形状记忆合金及其复合材料的本构关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能材料的概念产生于二十世纪八十年代后期。形状记忆合金机敏复合材料一直是智能材料研究中的热点与重点之一,而形状记忆合金及其复合材料本构关系的研究是应用与发展这类机敏材料的关键基础性问题。本文从两个不同的角度建立了形状记忆合金的本构关系,并且将形状记忆合金的唯象模型应用于复合材料中,为智能复合材料材料的设计提供了有价值的参考意见。具体工作如下:
     在Tanaka唯象模型中,相变的体积百分数与应力及温度之间存在指数关系,且形状记忆合金的四个特征相变温度与应力之间存在线性关系,因此,在材料为完全马氏体态时加载,Tanaka模型不可能反映形状记忆合金的马氏体重定向现象。因此,作者建立了自己的唯象模型,它仍然采用Tanaka的马氏体体积分数指数模型,应用Brinson的特征相变温度与应力之间的关系,对于不同的相变驱动采用不同的相变应变表达式,同时,将挛晶马氏体的去挛晶过程看作为相变,这样,当形状记忆合金为完全的挛晶马氏体态加载时就可以反映马氏体的重定向,进而利用等效应力的概念将一维模型推广至三维情况,由于在相变过程中只应用了一套马氏体体积百分数的动力学方程,因此构造的模型简单实用。计算结果表明,本模型预测的应力应变曲线与实验结果吻合。
     利用Dvorak等的弹塑性长纤维复合材料本构关系理论框架,推导了SMAs长纤维复合材料在应力循环变化情况下的细观本构模型,考虑了基体材料的非线性,从复合材料界面的连续条件出发,分五种情况推导了复合材料在应力循环过程中的具体本构关系表达式,并且应用该模型分析了复合材料在应力循环变化情况下的宏观力学性能。这对于智能复合材料的设计提供了有价值的参考意见。
     长纤维SMAs铝基复合材料经常应用热压法、压铸法和粉末烧结法来制备,因此必须考虑复合材料在温度变化的情况下复合材料中纤维和基体的应力变化情况,这直接关系到复合材料的整体宏观性能。利用作者的形状记忆合金的唯象模型推导了SMAs长纤维复合材料在温度循环变化情况下的细观本构模型,计算了基体及纤维中残余应力的变化,得出了定量的结论。这为
    
     Abstr8Ct
    智能复合材料的制各提供了参考意见。
     应用形状记忆合金相变过程中的热力学原理构造了细观多变体本构
    模型。不同晶粒间的相互作用通过Eshelby伽ner方法来表示,考虑到形
    状记忆合金在相变过程中位错的增殖、吞并而引起塑性应变,将塑性应变
    作为材料在相变过程中耗散内变量,将其引入到材料相变过程中耗散能和
    自由余能的表达式中来表示材料在相变过程中的能量耗散及能量驱动。因
    此,在材料的变形过程中,当不发生相变及涎相变时,塑性应变不发生任
    何变化。并以理想两变体情况进行了数值计算,得到的结果完全模拟了形
    状记忆合金的形状记忆效应及相变伪弹性。
The concept of intelligent materials came into being in the late 1980's. Shape memory Alloys(SMAs) smart composites have been one of the most absorbable things in the diversity of intelligent materials. The constitutive relations of shape memory alloys and its composites have been a crucial issue for application of the shape memory alloys smart composites. Two constitutive relations were constructed along two different direction, and the constitutive relations of composites reinforced by long shape memory alloys fibers were formed by using the phenomenological model of shape memory alloys, the work can be useful for smart composites design. The main works are as follows:
    In the phenomenological model of Tanaka's, the volume fraction of transformation products is exponential to stresses and temperature, and the four characteristic transformation temperatures are linear to the stress, so when the shape memory alloys which morphology is full twinned martensite, was stretched, the model of Tanaka's can not reflect the reorientation of the martensite. The author constructed his own phenomenological model by using Tanaka's exponential model of transformation products, but Brinson's relations of transformation temperatures and stresses were adopted, different recoverable strains expressions were determined according to the applied load, meanwhile, the process which twinned martensite detwinned can be assumed as transformation, so the new model can reflect the reorientation of martensite, and it can be expanded to three dimensional easily by using the concept of equivalent stress. The model is simple because only one dynamic equation of martensite is adopted. The theoretical predictions of the model consist well with experiment.
    The constitutive model of composites reinforced by long SMAs fiber was constructed by using the framework of Dvorak's elastoplastic fibrous composites theory. In the model, the elastoplastic matrix was considered, and the definite expressions of five subdivisions can be obtained from the continuous constraint of interface between the matrix and the fibers The macroscopic properties can be determined by the model, and it is useful for intelligent composites design.
