炭纤维复合材料界面自组装结构的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用分子自组装方法对炭纤维(CF)表面进行改性,从而在CF复合材料界面实现可调控、定向有序排列的界面相。并通过分子动力学(MD)模拟方法,在分子水平上探索了炭纤维聚合物基复合材料的界面作用规律,这对于推动我国复合材料界面科学理论及表面处理技术的发展,具有重要的理论和实际意义。
     针对环氧树脂(EP),选用金表面自组装硫醇分子体系。采用分子模拟方法探讨了不同链长、不同末端官能团的硫醇分子对分子自组装膜(SAMs)/Au(111)与环氧树脂界面性能的影响,并且通过实验对模拟结果进行了验证。
     在分子模拟部分,采用密度泛函理论(DFT)研究了甲基硫醇(MT)及2-巯基乙醇(ME)在Au(111)表面的吸附结构,结果表明其最稳定的吸附位置为bri-fcc位。在DFT研究基础上,建立了满覆盖率下的功能化烷基硫醇分子S(CH_2)_nX(X =-OH、-NH_2、-COOH,n=1~17)在Au(111)表面的初始吸附结构,并采用MD模拟方法对其排列结构进行了研究。模拟结果表明,不同末端官能团的SAMs结构随链长的变化趋势是相似的,并且三种SAMs的稳定性强弱顺序为:S(CH_2)_nCOOH>S(CH_2)_nNH_2>S(CH_2)_nOH。
     以Au(111)表面自组装S(CH_2)_nX的MD模拟结果为初始表面模型,建立了SAMs/Au(111)与环氧树脂的界面模型,通过模拟退火法,寻找最低能量的界面结构。模拟结果表明,对三种不同的界面体系,界面结构最稳定时的自组装分子链长分别为n=10、11。这三种界面体系的稳定性顺序为:S(CH_2)_nNH_2/EP>S(CH_2)_nCOOH/EP>S(CH_2)_nOH/EP。
     采用化学镀金方法使CF表面金属化,然后在其表面自组装上5种硫醇分子[S(CH_2)_nOH(n=2,6,11)、S(CH_2)_2NH_2、S(CH_2)_2COOH],考察不同的自组装分子对CF/EP复合材料界面剪切强度(IFSS)的影响。实验结果表明,对于S(CH_2)_nOH,链长n为11的复合材料的IFSS比n=2、6的复合材料的IFSS要高,并且随着链长的增加,IFSS先减小后增大。而对于同一链长、不同末端官能团的硫醇分子,其复合材料IFSS的大小顺序为:S(CH_2)_2NH_2>S(CH_2)_2COOH>S(CH_2)_2OH。这一结果与本文MD模拟结果完全一致。
     针对聚芳基乙炔(PAA)树脂,选用羟基化表面/有机硅烷偶联剂的自组装体系。采用MD方法重点研究了偶联剂链长对CF/PAA界面性能的影响。模拟结果表明,CF/PAA界面作用能随偶联剂分子链长的增大,呈现先减小后增大的趋势;当n=100时,界面能最低,界面结构最稳定。CF/PAA界面作用能与硅烷偶联剂的分子链与PAA分子之间发生的缠结作用以及偶联剂碳链在炭纤维表面的覆盖率有关。
     采用臭氧化法对CF表面进行硅烷偶联剂改性,并对自组装不同链长偶联剂(n=1~18)的CF/PAA复合材料进行层间剪切强度(ILSS)和IFSS测试。实验结果表明,随着偶联剂碳链长度的增加,复合材料的界面强度逐渐增大。对其层间剪切断口的扫描电子显微镜(SEM)分析同样表明复合材料的界面粘结性能随碳链长度的增加而改善。对CF/PAA复合材料,其界面性能提高的主要原因是自组装于炭纤维表面的偶联剂分子链和PAA树脂的分子链之间发生的缠结作用,并且这种作用在n≤18时随着偶联剂分子链长度的增加而增强,这一规律与本文MD模拟得到的规律是一致的。
In this work, the molecular self-assembled technique was applied on the interface modification of carbon fiber reinforced composites, thus the controllable interphase could be obtained. The interfacial functionary mechanism of the composites was studied by molecular dynamics simulation at molecular level. This research has great significance, both in theory and practices, for developing the surface modification methods of carbon fiber and clarifying the mechanisms of interfacial interaction.
     For epoxy resin (EP), the composite interphase was modified by thiols/Au self-assembled systems. First, the influence of the chain length and end functional groups on the interfacial properties between the SAMs/Au(111) and epoxy resin were studied by molecular simulations. Then, the CF surface was Au-plated, and the simulation results were verified by experiments.
     In the part of molecular simulations, the structures of methanethiol (MT) and 2-mercaptoethanol (ME) adsorbed on Au(111) surface were studied firstly by density functional theory (DFT) based on the first principle. The results indicated that the most stable adsorption site of the thiols was bri-fcc site. Based on the DFT study, the initial models of S(CH_2)_nX(X =-OH、-NH_2、-COOH,n=1~17) on Au(111) surface atΘ=1 were built. The packing structures of the SAMs on Au(111) were studied by molecular dynamics (MD) method. And the influence of the chain length and end functional groups on the structure of SAMs was discussed. The simulation results indicate that the change trend of the SAMs with different end groups is almost the same. And the stability of the three types of SAMs is:S(CH_2)_nCOOH>S(CH_2)_nNH_2>S(CH_2)_nOH.
