thermomechanical response of shape memory composites. Journal of Intelligent Material Systems and Structures.1994,5:333-346.
    [167]Lagoudas D. C., Zhonhe B., Qidwai M. A. Micromechanics of active composites with SMA fibers.Journal of Material Science and Technology.1994,116:337-347.
    [168]Lagoudas D. C., Zhonhe B., Qidwai M. A. A unified thermodynamic constitutive model for SMA and finit element analysis of active metal matrix composites. Mechanical of Composite Materials and Structures.1996,3:153-179.
    [169]Patoor E., Eberhardt A., Berveiller M. Micromechanical modelling of superelasticity in shape memory alloys. Journal de Physique IV.1996,6:277-292.
    [170]Sun Q. P., Hwang K. C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys-I:Derivation of general relations. Journal of the Mechanics and Physics of Solids.1993a,41:1-17.
    [171]Sun Q. P., Hwang K. C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys-II:Study of the individual phenomena. Journal of the Mechanics and Physics of Solids.1993b,41:19-33.
    [172]Gao X., Hwang M., Brinson L. C. A multivariant micromechanical model for SMAs Part 1: Crystallographic issues for single crystal model. International Journal of Plasticity.2000a,16: 1345-1369.
    [173]Gao X., Hwang M., Brinson L. C. A multivariant micromechanical model for SMAs Part 2: Polycrystal model. International Journal of Plasticity.2000b,16:1371-1390.
    [174]Cherkaoui M., Sun Q. P., Song G Q. Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement. International Journal of Solids and Structures. 2000,37:1577-1594.
    [175]Lu P., Cui F. S., Tan M. J. A theoretical model for the bending of a laminated beam with SMA fiber embedded layer. Composite Structures.2009,90:458-464.
    [176]Sayman O. An elastic-plastic thermal stress analysis of aluminum metal-matrix composite beams. Composite Structures,2001,53:419-425.
    [177]Hamada K., Lee J. H., Mizuuchi K., Taya M., Inoue K. Thermomechanical behavior of TiNi shape memory alloy fiber reinforced 6061 aluminum matrix composite. Metallurgical and Materials Transactions A.1998,29:1127-1135.
    [178]Bo Z., Lagoudas D. C., Miller D. Material characterization of SMA actuators under nonproportional thermomechanical loading. Journal of Engineering Materials and Technology. 1999,121:75-85.
    [179]Zhu Y. P., Dui G. S. A macro-constitutive model of polycrystalline NiTi SMAs including tensile-compressive asymmetry and torsion pseudoelastic behaviors. International Journal of Engineering Science.2010,48:2099-2106.
    [180]Dynalloy. Technical characteristics of flexional actuator wires. Costa Mesa, (CA):Dynalloy, Inc.2007.
    [181]Huang S., Leary M., Ataalla T., Probst K., Subic A. Optimisation of Ni-Ti shape memory alloy response time by transient heat transfer analysis. Materials & Design.2012,35:655-663.
    [182]Lin M. W., Rogers C. A. Analysis of stress distribution in a shape memory alloy composite beam. AIAA-91-1164-CP, Structural Dynamics, and Materials Conference,32nd. Baltimore, MD, United States,1991,169-177.
    [183]Liu B. F., Dui G.S., Yang S. Y. On the transformation behavior of functionally graded SMA composites subjected to thermal loading. European Journal of Mechanics A-Solids.2013,40: 139-147.
    [184]Bernardini D. On the macroscopic free energy functions for shape memory alloys. Journal of the Mechanics and Physics of Solids.2001,49:813-837.
    [185]Nemat-Nasser, S., Hori, M. Micromechanics:Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam,1993.
    [186]Rajagopal K. R., Srinivasa A. R. Mechanics of the inelastic behavior of materials, part i: theoretical underpinnings. International Journal of Plasticity.1998a,14(10-11):945-967.
    [187]Mochida T., Taya M., Lloyd D. J. Fracture of particles in a particle/metal matrix composite under plastic straining and its effects on the young's modulus of the composite. Materials Transactions JIM.1991.32:931-942.
    [188]Lagoudas D., Hartl D., Chemisky Y, Machado L., Popov P. Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. International Journal of Plasticity.2012,32-33:155-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700