    Usually the long SMAs fiber reinforced aluminum matrix composite is made
    
    
    
    by the method of casting with high pressure, or pressure with high temperature and agglomeration of powder, the internal stresses in the fibers and matrix of composites must be studied under the variation of temperature for the research does influence macroscopic properties of the composites. The micromechanical model of long SMAs fibrous composites was constructed by using the phenomenological model of SMAs, the residual stresses in the fibers and matrix were calculated by using the micromechanical model. The research is useful for manufacture of intelligent composites.
    A multivariant model was produced by using the principle of thermodynamics in the phases of martensitic transformation and its reverse transformation. The interactions among different grains were calculated by Eshelby-Kroner method, the plastic strain can be introduced at the fact that the dislocations can be reproduced and merged in the phases of martensitic transformation and its reverse transformation, the plastic strain can be considered as a internal variable of dissipation, it should be noted that the plastic strain is only a part of expressions of energy dissipation and complementary free energy, so when the transformation and its reverse cannot occur the plastic strain cannot change. As an example, we selected an ideal SMAs with two completely self-accommodated martensite variants, the results of the calculations can be simulated well with the phenomena of shape memory effect and transformation pseudoelasticity.
引文
1.李超.金属学原理.哈尔滨工业大学出版社.1996.
    2.徐祖耀.马氏体相变与马氏体.科学出版社.1999.
    3 邓永瑞.马氏体转变理论.科学出版社.1993.
    4 杨杰,吴月华.形状记忆合金及其应用.合肥:中国科学技术大学出版社.1993.
    5.杨大智,张连生,王凤庭.大连工学院出版社.1988.
    6. C.M. Wayman Shape Memory and Related Phenomena, Progress in Material Science, Vol.36, 1992, pp.203~224.
    7. Kaushik Bhattacharya, Self-Accommodation in Martensite, Arch. Rational Mech. Anal. 120, 1992, pp.201~244.
    8. 王健,沈亚鹏,王社良.形状记忆合金的本构关系.上海力学.Vol.19,No.3,1991,pp.185~195.
    9. T. Tadaki,K. Otsuka, K. Shimizu, Shape Memory Alloys, Ann. Rev. Mater. Sci, 18, 1988, pp.25~45.
    10. T. Saburi, C. M. Wayman, Crystallographic Similarities in Shape Memory Martensites,Acta Metallurgica. Vol.27, 1979, pp.979~995.
    11. T. Saburi, C. M. Wayman, K. Takata, S. Nenno, the Shape Memory Mechanism in 18R Marttensitic Alloys, Acta Metallurgica. Vol.28, 1980, pp. 15~32.
    12. FD Fischer, Q-P Sun, K Tanaka. Transformafion-induced Plasticiw(TRIP). Appl. Mech. Rev., Vol49, No.6, 1996, pp.317~364.
    13. Qing Ping Sun, Keh Chill Hwang, Micromechanics Modelling for the Constitutive Behavior of Polycrystallme Shape Memory Alloy, J. Mech. Phys. Solids, Vol.41, No.1, 1993, pp. 1~33.
    14. Victor Birman, Review of Mechanics of Shape Memory Alloy Structures. Appl. Mech. Rev., Vol50, No. 11, 1997, pp.629~645.
    15. Muller, I, A Model for a Body with Shape Mernory, Arch Rat. Mech. Anal., 70, 1979,pp.61~77.
    16. Rohan Abeyaratne and James K. Knowles, On the Driving Traction Acting On a Surface of Strain Discontinuity in a Continuum, J. Mech. Phys. Solids, Vol.38, No.3, 1990, 1:9.345~360.
    17. Ball, J. M and James; R. D., Fine Phase Mixtures as Mimmizers of Energy, Arch. Rat. Mech. Anal., 100, 1987, pp. 13~52
    18. Phoebus Rosakis, James K. Knowles, Continuum Modols for Irregular Phase Boundary Motion in Shape-memory Tesile Bars, Eur. J. Mech.A/Solids. 18. 1999, pp.1~16.
    19. F.Falk, Model Free Energy, Mechanics, and Tharmodynamics of Shape Memory, Alloys,
    
    Acta. Metallurgica, Vol.28, 1980, pp. 1773~1780.
    20.金属物理学,(第二卷,相变),冯端等.科学出版社,1990.
    21.郑雁军,TiNi形状记忆合金丝/Al基复合材料中TiNi合金约束态相变的研究,大连理工大学博士论文,2000.