     The MD simulation results of the S(CH_2)_nX/Au(111) were used as the initial surface models, and then the interfacial models of SAMs/Au(111) and epoxy resin were prepared. The interface structures were calculated by the simulated annealing methods. The simulation results indicate that the chain length, n, is 10, 11 when the interface structures are stable. The stability of different system is: S(CH_2)_nNH_2/EP>S(CH_2)_nCOOH/EP>S(CH_2)_nOH/EP.
     The surface of the CF was metallized by the electroless Au plating. Then different types of thiols[S(CH_2)_nOH(n=2,6,11),S(CH_2)2NH_2,S(CH_2)2COOH] were self-assembled on the Au-plated CF surface, and the effects of the thiols on interfacial shear strengths (IFSS) of CF/EP composites were investigated. The results indicate that the IFSS of S(CH_2)11OH/EP comopsites is higher than those of S(CH_2)_2OH/EP and S(CH_2)6OH/EP composites. And the IFSS decreases firstly and then increases with the increase of the chain length. The order of the IFSS of the S(CH_2)_2X/EP composites is: S(CH_2)_2NH_2 > S(CH_2)_2COOH > S(CH_2)_2OH. The experiment results are in good accordance with the simulation results.
     For polyarylacetylene (PAA) resin, composite interphase was modified by hydroxylated surface/organic silane derivatives self-assembled systems. The effect of chain length on the interfacial properties of the composites was studied by MD simulation. The simulation results indicate that the interface energy decreases firstly and then increases gradually with the increase of the chain length. The interface energy is the lowest and the interface structure is most stable when n=100. The interface energy is determined by the entanglement interaction between the molecular chains of coupling agents and the PAA resin, and the coverage of the molecular chains of coupling agents on the CF surface.
     The surface of CF was modified by silane coupling agent using ozonization methods, and the interlaminar shear strengths (ILSS) and IFSS of the CF/PAA composites were tested. The results indicate that the properties of the composites are improved with the increase of the chain length. The analysis of the ILSS fracture morphology also indicates that the interfacial bond behavior is improved with the increase of the chain length. For the CF/PAA composites, the improvement of the interfacial properties is due to the interactions between the molecular chains of the coupling agents and PAA resin, and the interactions increase with the increase of the chain length. The experiment results prove that the MD simulation methods in this paper are available.
引文
1 S. J. Park, M. K. Seo, Y. S. Lee. Surface characteristics of fluorine-modified PAN-based carbon fibers. Carbon. 2003, 41(4): 723~730
    2 K. K. C. Ho, A. F. Lee. Fluorination of carbon fibres in atmospheric plasma. Carbon. 2007, 45(4): 775~784
    3 Y. Yang, C. X. Lu, X. L. Su, et al. Effect of Nano-SiO2 Modified Emulsion Sizing on the Interfacial Adhesion of Carbon Fibers Reinforced Composites. Materials Letters. 2007, 61(17): 3601~3604
    4 S. K. Ryu, B. J. Park, S. J. Park. XPS Analysis of Carbon Fiber Surfaces—Anodized and Interfacial Effects in Fiber–Epoxy Composites. Journal of Colloid and Interface Science. 1999, 215 (1): 167~169
    5 M.A. Montes-Mora′n, F.W.J. van Hattum, J.P. Nunes , et al. A study of the effect of plasma treatment on the interfacial properties of carbon fibre–thermoplastic composites. Carbon. 2005, 43(8): 1795~1799
    6 M.B. Ivanov, N.V. Gavrilov, T.A. Belyh, et al. Irradiation effects in carbon fibers after N+-ion irradiation. Surface and Coatings Technology. 2007, 201: 8326~8328
    7 Y. S. Lee, B. K. lee. Surface properties of oxyfluorinated PAN-based carbon fibers. Carbon. 2002, 40:2461~2468
    8 B. Xu, X. Wang, Y. Lu. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide. Applied Surface Science. 2006, 253(5): 2695~2701
    9 S. J. Park, B. J. Kim. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Materials Science and Engineering: A. 2005, 408 (1~2): 269~273
    10 B. Li, C. R. Zhang, F. Cao, et al. Effects of Fiber Surface Treatments on Mechanical Properties of T700 Carbon Fiber Reinforced BN–Si3N4 Composites. Material Science and Engineering Part A. 2007, 471(1~2): 169~173
    11 A. Ulman. Formation and Structure of Self-Assembled Monolayers. Chemical Reviews. 1996, 96(4): 1533~1554
    12 F. Schreiber. Structure and growth of self-assembling monolayers. Progress in Surface Science. 2000, 65(5~8): 151~257
    13 I. Piwonski, J. Grobelny, M. Cichomski, et al. Investigation of
    3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111)surface. Applied Surface Science. 2005, 242(1-2): 147~153
    14 J. Nara, S. Higai, Y. Morikawa, et al. Adsorption structure of benzenethiol on Au(111): first-principles study. Applied Surface Science. 2004, 237(1-4): 434~439
    15 J. M. Campin, A. Martins, F. Silva. A new cleaning methodology for efficient Au-SAM removal. Electrochimica Acta. 2008, 53(26): 7681~7689
    16 R. Yamada, K. Uosaki. Structural Investigation of the Self-Assembled Monolayer of Decanethiol on the Reconstructed and (1×1)-Au(100) Surfaces by Scanning Tunneling Microscopy. Langmuir. 2001, 17(14): 4148~4150
    17 M. Muntwiler, C. D. Lindstrom, X.-Y. Zhu. Delocalized electron resonance at the alkanethiolate self-assembled monolayer/Au(111) interface. The journal of Chemical Physics. 2006, 124(8): 081104
    18孔德生,万立骏.金属表面缓蚀剂自组装单分子膜的STM研究进展I.惰性金属表面的缓蚀剂自组装单分子膜.腐蚀与防护. 2003, 24(10):415~420.
