基于相变微结构的形状记忆合金本构描述
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热力载荷作用下形状记忆合金(shape memory alloy, SMA)特有的热弹性马氏体相变赋予其奇异的特性,如铁弹性(ferroelasticity, FE)、形状记忆效应(shape memory effect, SME)和伪弹性(pseudoelastisity, PE)等。这些诱人的特性使形状记忆合金作为一种重要的机敏材料近年来受到人们巨大的关注,并迅速在工业、国防、仪表和医疗领域获得广泛的应用。形状记忆合金在高新技术领域中的迅速增长的应用要求人们对其热力学特性尤其是对其在多轴复杂加载史下的热力学特性进行全面了解和正确的描述。人们已经认识到材料的宏观变形特性与材料在各个尺度下的变形特性有着密切的关系,并从大量事实中得到了一个共识,即材料的宏观特性取决于材料的微观结构。对形状记忆合金的实验表明,其在拉伸和扭转过程中宏观响应特性的差异与其微结构的差异紧密相关,尤其是在马氏体相变和逆相变过程中其片层微结构的形成与发展不同。迄今考虑此类相变微结构的本构描述甚为鲜见,因此有必要发展一种跨层次的分析方法以研究其复杂的响应特性及其微结构依赖性,建立计及微结构特征的材料本构描述。随着研究水平的提高和新现象的不断发现(如相变局部化)要想建立更完整,适应面更广的模型,需要新的方法和新的知识。
     本文在分析国内外有关形状记忆合金本构研究现状的基础上,结合近年来的关于形状记忆合金实验研究得到的新现象,对实验中的微结构发展和伴随着宏观马氏体带的形成出现的应力跌落现象进行了分析,并对形状记忆合金微圆管的拉伸实验进行了有限元分析,进一步从材料细观结构的变化及两相材料的相互约束关系出发,建立了记及片层状微结构的本构模型。论文的主要工作和结论如下:
     (1)对有关形状记忆合金在拉伸和扭转实验中的超弹性响应的研究成果进行了回顾,特别考察了在拉伸和扭转过程中的宏观响应特性差异的物理机制、结构演化及其伴随着宏观马氏体带的形成出现的应力跌落现象,并解释了其物理机理。阐述了建立形状记忆合金本构方程时考虑其结构的必要性。
     (2)对形状记忆合金在拉伸下的力学特性进行了有限元分析,有限元分析中采用了三种不同分析模型,研究了不同实验阶段马氏体相和奥氏体相力学行为由于界面约束造成的变化,得出了在实验过程中两相力学行为之间的关系随马氏体体积含量的变化规律。结果显示在相变过程中,随着材料结构的演化,两相间的约束强度发生了剧烈变化。
     (3)基于对NiTi形状记忆合金的实验观察及有限元分析,考虑两相间的应变不协调关系,采用应变修正法建立了记及片层状微结构的本构模型,本模型考虑
Shape memory alloys (SMAs) have been receiving increasing attention in recent years, due to their particular properties under thermomechanical loading, such as ferroelasticity, shape memory effect and pseudoelastisity. These properties are related to the martensitic phase transformation and are extensively used in many fields, such as industry, aviation, national defense, instruments and medical devices, etc. The rapid increasing applications of shape memory alloys require better understanding and more accurate description of the thermomechanical behavior of SMAs, especially the behavior of SMAs subjected to multi-dimensional loading complex thermomechanical loading histories. It has been recognized that the macroscopic property of a material is strongly dependent on its microstructures. The experiments on the NiTi SMAs show significant difference in the pseudoelastic behavior as well as the microstructures of the SMA under pure torsion and under pure tension, especially a sharp descent after the onset of martensitic phase transformation and the corresponding distinct martensitic band during a tensile process. However, such significant behavior has not been successfully described.
     In this dissertation, the differences in the responses of a NiTi SMA microtube subjected to pure tension and pure torsion are systematically investigated. A finite element analysis is performed for the significant stress drop phenomenon, taking into account the phase-transformation microstructures and their evolution observed during tension. It is found that the physical and mechanical mechanism of the distinct stress drop can be attributed to the variation of the microstructure, i.e., the initiation and growth of the martensite band that strongly reduce the constraint between phases. A constitutive model is proposed based on that a shape memory alloy is the mixture of martensite and austenite with laminated microstructure, taking the thickness of martensitic band as an important parameter. The corresponding incremental form of constitutive model is developed, and the constitutive behavior of a NiTi microtube is analyzed and compared with experimental results. The main work and conclusions in this dissertation are as follows:
     (1) The progress on the research of the pseudoelastic behavior of shape memory alloys is reviewed. The physical mechanism of the difference in the macroscopic behavior during tension and torsion, as well as the evolvement of microstructure, is
引文
[1] 杨杰,吴月华.形状记忆合金及其应用.合肥:中国科学技术大学出版社.1993.