    22. Kikuaki Tanaka, A Thermomechanical Sketch of Shape Memory Effect: One-dimensional Tensile Behavior, Res. Mechamca, 18, 1986, pp.251~263.
    23. Yoshio Sate, Kikuaki Tanaka, Estimation of Energy Dissipanon in Alloys Due to Stress-induced Martensitic Transformation, Res. Mechanica, 23, 1988, 381~393.
    24. C.L. Magee, The Nucleation of Martensite, Phase Transformation, edited by American Society for Metals, London, Metals Park, 1970, pp.115.
    25. L. C. Brinson, IL Lammering, Finite Element Analysis of the Behavior of Shape Memory Alloys and Their Applications, Int. J. Solids Structures, Vol.30, No.23, 1993, pp.3261~3280.
    26. C. Liang, C. A. Rogers, One-dimensional thermomechamcal constitutive relations for shape memory materials, J Intelligent Material Systems and Structures, 1990,Vol.1, pp.229~242.
    27. C. Liang, C. A. Rogers, A Multi-dimensional Constitutive Model for Shape Memory Alloys, Journal of Engineering Mathematics, 26, 1992, pp.429~443.
    28. L. C. Brinson, One-dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechamcal Derivation with Non-constant Material Fuctions and Redefined Maxtensite Internal Variable, J. Intelligent Mat. Syst. Struct. 4, 1993, pp.229~242.
    29. L.C. Brinson, M. S. Huang, Simplification and Comparisons of Shape Memory Alloy Constitutive Models, Journal of Intelligent Material Systems and Structures, Vol.7,1996,pp. 108~114.
    30.邹静,钟伟芳.形状记忆合金的多维本构关系.固体力学学报.Vol.20,No.2,1999,pp.171~176.
    31. Miinshiou Huang, L. C. Brmson, A Multivariant Model for Single Crystal Shape Memory Alloy Behavior, J. Mech. Phys. Solids, Vol.46, No.8, 1998, pp.1379~1409.
    32. Xiujie Gao, Miinshiou Huang, L. Catherine Brinson, A Multivariant Micromechamcal Model for SMAs Part 1. Crystallographic Issues for Single Crystal Model, International Journal of Plasticity, 16, 2000, pp. 1345~1369.
    33. Mimshiou Huang, Xiujie Gao, L. Catherine Brmson, A Multivariant Micromeehameal Model for SMAs Part 2. Polycrystal Model, Internalaonal Journal of Plasticity, 16, 2000, pp. 1371-1390
    
    
    34. Boyd J. G., Lagoudas D.C., Thermomechanical Response of Shape Memory Composites, Jounal of Intelligent Material Systems and Structures, Vol.5-May 1994,pp.333~346.
    35. Boyd J. G., Lagoudas D.C., A Thermomechanical Constitutive Model for Shape Memory Materials Part 1: The Monolithic Shape Memory, Alloy, International Journal of Plasticity, Vol. 12, No.6, 1996, pp.805~842.
    36. Zhonghe Bo, Dimitris C. Lagoudas, Thermomechamcal Modeling of Polyctystalline SMAs Under Cyclic Loading, Part 1: Theoretical derivations, International Journal of Engineering Science, 37, 1999, pp. 1089~1140.
    37. Dimitris C. Lagondas, Zhonghe Bo, Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part 2: Material Characterization and Experimental Results for a Stable Transformation Cycle, International Journal of Engineering Science, 37, 1999, pp. 1141~1173.
    38. Zhonghe Bo, Dimitris C. Lagoudas, Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part 3: Evolution of Plastic Strains and Two-way Shape Memory Effect, International Journal of Engineering Science, 37, 1999, pp. 1175~1204.
    39. Zhonghe Bo, Dimitris C. Lagoudas, Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part 4: Modeling of Minor Hysteresis Loops, International Journal of Engineering Science, 37, 1999, pp. 1205~1249.
    40. Dimitris C. Lagoudas, Steven G. Shu, Residual Deformation of Active Structures with SMA Actuators, International Journal of Mechanical Sciences, 41, 1999, pp.595~619.
    41. M. A. Qidwai, D. C. Lagoudas, Numerical Implementation of a Shape Memory Alloy Thermomechaniead Constitutive Model Using Return Mapping Algorithms, Int. J. Num. Meth. Engng., 47, 2000, pp.1123~1168.
    42. M. A. Qidwai, D. C. Lagoudas, On Thermomechanies and Tranformation Surfaces of Polycrystalline NiTi Shape Memory Alloy Material, International Journal of Plasticity, 16, 2000, pp. 1309~1343.