    19杨小震.分子模拟与高分子材料.科学出版社. 2002: 1~5
    20朱伟平.分子模拟技术在高分子领域的应用.塑料科技. 2002, 10(5): 23~25
    21 H. Ishida, J. D. Miller. Substrate Effects on the Chemisorbed and Physisorbed Layers of Methacryl Silane Modified Particulated Minerals. Macromolecules. 1984, 17(1~2): 1659~1666
    22 B. Pukánszky, E. Fekete. Adhesion and Surface Modification in Mineral Fillers in Thermoplastics I. Raw Materials and Processing. Advance Polymer Science. 1999, 139: 109~153
    23 J. Móczó, E. Fekete, B. Pukánszky. Acide-base Interactions and Interphase Formation in Particulate Filled Polymers. The Journal of Adhesion. 2002, 78(10): 861~875
    24潘祖仁.高分子化学.化学工业出版社. 2002: 2~3
    25 H. Jo, F. D. Blum. Characterization of the Interface in Polymer-Silica Composites Containing an Acrylic Silane Coupling Agent. Chemistry of Materials. 1999, 11(9): 2548~2553
    26 E. Leforestier, E. D. Cerettib, C. Peiti, et al. Peeling and characterisation of the carbon fibre-based radicular adhesive anchorage interface. International Journal of Adhesion and Adhesives. 2007, 27(8): 629~635
    27 M.T. Run, S.Z. Wu, D.Y. Zhang. A polymer/mesoporous molecular sieve composite: Preparation, structure and properties. Materials Chemistry and Physics. 2007, 105(2~3): 341~347
    28 H. Tan, L.Y. Jiang, Y. Huang. The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials. Composites Science and Technology. 2007, 67(14): 2941~2946
    29 X.Z. Zhang, Y. D. Huang, T. Y. Wang. Influence of fibre surface oxidation–reduction followed by silsesquioxane coating treatment on interfacial mechanical properties of carbon fibre/polyarylacetylene composites. Composites Part A. 2007, 38(3): 936~944
    30 R. E. Jensen, S. H. McKnight. Inorganic–organic fiber sizings for enhanced energy absorption in glass fiber-reinforced composites intended for structural applications. Composites Science and Technology. 2006, 66(3-4): 509~521
    31 C. Li, X. B. Liu. Mechanical and thermal properties study of glass fiber reinforced polyarylene ether nitriles. Materials Letters. 2007, 61(11~12): 2239~2242
    32 G. V?r?s, B. Pukánszky. Modeling the Effect of a Soft Interlayer on the Stress Distribution around Fibers: Longitudinal and Transverse Loading. Macromolecular Materials and Engineering. 2002, 287(2):139~148
    33王润泽,李龙.界面性能表征及对纤维增强复合材料的影响.高科技纤维与应用. 2008, 33(2): 18~20
    34朱祎国.考虑界面行为的SMA纤维复合材料模型.固体力学学报. 2008, 29(3): 282~287
    35张军,陈旭,贾宏.粘接界面的损伤研究.郑州大学学报. 2006, 27(2): 48~51
    36原梅妮,杨延清,马志军等. SiC纤维增强钛基复合材料界面强度研究进展.稀有金属材料与工程. 2007, 36(6): 1115~1118
    37魏洪亮,杨晓光,齐红宇.等离子涂层典型界面损伤与破坏的数值模拟.北京航空航天大学学报. 2007, 33(10): 1141~1145
    38高嵩,张文婷.搅拌法制备C/Al复合材料的界面问题.化工学报. 2008, 59(9): 2396~2400
    39 S.M. Jeng, J.-M. Yang, C.J. Yang. Fracture mechanisms of fiber-reinforced titanium alloy matrix composites Part II: Tensile behavior. Materials Science and Engineering: A. 1991, 138(2): 169~180
    40 Y. Q. Yang, H. J. Dudek. Interface stability in SCS-6 SiC/superα2 composites. Scripta materialia. 1997, 37(4): 503~510
    41张亚芳,齐雷,刘浩等.界面强度对纤维增强复合材料宏观韧性的影响.中山大学学报(自然科学版). 2008, 47(4): 139~143
    42黄玉东,魏月贞.复合材料界面研究现状(中).纤维复合材料. 1994, (1): 1~6
    43黄玉东,孔宪仁,张志谦等.纤维/聚合物基体界面性能的原位表征.复合材料学报. 1995, 12(3): 83~89
    44贺福,杨永岗.提高炭纤维强度的理论基础及其技术途径.高科技纤维与应用. 2001, 26(2): 7~10
    45房宽峻,蔡玉青,隋坤艳等.电化学氧化后炭纤维表面结构的X射线光电子能谱.青岛大学学报. 1998, 13 (3): 1~5
    46 J. I. Paredes, A. Martinez-Alonso, J. M. D. Tascon. Surface characterization of submicron vapor grown carbon fibers by scanning tunneling microscopy. Carbon. 2001, 39(10): 1575~1587
    47 C. U. Pittman, W. Jiang, Z. R. Yue, et al. Surface Area and Pore Size Distribution of Microporous Carbon Fibers Prepared by Electrochemical Oxidation. Carbon. 1999, 37(1): 85~96