    [2] 杨大智,张连生,王凤庭.大连工学院出版社.1988.
    [3] C.M. Wayman, Shape Memory and Related Phenomena, Progress in Material Science, Vo1.36, 1992, pp.203-224.
    [4] Kaushik Bhattacharya, Self-Accommodation in Martensite, Arch. Rational Me;h. Anal. 120, 1992, pp.201-244.
    [5] 王健,沈亚鹏,王社良.形状记忆合金的本构关系.上海力学.Vo1.19, No.3, 1991, pp. 185-195.
    [6] T. Tadaki, K. Otsuka, K. Shimizu, Shape Memory Alloys, Ann. Rev. Mater. Sci, 18,1988, pp.25-45.
    [7] 黄克智 孙庆平 严文裔 热弹性马氏体相变塑性 ——细观力学本构模型、实验和数值模拟 机 械 强 度 Vol.17 No.3 September 1995 48-60
    [8] 曹阳 结构与材料 高等教育出版社 ISBN7-04-011974-9 2003-6-6
    [9] 文凡 《金属功能材料》1995 No.2
    [10] Rao C N R,Rao K J.Phase Transitions in Solids.New York:McGraw-Hill.1978
    [11] Wayman C M.Introduction to the Crystallography of Martensitic Transformation.New York.Macmillan.1964
    [12] Christian J W. The Theory of Transformations in Metals and Alloys 2nd ed.,Oxford:Pergamon.1975
    [13] Wechsler M S,Lieberman D S.Read T A. On the Theory of Formation of Martensite.Trans.,AIME,1953;197:1503
    [14] Garvie R C,Hannink R H J.Pascoe R T.Ceramic Steel Nature,1975; 258:703
    [15] McMeeking R M,Evans A G.Mechanisms ol Transformation Toughening in Brittle Materials.J.Am. Ceram Soc.,1982;65(5):242
    [16] Patoor E,Eberhardt A,Berveiller M.Thermomechanical Behaviour of shape Memory Alloys.Archh.Mech.,1988;40-775
    [17] Sun Q P,Hwang K C.Micromechanics Constitutive Description 0f Thermoelastic Martensitic Transformation.In:Hutchinson J W.Wu T Y eds.,Advances in Applied Mechanics. New York;Academic Press.1994;31:249
    [18] K. Otsuka and C. M. Wayman, in Shape Memory Materials, ed. K. Otsuka and C.M Wayman (Cambridge Universsity Press. London, 1998). P21-25
    [19] 张苇,材料导报 1995;4: 27-31
    [20] 朱祎国 形状记忆合金及其复合材料的本构关系 大连理工大学博士论文
    [21] 徐祖耀.马氏体相变与马氏体.科学出版社.1999.
    [22] 邓永瑞.马氏体转变理论.科学出版社.1993.
    [23] Z.K Lu and G.J Weng. Martensitic transformation and stress-strain relations of shape memory alloys, J.Mech.Phys.Solids, 1997,45,1905 一 1928
    [24] Comstock R.J., Buchheit Jr, T.E., Somerday M., Wert J.A., Modeling the transformation stress of constrained shape memory alloy single crystals, Acta Metallurgica, 44(9): 3505-3514, 1996.
    [25] Pierre-Yves Manach, Denis Favier, Shear and tensile thermomechanical behavior of near equiatomic NiTi alloy, Material Science & Engineering, A222: 45-57, 1997.
    [26] Falk, F. (1980). Model free-energy, mechanics, and thermodynamics of shape memory alloys, Acta Metallurgica. 23(12), 1773-1780.
    [27] Achenbach, M,. Atanackovic, T. and Muller, I. (1986). A model for memory alloys in plane strains. Int. J. Solids Struct. 22(2) ,171-193.
    [28] Graesser, E.J. and Cozzarelli, F.A. (1991). Shape-memory alloys as new materials for a seismic isolation. J. Enging Mech, 117(11) ,2590-2608.