    43. Yefim Ivshin, Thomas J. Pence, A Constitutive Model for Hysteretic Phase Transition Behavior, Int. J. Engng. Sci. Vol.32, No.4, 1994, pp.681~704.
    44. Herbert B. Callen, Thermodynamics, John Wiley, New York, 1960.
    45. Bernard D. Coleman, Morton E. Gurtm, Thermodynamics with Internal State Variables, The Journal of Chcmical Physics, Vol.47, No.2, 1967, pp.597~613.
    46. Dominic G. B. Edelen, On the Characterization of Fluxes in Nonlinear Irreversible
    
    Thermodynamics, Int. J. Engng. Sci. Vol. 12, 1974, pp.397~411.
    47. G. T Houlsby, A. M. Puzrm, A Thermomechamcal Framework for Constitutive Models for Rate-independent Dissipative Materials, International Journal of Plasticity, 16, 2000, pp. 1017~1047.
    48. J. Ortm, A. Planes, Thermodynamic Analysis of Thermal Measurements in Thermoelastic Martensitic Transformations, Acta Metall., Vol.36, No. 8, 1988, pp. 1837~1889.
    49. J. Ortm, A. Planes, Thermodynamics of Thermoelastic Martensitic Transformations, Acta Metall, Vol.37, No.5, 1989, pp. 1433~1441.
    50. J. IL Rice, Inelastic Constitutive Relations for Solids: An Internal-Variable Thoory and Its Application to Metal Plasticity, J. Mech. Phys. Solids, Vol. 19, 1971, pp.433~455.
    51. R. Hill, J. K Rice, Elastic Potentials and the Structure of Inelastic Constitutive Laws, SIAM J. Appl. Math_, Vol.25, No.3, 1973, pp.448~461.
    52.孙庆平,相变塑性细观本构理论与增韧分析,清华大学博士论文,1989.
    53.黄克智,徐秉业,固体力学发展趋势,北京理工大学出版社,1995.
    54. B. Raniecki, C. Lexcellent, R_L-model of Pseudoelasticity and Their Specification for Shape Memory Solids, Ear. J. Mech., A/Solids, Vol. 13, No. 1, 1994, pp.21-50.
    55. B. Raniecki, C. [,excellent, Thermodynamics of Isotropic Pseudoelasticity in Shape Memory Alloys, Ear. J. Mech., A/Solids, Vol. 17, No.2, 1998, pp. 185-205.
    56. E. Patoor, A. Eberhardt, M. Berveiller, Thermomechamcal Behavior of Shape Memory Alloys, Arch. Mech., 40, 5-6, 1988, pp. 775~794.
    57. B.C. Goo, C. Lcxcellent, Micromechanics-based Modeling of Two-way Memory Effect of a Single Crystalline Shape-memory Alloy, Acta Mater., Vol.45, No.2, 1997, pp. 727~737.
    58. Z. K. Lu, G. J. Weng, Martensitic Transformation and Stress-strain Relations of Shape-memory Alloys, J. Mech. Phys. Solids, Vol.45, No. 11/12, 1997, pp. 1905~1928.
    59. N. Siredey, E. Patoor, M. Berveiller, A. Eberhardt, Constitutive Equations for PolycrystaUine Thermoelastic Shape Memory Alloys. Part 1. Intragranular Interactions and Behavior of the Gram, International Journal of Solids and Structures, 36, 1999, pp.4289~4315.
    60. M. Cherkaoui, M. Berveiller, H. Sabar, Micromechanical Modeling of Martensitic Transformation Induced Plasticity (TRIP) in Austenitic Single Crystals, International Journal of Plasticity, Vol. 14, No.7, 1998, pp.597~626.
    
    
    61. M. Cherkaoui, M. Berveiller, X. Lemoine, Couplings Between Plasticity and Martensitic Phase Transformation: Overall Behavior of Polycrystallime TRIP Steels, International Journal of Plasticity, Vol. 16, 2000, pp.1215~1241.
    62. D. Entemeyer, E. Patoor, A. Eberhardt, M. Berveiller, Strain Rate Sensitivity in Superelasticity, International Journal of Plasticity, Vol. 16, 2000, pp. 1269--1288.
    63. T Mort, K. Tanaka, Average Stress in Matrix and Average Elastic Energy of Materials with Misfitfing Inclusions, Acta Metallurgica, Vol.21, May, 1973, pp.571~574.
    64. Toshio Mura, Micromechanics of Defects in Solids, Martinus Nijhoff, Dordrecht, 1987.
    65. John A. Shaw, Stehos Kyriakides, Thermomechanical Aspects of TiNi, J. Mech. Phys. Solids, Vol.43, No.8, 1995, pp.1243~1281.