    48 D. D. Edie. The Effect of Processing on the Structure and Properties of Carbon Fibers. Carbon. 1998, 36(4):345~362
    49钱伯章,朱建芳.炭纤维发展现状及市场分析.合成纤维. 2007, 36(7): 10~15
    50 H. Viswanathan, Y. Q. Wang, A. A. Audi. X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces. 24. Interfacial Interactions between Polyimide Resin and Electrochemically Oxidized PAN-Based Carbon Fibers. Chemistry of materials. 2001, 13(5): 1647~1655
    51 B. Li, C. R. Zhang, F. Cao, et al. Effects of Fiber Surface Treatments on Mechanical Properties of T700 Carbon Fiber Reinforced BN–Si3N4 Composites. Materials Science and Engineering Part A. 2007, 471(1~2): 169~173
    52 K. K. C. Ho, G. Kalinka, M. Q. Tran, et al. Interfacial Behavior between Atmospheric-plasma-fluorinated Carbon Fibers and Poly(vinylidene fluoride). Journal of Colloid and Interface Science. 2007, 313(2): 476~484
    53 R. Lee, M. H. Kim, S. J. Park. Surface Modification of Carbon Fibers by anodic oxidation and its effect on adhesion. Key engineering materials. 2000, 183(2): 1105~1110
    54 H. L. Cao, Y. D. Huang, Z. Q. Zhang, et al. Effect of electrochemical treatment in aqueous ammonium bicarbonate on surface properties of PAN-based carbon fibers. Journal of harbin institute of technology. 2004, 11(2): 168~173
    55刘杰,郭云霞,梁节英.炭纤维表面电化学氧化的研究.化工进展. 2004, 23(3): 282~285
    56 B. Mawhinney, J. T. Yates. FI-IR Study of the Oxidation of Amorphous Carbon by Ozone at 300K-Direct COOH Formation. Carbon. 2001, 39:1167~1173
    57 K. R. R. Ko, S. K. Park, S. Jin. Effect of Ozone Treatment on Cr(VI) and Cu(II) Adsorption Behaviors of Activated Carbon Fibers. Carbon. 2004, 42(8~9):1864~1867
    58 Fitzer, R. Wwiss. The Interface in Carbon Fiber Composites. Carbon. 1987, 25(4): 45~49
    59 H. C. Huang, D. Q. Ye, B. C. Huang. Nitrogen Plasma Modification of Viscose-based Activated Carbon Fibers. Surface and Coatings Technology. 2007, 201: 9533~9540
    60 S. J. Park, B.J. Kim. Influence of Oxygen Plasma Treatment on Hydrogen Chloride Removal of Activated Carbon Fibers. Journal of Colloid and Interface Science. 2004, 275(2): 590~595
    61 A. Montes-Moran, A. Martinez-Alonso, J. M. D. Tascon. Effects of Plasma Oxidation on the Surface and Interfacial Properties of Carbon Fibers/Polycarbonate Composites. Carbon. 2001, 39(7): 1057~1068
    62 M. Sun, B. Hu, Y. Wu. Surface of Carbon Fibers Continuously Treated by Cold Plasma. Composite Science and Technology. 1989, 34: 352~264
    63 K. Anand, V. Gupta. The Effect of Processing Conditions on the Compressive and Shear Strength of 2D Carbon-Carbon Aminates. Carbon. 1995, 33: 739~748
    64 F. Severini, L. Formaro, M. Pegoraro. Chemical Modification of Carbon Fiber Surfaces. Carbon. 2002, 40(5): 735~741
    65 A. B. García, A. Cuesta, M. A. Montes-Morán, et al. Zeta Potential as a Tool to Characterize Plasma Oxidation of Carbon Fibers. Journal of Colloid and interface science. 1997, 192(2): 363~367
    66杨生荣,任嗣利,张俊彦等.自组装单分子膜的结构及其自组装机理.高等学校化学学报. 2001, 22(3): 470~476
    67邓文礼,杨大本,方晔等.硫醇在Au(111)上的SA单分子层膜研究.中国科学(B辑). 1996, (26): 174~180
    68 E.Barrena, C.Ocal, M.Salmeron. A comparative AFM study of the structural and frictional properties of mixed and single component films of alkanethiols on Au(111). Surface Science. 2001, 482~485(2): 1216~1221
    69 A.-S. Duwez. Exploiting electron spectroscopies to probe the structure andorganization of self-assembled monolayers: a review. Journal of Electron Spectroscopy and Related Phenomena. 2004, 134(2~3): 97~138
    70 O.Cavalleri, A.Hirstein, J.P.Bucher, et al. Ordering processes at the decanethiol /Au (111) interface. Thin Solid Films. 1996, 284~285: 392~395