    66. J.A. Shaw, S. Kyriakides, On the Nucleation and Propagation of Phase Transformation Fronts in a NiTi Alloy, Acta Mater., Vol.45, No.2, 1997, pp.638~700.
    67. W. Huang, Y. L. Wong, Effects of Pre-strain on Transformation Temperatures of NiTi Shape Memory Alloy, Journal of Materials Science Letters, 18, 1999, pp. 1797~1798.
    68. Yinong Liu, I. Houver, H. Xiang, L. Bataillard, S. Miyazaki, Strain Dependence of Pseudoelastic Hysteresis of NiTi, Metallurgical and Materials Transactions A, Vol.30, 1999, pp. 1275~1282.
    69. C. Santulli, Thermoelastic Analysis of Phase Transition in Ni-Ti Shape Memory Alloys, Journal of Materials Science Letters, 19, 2000, pp. 1071~1072.
    70. Song Guquan, Sun Qingping, Hwang Kehchih Effect of Microstructure on the Hardening and Softening Behaviors of Polycristalline Shape Memory Alloys. Part 1: Micromcchanics Constitutive Modeling, ACTA Mechanica smica, Vol. 16, No.4, 2000,pp.309~324.
    71. Song Guquan, Sun Qingping, Hwang Kehchih Effect of Microstructure on the Hardening and Softening Behaviors of Polycristallmc Shape Memory Alloys. Part 2: Numerical Simulation Under Axisymmetrical Loading, ACTA Mechanica Sinica, Vol. 16, No.4, 2000, pp.325~334.
    72. Qing-Ping Sun, Zheng Zhong, An Inclusion Theory for the Propagation of Martensite Band in NiTi Shape Memory Alloy Wires Under Tension, International Journal of Plasticity, 16, 2000, pp. 1169~1187.
    73. Qing-Ping Sun, Terry Ting Xu, Xiangyang Zhang, On Deformation of A-M Interface in Single Crystal Shape Memory Alloys and Some Related Issucs, Journal of Engineering Materials and Tcclmology, Transactions of the ASME, Vol. 121, January, 1999,
    
    pp.38~43.
    74. Gu Quan Song, Qmg Ping Sun, M. Cherkaoui, Role of Microstrueture in the Thermomechanical Behavior of SMA Composites, Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 121, January, 1999, pp.86~92.
    75. M. Cherkaoui, Q. P. Sun, G. Q. Song, Mieromechanics Modeling of Composite with Ductile Matrix and Shape Memory Alloy Reinforcement, International Journal of Solids and Structures, 37, 2000, pp. 1577~1594.
    76. B. Raniecki, C. Lexcellent, K. Tanaka, Thermodynamic Model of Pseudoelastic Behavior of Shape Memory Alloys, Arch. Mech. Vol.44, No.3, 1992, pp. 261~284.
    77. B. Raniecki, K, Tanaka, On the Thermodynamic Driving Force for Coherent Phase Transformations Int. J. Eng. Sci Vol.32, No. 12, 1994, pp. 1845-1858.
    78. B. Raniecki, O. Bruhns, Thermodynamic Reference Model for Elastic-Plastic Solids Undergoing Phase Transformations, Arch. Mech., 43, 2-3, 1991, pp.343~376.
    79. B. Raniecki, J. Rejzner, C. Lexcellent, Anatomization of Hysteresis Loops in Pure Bending of Ideal Pseudoelastie SMA Beams, Int. J. Mech. Sci, Vol.43, No. 5, 2001,pp. 1339-1368.
    80. A. Bhattacharyya, T. Sakaki, G. J. Weag, The Influence of Martensite Shape, Concentration, and Phase Transformation Strain on the Deformation Behavior of Stable Dual-Phase Steels, Metallurgical Transactions A, Vol.24, 1993, pp.301~314.
    81. A. Bhattacharyya, G. J. Weng, An Energy Criterion for the Stress-induced Marteasitic Transformation in a Ductile System, J. Mech. Phys. Solids, Vol.42, No. 11, 1994, pp. 1699~1724.
    82. Z. K. Lu, G. J. Weng, A Self-consistent Model for the Stress-strain Behavior of Shape-memory Alloy Polycrystals, Acta Mater., Vol.46, No. 15, 1998, pp.5423~5433.
    83. Z. K. Lu, G. J. Weng, A Micromechanical Theory for the Thermally Induced Phase Transformation in Shape Memory Alloys, Smart Mater Stmct., Vol.9, No.5, 2000, pp.582~591.
    84. Z. K. Lu, G. J. Weng, A Two-level Micromechanical Theory for a Shape-memory Alloy Reinforced Composite, International Journal of Plasticity, 16, 2000, pp. 1289-1307.
    85. Petr Sittner, Yasuhiro Hara, and Masataka Tokuda, Experimental Study on the Thennoelastic Martensitic Transformation in Shape Memory Alloy Polycrystal Induced by Combined External Forces, Metallurgical and Materials Transaction A, Vol.26, 1995, pp.2923~2935.
    
    
    86. F. D. Fischer and G. Reisner, A Criterion for the Martensitic Transformation of a Microregion in an Elastic-plastic Material. Acta. Mater. Vol.46, No.6, 1998. pp.2095~2102.
    87. W. Huang, "Yield" Surface of Shape Memory Alloys and Their Applications, Acta Mater., Vol.47, No.9. 1999, pp.2769~2776
    88. A. H. Y. Lue, Y Tomota, M. Taya, K. Inoue. T. Mori, Micro-mechanic modcling of the Stress-strain Curves of a TiNiCu Shape Mcmory Alloy, Material Science and Engineering A285, 2000, pp.326~337.
    89. X. Y. Zhang, L. C. Brinson and Q. P. Sun, The Variant Selection Criteria in Single-crystal CuAlNi Shape Memory Alloys, Smart Mater. Struct. Vol.9, 2000, pp.571~581.
    90. Cherkaoui, Mohammed, Bervciller, Marcel, International Journal of Plasticity, Vol. 16, Issue: 10~11, 2000.
    91. Abhijit Bhattacharyya, Dimitris C Lagouds, Smart Materials and Structures, Vol.9, No.5, October, 2000.
    92. P. Sittner, V. Novak, and N. Zarubova, Deformation by Moving Interfaces form Single Crystal Experiments to thc Modeling of Industrial SMA, Int. J. Mech. Sci., Vol.40, 1998, pp.159~172.
    93. M. Tokuda, M.Ye, M. Takakura, and P. Sitmcr, Calculation of Mechanical Behaviors of Shape Memory, Alloy under Multi-axial Loading Conditions. Int. J. Mech. Sci., Vol.40, 1998, pp.227~235.
    94. T. Jesse Lira, David L. Mcdowell, Mechanical Behavior of an NJ-Ti Shape Memory Alloy Under Axial-Torsional Proportional and Nonproportional Loading, Journal of Engineering Materials and Technology, Vol. 121. 1999, pp.9~18
    95. Fumituto Nishimura. Noriko Watanabe, Kikuaki Tanaka, Evolution of Martensite Start Condition in General Thermomechanical Loads of Fe-based Shape Memory Alloy, International Journal of Mechanical Sciences, 42, 2000, pp.347~365.
    96.王跃方.杨大智.含形状记忆合金智能材料系统的分析与设计与应用研究进展,智能材料与集成系统发展战略文集.杨大智.2000.大连.
    97.师昌绪.材料大辞典.化学工业出版社.1994.
    98. Yasubumi Furuy. a, Atsushi Sasaki and Minoru Taya, Enhanced Mechanical Properties of TiNi Shape Memory Fiber/Al Matrix Composite. Materials Transactions. JIM. Vol.34. No.3, 1993, pp.224~227.
    
    
    99.苏晓风,金属基复合材料强化和损伤机制的细观力学研究,大连理工大学博士论文,1996.
    100. J. D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. Roy. Soc., A241, 1957, pp.376-396.101.
    101.杨庆生,陈浩然.夹杂问题中的自洽有限元法和复合材料的平均弹性性能,复合材料学报,Vol.9,No.1,1992,pp.79~84.
    102. K. Ding, O. J. Weng, Plasticity of Particle-reinforced Composites with a Ductile Interphase, Journal of Applied Mechanics, Trans. ASME, Vol.65, 1998, pp.596-604.
    103. O. K. Hu, G. J. Wong, Some Reflections on the Mori-Tanaka and Ponte Castaneda-Willis Methods with Randomly Oriented Ellipsoidal Inclusions, Acta. Mechanica, Vol. 140, No. 1, 2000, pp.31~40.
    104. Zvi Hashin, B. Walter Rosen, The Elastic Moduli of Fiber-reinforced Materials, Journal of Applied Mechanics, June, 1964, pp.223~232.
    105. Richard M. Christensen, A Critical Evaluation for a Class of Miero-mechamcs Modeh, J. Mech. Phys. Solids, Vol.38, No.3, 1990, pp.379~404.