    71董献堆,陆君涛,查全性.巯基化合物自组装单分子层的研究进展.电化学. 1995, 1(3): 248~254
    72 F.Robert. Coupling on-line brain microdialysis, precolumn derivatizection and capillary electrophoresis for routine minute sampling of Ophosphoethanolamine and excitatory amino acids. Science. 1998, 279: 1135~1139
    73 O.Onitsuka, A.C.Fou, M.Ferreira, et al. Enhancement of light emitting diodes based on self-assembled heterostructures of poly (p-phenylene vinylene). Applied Physics Letter. 1996, 80: 4067~4071
    74 K.Schinichi, T.Tetsuo, S.Shogo, et al. Photochromism of salicylideneani-lines incorporated in al Langmuir-Blodgett multilayer. Journal of the American Chemical Society. 1988, 110(2): 509~511
    75 E. Ito, J. Noh, M. Hara. Adsorption states and thermal desorption behaviors of thiophene derivative self-assembled monolayers on Au(111). Surface Science. 2008, 602(21): 3291~3296
    76 J. Noh, H.S. Kato, M.Kawai, et al. Surface structure and interface dynamics of alkanethiol self-assembled monolayers on Au(111). The Journal of Physical Chemistry B. 2006, 110 (6): 2793~2797
    77 R.Zdyb. Growth of Pb on Si(335)-Au surface. Journal of Non-Crystalline Solids. 2008, (354): 4176~4180
    78 T.-W. Li, I. Chao, Y.-T. Tao. Relationship between Packing Structure and Headgroups of Self-Assembled Monolayers on Au(111): Bridging Experimental Observations through Computer Simulations. The Journal of Physical Chemistry B. 1998, 102 (16): 2935~2946
    79 W. Azzam, A. Bashir, A. Terfort, et al.Combined STM and FTIR Characterization of Terphenylalkanethiol Monolayers on Au(111): Effect of Alkyl Chain Length and Deposition Temperature. Langmuir 2006, 22(8): 3647~3655
    80 J. Noh, H. S. Kato, M. Kawai, et al. Surface Structure and Interface Dynamics of Alkanethiol Self-Assembled Monolayers on Au(111). The Journal of Physical Chemistry B. 2006, 110 (6): 2793~2797
    81 T. Sumi, H. Wano, K. Uosaki. Electrochemical oxidative adsorption and reductive desorption of a self-assembled monolayer of decanethiol on theAu(111) surface in KOH+ethanol solution. Journal of Electroanalytical Chemistry. 2003, 550~551: 321~325
    82 P.V.Schwartz, D.J.Lavrich, G.Scoles. Overlayers of long-chain organic molecules physisorbed on the surface of self-assembled monolayers of alkylthiols on Au(111). Langmuir. 2003, 19 (12): 4969~4976
    83 I.Piwonski, J.Grobelny, M.Cichomski, et al.. Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111) surface. Applied Surface Science. 2005, 242(1~2): 147~153
    84 M.J. Esplandiu, H. Hagenstrom, D.M. Kolb. Functionalized self-assembled alkanethiol monolayers on Au(111) electrodes: Surface structure and electrochemistry. Langmuir. 2001, 17(3): 828~838
    85 Mirko Prato, Riccardo Moroni, Francesco Bisio, et al. Optical Characterization of Thiolate Self-Assembled Monolayers on Au(111). The Journal of Physical Chemistry C. 2008, 112(10): 3899~3906
    86 Q.Guo, X.sun, R.E.Palmer. Structural dynamics induced by self-assembled monolayers on Au(111). Physical Review B. 2005, 71(3): 035406
    87 D.-S. Kong, S.-L. Yuan, Y.-X. Sun, et al. Self-assembled monolayer of O-aminothiophenol on Fe(110) surface: a combined study by electrochemistry, in situ STM, and molecular simulations. Surface Science. 2004, 573(2): 272~283
    88 B. de Boer, A. Hadipour, M. M. Mandoc, et al. Tuning of metal work functions with self-assmebled monolayers. Advanced Materials. 2005, 17(5): 621~625
    89朱宇,陆小华,丁皓等.分子模拟在化工应用中的若干问题及思考.化工学报. 2004, 55(8): 1213~1222
    90黄美纯.密度泛函理论的若干进展.物理学进展. 2000, 20(3): 102~112
    91欧阳芳平,徐慧,郭爱敏等.分子模拟方法及其在分子生物学中的应用.生物信息学. 2005, 3(1): 42~63
    92胡英,刘洪东.分子工程与化学工程.化学进展. 1995, 7(3): 235~249.