    106. Z. Hashin, The Elastic Moduli of Heterogeneous Materials, J. Appl. Mech., Vol.29, 1962, pp. 143~150.
    107. Benveniste, Y., New Approach to the Application of Mori-Tanaka's Theory in Composite Materials, Mechanics of Materials, Vol.6, No.2, 1987, pp. 147~157.
    108. It. Hill, Elastic Properties of Reinforced Solids: Some Theoretical Principles, J. Mech. Phys. Solids, Vol. 11, 1963, pp.357~372.
    109. R. Hill, Theory of Mechanical Properties of Fibre-strengthened Materials: Ⅰ. Elastic Behavior, J. Mech. Phys. Sohds, Vol. 12, 1964, pp. 199~212.
    110. R. Hill, Theory of Mechanical Properfes of Fibre-strengthened Materials: Ⅱ. Inelastic Behavior, J. Mech. Phys. Solids, Vol. 12, 1964, pp.213~218.
    111. R. Hill, A Self-consistent Mechanics of Composite Materials, J. Meek Phys. Solids, Vol. 13, 1965, pp.213~222.
    112. R. M. Christensen and K. H. Lo, Solutions for Effective Shear Properties m Three Phase Sphere and Cylinder Models, J. Mech. Phys. Solids, Vol.27, 1979, pp.315~330.
    113. A. Dasgupta and S. M. Bhandarkar, A Generalized Self-consistent Mori-Tanaka Scheme for Fiber-composites with Multiple Interphases, Mechanics of Materials Vol. 14, t992, pp.67-82.
    114.张春生,赵连城.TiNi形状记忆合金的马氏体相变与形状记忆效应,材料科学与工
    
    
    艺,Vol.2,No.3,1994,pp.104~109.
    115.黄兵民,王永前,程建霞,赵连城.近等原子比NiTi形状记忆合金中的伪弹性,中国有色金属学报,Vol.6,No.4,1996,PP.136~139.
    116.黄兵民,蔡伟,赵蔚,赵连城,刘礼华.应力-应变循环对Ti-49.8at%合金非线性超弹性的影响,稀有金属,Vol.21,No.6,1997,pp.401~406.
    117.王志刚.TiNi形状记忆合金变形特性实验研究,力学学报,Vol.27,No.5,1995.pp.587~596.
    118.霍永忠,陈远富,祖小涛,陈孟思,涂铭旌.NiTi形状记忆合金拉伸实验及数值模拟,功能材料,Vol.30,No.1,1999,pp.71~73.
    119.吴波,孙科学,李惠,唐卫胜.形状记忆合金力学性能的试验研究,地震工程与工程振动,Vol.19,No.2,1999,PP.104~111.
    120.彭向和,韩勇,黄尚廉.SMA伪弹性和形状记忆特性的描述,重庆大学学报,Vol.22,No.1,1999,pp.1~6.
    121.彭向和,韩勇,黄尚廉.形状记忆合金拟弹性行为的热力学描述,应用力学学报,Vol.17,No.1,2000,pp.60~66.
    122. X Peng, Y Yang, S Huang, A Two-phase Mixture Model for SMAs and Application to the Analysis for Pseudoelasticity of a SMA Polycrystal, Smart Materials and Structures, Vol.9, No.5, 2000, pp.604~412.
    123. H. Y. Yu, A New Model for the Volume Fraction of Martensitic Transformations, Metallugieal and Materials Transaction A, Vol.28A, 1997, pp.2499~2506.
    124. Wayman C. M.,Duerig T W., An Introduction to Martensite and Shape Memory, Engineering Aspects of Shape Memory Alloys, edited by T.W. Duerig, K. N, Melton, D. Stockel, C. M. Wayman, Butterworth-Hememann Ltd., London, 1990, 3~20.
    125. K. Hamada, J. H. Lee, K. Mizuuehi, M. Taya, and K. Inoue, Thermomechanical Behavior of TiNi Shape Memory Alloy Fiber Reinforced 6061 Aluminum Matrix Composite, Metallurgical and Materials Transaction A, Vol.29A, 1998, pp. 1127~1135.
    126.徐惠彬,仲伟虹,田莳.智能复合材料的发展现状及应用前景,航空精密制造技术,Vol.33,No.4,1997,pp.11~14.
    127.崔立山,陈騑瑕,杨大智.金属基形状记忆合金复合智能材料研究中的几个关键问题,高技术通讯,No.8,1994,pp.43~44.
    128. Yamada, Y., Taya, M., and Watanabe, R, Strengthening of Metal Matrix Composite by Shape Memory Effect, Materials Transactions, JIM, 1993, Vol. 34, pp. 254~260.