    93夏宗宁,贺立,吕允文.材料科学中的计算机模拟化工新型材料. 1996, 24(2): 1~6
    94 J. Hautman, M.L. Klein, Simulation of a monolayer of alkyl thiol chains. The Journal of Chemical Physics. 1989, 91: 4994~5001
    95 J. Hautman, M.L. Klein. Molecular dynamics simulation of the effects of temperature on a dense monolayer of long-chain molecules. Journal of Chemical Physics. 1990, 93(10): 7483~7492
    96 K.M. Beardmore, J.D. Kress, A.R. Bishop, et al. Ab-initio calculations ofthe gold-sulfur interaction for alkanethiol monolayers. Synthetic Metal. 1997, 84(1~3): 317~318
    97 H. Sellers, A. Ulman, Y. Shnidman, et al. Structure and binding of alkanethiolates on gold and silver surfaces : implications for self-assembled monolayers. Journal of the American Chemical Society. 1993, 115(21): 9389~9401
    98 H. Gronbeck, A.Curioni, W. Andreoni. Thiols and Disulfides on the Au(111) Surface: The Headgroup?Gold Interaction. Journal of the American Chemical Society. 2000, 122(16): 3839~3842
    99 Y. Yourdshahyan, H. Zhang, A. M. Rappe. n-alkyl thiol head-group interactions with the Au(111) surface. Physical Review B. 2001, 63: 081405
    100 Y. Morikawa, C.C. Liew, H. Nozoye. Methylthiolate induced vacancy formation on Au(111): a density functional theoretical study. Surface Science. 2002, 514(1): 389~393
    101 Y. Morikawa, T. Hayashi, C.C. Liew, et al. First-principles theoretical study of alkylthiolate adsorption on Au(111), Surface Science. 2002, 507~510 : 46~50
    102 Y. Akinaga, T. Nakajima, K. Hirao, A density functional study on the adsorption of methanethiolate on the (111) surfaces of noble metals. Journal of Chemical Physics. 2001, 114: 8555~8564
    103 M. C. Vargas, P. Giannozi, A. Selloni, et al. Coverage-Dependent Adsorption of CH3S and (CH3S)2 on Au(111): a Density Functional Theory Study. Journal of Physical Chemistry B. 2001, 105 (39): 9509~9513
    104 J. Gottschalk, B. Hammer. A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au(111). Journal of Chemical Physics. 2002, 116(2): 784~790
    105 S. M. Wetterer, D. J. Lavrich, T. Cummings, et al. Energetics and Kinetics of the Physisorption of Hydrocarbons on Au(111). Journal of Physical Chemistry B. 1998, 102(46): 9266~9275
    106 D. J. Lavrich, S. M. Wetter, S. L. Bernask, et al. Physisorption and Chemisorption of Alkanethiols and Alkyl Sulfides on Au(111). Journal of Physical Chemistry B. 1998, 102(18): 3456~3465
    107 Y.Yourdshahyan, A.M. Rappe. Structure and energetics of alkanethiol adsorption on the Au(111) surface. Journal of Chemical Physics. 2002, 117(2): 825~833
    108 T. Bonner, A. Baratoff. Molecular dynamics study of scanning force microscope on self-assembled monolayers. Surface science. 1997, 377~379:1082~1086
    109 B. Arezki, A. Delcorte, A.C. Chami, et al. Gold-thiolate cluster emission from SAMs under keV ion bombardment: Experiments and molecular dynamics simulations. Nuclear Instruments and Methods in Physics Research Section B. 2003, 212: 369~375
    110 W. Mar, M. L. Klein. Molecular dynamics study of the self-assembled monolayer composed of S(CH2)14CH3 molecules using an all-atoms model. Langmuir. 1994, 10(1): 188~196
    111 T.-W. Li, I. Chao, Y.-T. Tao. Relationship between Packing Structure and Headgroups of Self-Assembled Monolayers on Au(111): Bridging Experimental Observations through Computer Simulations. Journal of Physical Chemistry. 1998, 102(16): 2935~2946
    112 O. Okadaa, K. Okaa. Molecular simulation of an amorphous poly(methyl methacrylate)–poly(tetrafluoroethylene) interface. Computational and Theoretical Polymer Science. 2000, 10(3): 371~381.
    113 Wong. M, Paramsothy. M. Physical interactions at carbon nanotube-polymer interface. Polymer. 2003, 44(25): 7757~7764.
    114 S. Mahajan,G. Subbarayan,B. G. Sammakia,et al. Molecular dynamics simulations of nanotube-polymer composites for use as thermal interface material. S. W. Ricky Lee. ASME 2003 International Mechanical Engineering Congress and Exposition (IMECE2003). Washington, D.C., 2003. American Society of Mechanical Engineers. 2003: 381~385
    115 Frankland.S.J.V,Caglar.A,Brenner.D.W,et al. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. Journal of Physical Chemistry. 2002, 106(12): 3046~3048
    116 H. Y. Song, X. W. Zha. Molecular dynamics study of mechanical properties of carbon nanotube-embedded gold composites. Physica B. 2008, 403: 559~563
    117 S.C. Chowdhury, T. Okabe. Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method. Composites: Part A. 2007, 38(3): 747~754
    118 Q. Wang, K.M. Liew, W.H. Duana. Modeling of the mechanical instability of carbon nanotubes. Carbon. 2008, 46(2): 285~290
    119 M. C. P. van Eijk, M. A. C. Stuart,S. Rovillard,et al. Adsorption and spreading of polymers at plane interfaces. theory and molecular dynamics simulations. European Physical Journal B. 1998, 1(2): 233~244
    120 M. M. D. Ramos, J. P. P. Almeida. Atomistic modeling of interfacial bonding at metal/polymer interface. Journal of Materials Processing Technology. 1999, 92(93): 147~150
    121 U. Natarajan, S. Misra, W. L. Mattice. Atomistic simulation of a polymer-polymer interface: Interfacial energy and work of adhesion. Computational and Theoretical Polymer Science. 1998, 8(3~4): 323~329
    122 S. Yao, E. Kamei, T. Matsumoto. Chemical structure dependence of interaction strength between polymers and mobility of polymer chains in the polymer interface. Computational and Theoretical Polymer Science. 1997, 7(1): 25~33
    123 A . Aabloo, M. Klintenberg, J. O. Thomas. Molecular dynamics simulation of a polymer-inorganic interface. Electrochimica Acta. 2000, 45(8~9): 1425~1429
    124 S. Barsky, M. O. Robbins. Molecular dynamics study of slip at the interface between immiscible polymers. Physical Review E. 2001, 63(2): 021801
    125 Gautam. S,Balijepalli. S,Rutledge.G.C. Molecular simulations of tilted chain crystal-amorphous interfaces in polymers. Materials Research Society Symposium Proceedings. 2000, 586: 49~56
    126 S. H. Kim, W. H. Jo. A Monte Carlo simulation of polymer/polymer interface in the presence of block copolymer. I. Effects of the chain length of block copolymer and interaction energy. Journal of Chemical Physics.1999, 110(24): 12193~12201
    127刘洁翔,董梅等. C_5烷烃分子在AlPO_4-5分子筛中吸附的分子模拟研究.燃料化学学报. 2004, 32(5): 569~572
    128曹达鹏,陈建峰,沈志刚等.氮气在MCM-41分子筛中的吸附:实验和分子模拟.化学学报. 2002, 60(5): 820~824
    129吕玲红,王琦,刘迎春.短链烷烃二元混合物在分子筛上吸附分离的分子模拟.化学学报. 2003, 61(8): 1232~1240
    130张现仁,沈志刚等.乙烷在中孔分子筛MCM-41中吸附的计算机分子模拟.物理学报. 2003, 52(1): 163~168
    131张现仁,汪文川.用实验吸附等温线和计算机分子模拟表征中孔分子筛MCM-41.化学学报. 2002, 60(9): 1606~1612
    132薛雁,任晓君.具有谷胱甘肽过氧化物酶活性的小分子模拟物2TeCD保护线粒体抵抗氧化损伤.中国生物化学与分子生物学报. 2002, 18(4): 506~510
    133韩德艳,白志平,陈慧兰.分子模拟计算研究辅酶B12及其类似物光解产生的自由基加合物与β-环糊精的作用.无机化学学报. 1999, 15(4): 507~508
    134郭玉宝,杨儒.甘氨酸在纳米碳管中的吸附及性质的分子模拟.化学物理学报. 2004, 17(4): 437~442
    135刘卫京,吕秋军.细胞因子小分子模拟物研究进展.药学学报. 2000, 35 (11): 874~878
    136黄牛,屈凌波.维甲类化合物构效关系研究—维甲酸核受体与选择性配体相互作用的分子模拟.药学学报. 1999, 34(5): 358~362
    137左之利,周鲁.部分镇痛药的分子模拟及其量化计算.生物物理学报. 2002, 18(1): 95~98
    138徐云升,郝飞.人乳头瘤病毒16型E7抗原细胞毒性T细胞预测表位的分子模拟研究.临床皮肤科杂志. 2002, 31(9): 543~547
    139王遵敬,陈民,过增元. Lennard-Jones流体汽液界面的分子动力学研究.清华大学学报. 2001, 41(2): 80~83
    140殷淑霞,王琛,雷圣宾等. n2十八醇在石墨表面吸附组装结构的理论研究.电子显微学报. 2001, 20(5): 565~568
    141王继芬,乔炜等.分子动力学模拟研究:低聚物在高分子母体中的扩散.上海第二工业大学学报. 2005, 22(1): 13~18
    142刘红,魏冬青,赵纪军等.高压下液态硝基甲烷的分子动力学模拟.高压物理学报. 2004, 18(4): 319~327
    143戴永兵,沈荷生等.金刚石/硅(001)异质界面的分子动力学模拟研究.物理学报. 2001, 50(2): 244~250
    144张秀斌,李泽生,吕中元等.金属铜与聚苯酰亚胺表面相互作用的理论模拟.高等学校化学学报. 2001, 22(12): 2081~2084
    145侯艳君,孙志忠等.用分子动力学方法研究酰胺类化合物在溶液中的构象变化.哈尔滨师范大学自然科学学报. 2003, 19(4): 73~76
    146李振泉.烷基苯磺酸盐在油水界面行为的介观模拟.化学学报. 2007, 65(24): 2803~2808
    147杨红军,殷景华,雷清泉.聚酰亚胺纳米复合材料结构和性能的分子模拟.哈尔滨理工大学学报. 2006, 11(2): 31~34
    148孙万虹,莫尊理.聚酰胺-胺树状大分子的分子模拟.西北民族大学学报(自然科学版). 2007, 28 (4): 5~9
    149任华.分子模拟在界面相互作用计算中的应用.西北工业大学硕士论文. 2007
    150韩振为,廖川,周薇.分子动力模拟聚赖氨酸在晶格界面上的吸附.计算机与应用化学. 2007, 24(5): 703~708
    151高军,吴宏武.玻纤增强聚乙烯界面行为的分子模拟研究.计算机与应用化学. 2007, 24(4): 493~497
    152 W. Kohn, Electronic structure of matter - wave function and density founctionals. Reviews of Modern physics. 1998, 71(5): 1253~1266
    153李明宪. CASTEP/Materials Studio计算化学进阶教程.淡江大学物理系. 2004, 8
    154曹斌,高金森,徐春明.分子模拟技术在石油相关领域的应用.化学进展. 2004, 16(2): 291~298
    155文玉华,朱如曾.分子动力学模拟的主要技术.力学进展. 2003, 3(1): 65~73
    156樊康旗,贾建援.经典分子动力学模拟的主要技术.微纳电子技术. 2005, 42(3): 133~138
    157 T. Hayashia, Y. Morikawab, H. Nozoyec. Adsorption state of dimethyl disulfide on Au(111): Evidence for adsorption as thiolate at the bridge site . Journal of Chemical Physics. 2001, 114(17): 7615~7621
    158 V. De Renzi, R. Di Felice, D. Marchetto, et al. Ordered (3 X4) High-density phase of methylthiolate on Au(111). The journal of physical chemistry. B. 2004, 108(1): 16~20
    159 S. Franzen. Density functional calculation of a potential energy surface for alkane thiols on Au(111) as function of alkane chain length. Chemical Physics Letters. 2003, 381(3-4): 315~321
    160 M. C. Vargas, P. Giannozi, A. Selloni, et al. Coverage-dependent adsorption of CH3S and (CH3S)2 on Au(111): a density functional theory study. The Journal of Physical chemistry. 2001, 105(39): 9509~9513
    161 J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical review letters. 1996, 77(18): 3865~3868
    162 D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review. B. 1990, 41(11): 7892-7895
    163 Y. Akinaga, T. Nakajima, K. Hirao. A density functional study on the adsorption of methanethiolate on the (111) surfaces of noble metals. Journal of Chemical Physics. 2001, 114(19): 8555~8564
    164 J. Gottschalk, B. Hammer. A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au(111) . Journal of Chemical Physics. 2002, 116(2): 784~790
    165王瑾玲,孙命,缪方明.计算机化学模拟-分子构象识别的新方法.结构化学. 2000, 19(4): 281~287.