    129. Armstrong, W.D., A One-Dimensional Model of a Shape Memory Alloy Fibre
    
    Reinforced Aluminum Metal Matrix Composite, J. Intell. Mater. Sys. Struct, 1996, Vol. 7,pp. 448~454.
    130. Guquan Song, Qingping Sun and M.Cherkaoui Role of Microstructure in the Thermomechanical Behavior of SMA Composites, Transactions of the ASME, Vol. 121, January, 1999, pp. 86~92.
    131. Minoru Taya, Micromechanies Modeling of Smart Composites, Composites: Pan A, Vol.30, 1999, pp.531~536.
    132.王健,沈亚鹏.短纤维增强复合材料在热载下的相变特性,力学学报,Vol.32,No.2,2000,pp.180~189.
    133. M. Kawai, Effects of Matrix Inelasticity on the Overall Hysteretie Behavior of TiNi-SMA Fiber Composites, International Journal of Plasticity, Vol. 16, 2000, pp.263~282.
    134.孙国钧,刘宜平,林驰.形状记忆合金丝复合材料单层板的拉伸,纤维复合材料,vol.15,No.1,1994,pp.15~21.
    135.孙国钧.形状记忆合金增强复合材料梁的弯曲,复合材料学报,vol.12,No.4,1995,pp.119~124,
    136.朱祎国,吕和祥,杨大智,形状记忆合金的本构模型,材料研究学报,Vol.15,No.3,2001,pp.263~268.
    137. G. J. Dvorak, Y. A. Bahei-El-Din, Plasticity Analysis of Fibrous Composites, Journal of Applied Mechanics, Vol.49, 1982, pp.327~335.
    138.朱祎国,吕和祥,杨大智,形状记忆合金的一维唯象模型,应用数学与力学,2001,投送.
    139. G. J. Dvorak, Y. A. Babel-El-Din, Plasticity Analysis of Fibrous Composites, Journal of Applied Mechanics, Vol.49, 1982, pp.327~335.
    140. George J. Dvorak and M. S. Madhava Rao, Axisymmetric Plasticity Theory of Fibrous Composites, Int. J. Engng. Sci., Vol. 14, 1976, pp.361~373.
    141. G. J. Dvorak and Y. A. Bahei-EI-Din, Elastic-Plastic Behavior of Fibrous Composites, J. Mech. Phys. Solids, Vol.27, 1979, pp.51~72.
    142. D. J. Nikkel Jr. and R. M. Chnstensen, A Micro-mechanical Model for Aligned Fiber Elastic-plastic Composites, Eur. J. Mech., A/Solids, Vol.9, No.5, 1990, pp.429--451.
    143. E. S. Folias, On the Prediction of Failure at a Fiber/Matrix Interface in a Composite Subjected to a Transverse Tensile Load, Journal of Composite Material Vol.25, 1991, pp.869~886.
    
    
    144. N. Fares, G. J. Dvorak, Finite Deformation Constitutive Relations for Elastic-plastic Fibrous Metal Matrix Composites, Journal of Applied Mechanics, Vol.60. 1993. pp.619~625.
    145. Kajendra U. Vaidya, K. K. Chawla, Thermal Expansion of Metal-matrix Composites, Composites Science and Technology, Vol.50. 1994, pp. 13~22.
    146. R. A. Schapery, Thermal Expansion Coefficients of Composite Materals Based on Energy Principles, J. Composite Materials, Vol.2, No.3, 1968, pp.380~404.
    147. Z.M.Huang, Tensile strength of fibrous composites at elevated temperature, Materials Science and Technology, Vol. 16, January 2000, pp.81~94.
    148.周筑宝.最小耗能原理及其应用.科学出版社.2001.
    149. Hans Zieglcr and Christoph Wehrli, The Derivation of Constitutive Relations from the Free Energy and the Dissipation, Advanced in Applied Mechanics, Vol.25, 1987, pp. 183-238.
    150.王仁.黄克智.朱兆祥.塑性力学进展.中国铁道出版社.1988.
    151.杨庆生.复合材料细观结构力学与设计.中国铁道出版社.2000.
    152. O. J. Weng, The Overall Elastoplastic Stress-Strain Relations of Dual-phase Metals, J. Mech. Phys. Solids, Vol.38, No.3, 1990, pp.419~441.
    153.李岩,机敏复合材料中TiNi形状记忆合金约束态相变研究,大连理工大学博士论文,2001.
    154.刘晓鹏,TiNi形状记忆合金薄膜显微结构及相变行为研究,大连理工大学博士论文,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700