    166 W. Johnson, W. Watt. The Microstructure of Carbon Fibers. Nature. 1976, 215: 384~386
    167 H. A. Katzman. Polyarylacetylene-matrix Composites for Solid Rocket Motor Componenets. Journal of Advanced Materials. 1995, 26(3): 21~27
    168张德雄,张衍.高温复合材料基体树脂聚芳基乙炔综述.固体火箭技术. 2001, 24 (1): 53~59
    169张运徽,王益凡. ABS塑料镀金工艺.三明高等专科学校学报. 2004, 4: 27~37
    170鲍红权,刘强华,赵超华等.化学镀金属导电玻璃纤维制备与性能研究.玻璃纤维. 1997, 4: 2~5
    171贺金梅. CF/Epoxy及CF/PI复合材料界面自组装研究.哈尔滨工业大学博士论文. 2006: 22
    172刘海萍,李宁,毕四富等.无氰化学镀金技术的发展及展望.电镀与环保. 2007, 3: 4~7
    173蔡积庆.无氰化学镀金.电镀与环保. 1997, 3: 14~16
    174 O. Alexiadis, V. A. Harmandaris, V. G. Mavrantzas, et al. Atomistic Simulation of Alkanethiol Self-Assembled Monolayers on Different Metal Surfaces via a Quantum, First-Principles Parametrization of the Sulfur?Metal Interaction. Journal of physical chemistry. C. 2007, 111(17): 6380~639
    175 M. Petri, D. M. Kolb, U. Memmert, et al. Adsorption of mercaptopropionic acid onto Au(111): Part II. Effect on copper electrodeposition. Electrochim. Acta. 2003, 49(1): 183~189
    176 F. Tielens, D. Costa, V. Humblot, et al. Characterization ofω-Functionalized Undecanethiol Mixed Self-Assembled Monolayers on Au(111): A Combined Polarization Modulation Infrared Reflection-Absorption Spectroscopy/X-ray Photoelectron Spectroscopy/Periodic Density Functional Theory Study. The Journal of Physical Chemistry. C. 2008, 112(1): 182~190
    177 S. M. Wetterer, D. J. Lavrich, T. Cummings, et al. Energetics and Kinetics of the Physisorption of Hydrocarbons on Au(111). The Journal of Physical Chemistry B. 1998, 102(46): 9266~9275
    178 D. J. Lavrich, S. M. Wetter, S. L. Bernask, et al. Physisorption and Chemisorption of Alkanethiols and Alkyl Sulfides on Au(111). The Journalof Physical Chemistry B. 1998, 102(18): 3456~3465
    179 D.F.Rosa,S.Annabella, M.Elisa. DFT study of cysteine adsorption on Au(111). The Journal of Physical Chemistry B. 2003, 107: 1151~1156
    180李梦龙.化学数据速查手册.化学工业出版社. 2003: 134~135
    181廖沐真,吴国是,刘洪森.量子力学从头计算法.清华大学出版社.1984: 176~177
    182 C. K. Rhee, Y. N. Kim. Structural evolution of self-assembled monolayer of 1-mercapto-2-propanol on Au(111) in a N2 flow: an electrochemical and STM study. Applied Surface Science. 2004, 228(1~4): 313~319
    183 W. S. Hu, Y. T. Tao, Y. J. Hsu, et al. Molecular Orientation of Evaporated Pentacene Films on Gold: Alignment Effect of Self-Assembled Monolayer. Langmuir. 2005, 21(6): 2260~2266
    184 Y.-F. Liu, Y.-C. Yang, Y.-L. Lee. Assembly behavior and monolayer characteristics of OH-terminated alkanethiol on Au(111): in situ scanning tunneling microscopy and electrochemical studies. Nanotechnology. 2008, 19: 065609
    185 J. Noh, Y. Jeong, E. Ito, et al. Formation and Domain Structure of Self-Assembled Monolayers by Adsorption of Tetrahydrothiophene on Au(111). The Journal of Physical Chemistry C. 2007, 111(6): 2691~2695
    186 F. Sanchez, L. Zhang. Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium–silicate–hydrate: Interaction energies, structure, and dynamics. Journal of Colloid and Interface Science. 2008, 323(2): 349~358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700