    [29] Graesser, E.J. and Cozzarelli, F.A. (1994). A proposed three-dimensional constitutive model for shape memory alloys. J. Intell. Mater. Syst. and Struct. 5, 78-89.
    [30] Boyd, J.G. (1994). Thermomechanical response of shape memory composites. J. Intell. Mater. Syst. and Struct. 5, 333-346.
    [31] Liang, C. and Rogers, C. A. (1990). One-dimensional thermomechanical constitutive relations for shape memory materials. J. Intell. Mater. Syst. and Struct. 1, 207-234.
    [32] Auricchio, F., Taylor, R. L. and Lubliner, J. (1997). Shape-memory alloys: Macromodelling and numerical simulations of the superelastic behavior, Computer Methods in Applied Mechanics and Engineering, 146(3-4), 281-312.
    [33] Fischer, F. D., Oberaigner, E. R.and Tanaka, K. (1997). Micromechanical approach to constitutive equations for phase changing materials, Computational Materials Science, 9(1-2), 56-63.
    [34] Peng,X., Yang, Y. and Huang, S., A comprehensive description for shape memory alloys with a two-phase constitutive model, Int. J. Solids Structures, 38(38-39): 6925-6940, 2001.
    [35] Peng X., Li H. and Chen W., A comprehensive description for SMAs with two-phase mixture model incorporating with conventional theory of plasticity, submitted to J. Smart materials & Structures.
    [36] Mura T., 1987. Micromechanics of Defects in Solids, Kluwer Academic Publishers, Boston.
    [37] Gall, K., Sehitoglu, H., Maier, H.J., Jacobus, K., 1998. Stress-induced martensitic phasetransformations inpolycrystalline CuZnAl shape memory alloys under dierent stress states.Metall. Trans. A, 29A(March), 765-773.
    [38] Sun, Q.P., Hwang, K.C., 1993a. Micromechanics modelling for the constitutive behavior ofpolycrystal-line shape memory alloys D I. Derivation of general relations. J. Mech. Phys. Solids41 (1), 1-33.
    [39] Fang D.N., Lu W., Yan W.Y., Inoue T. and Hwang K.C., Stress-strain relation of CuAlNi SMAsingle crystal under biaxial loading-constitutive model and experiments, Acta mater. Vol. 47(1),269-280, 1999.
    [40] Huang M,, Gao X, Brinson L.C., A multivariant micromechanical model for SMAs, Int. J.Plasticity, 16, 1345-1390, 2000.
    [41] Falk F.Landau Theory and Martensitic phase Transitions.J.de Phys.,ColloqueC4,1982:supplement to 43(12):C4-3
    [42] Falk F,Konopka P.Three-Dimensional Landau Theory Describing the Martensitic PhaseTransformation of Shape Memory Alloys.J.Phys.;Condens.Matter,1990;2:61
    [43] Muller L.On the Size of the Hysteresis in Pseudoelasticity.Continuum Mechanics andThermodynamics,1989:1:125
    [44] Muller Xu H.On the Pseudoelastic Hysteresis,Acta Metall.,1991:39:263
    [45] 冯端等,金属物理学,(第二卷,相变),科学出版社,1990.
    [46] GRAESSR E J. COZZARELLI F A. A proposed three dimensional constitutive for SMAs[J]. Jof intell Mater Syst and Struct,1994,5:78-89.
    [47] 邓宗才等 形状记忆合金本构模型的研究进展 北京工业大学学报 2002 Vol.28 No.4 Dec.452-458
    [48] KANAKA K. A thermomechanical sketch of SMA effect : one-dimensional tensilebehavior[J]. Res Mechanica,1986,18:251-263.
    [49] LIANG C. The constitutive modeling of SMAs[D]. VPI: SU,1990.
    [50] L. C. Brinson, One-dimensional Constitutive Behavior of Shape Memory Alloys:Thermomechanical Derivation with Non-constant Material Fuctions and Redefined MartensiteInternal Variable, J. Intelligent Mat. Syst. Struct. 4, 1993, pp.229-242
    [51] C. Liang, C. A. Rogers, A Multi-dimensional Constitutive Model for Shape Memory Alloys,Journal of Engineering Mathematics, 26, 1992, pp.429--443.
    [52] L. C. Brinson, R. Lammering, Finite Element Analysis of the Behavior of Shape MemoryAlloys and Their Applications, Int. J. Solids Structures, Vol.30, No.23, 1993, pp.3261-3280.
    [53] 邓宗才,李庆斌. 形状记忆合金混凝土轴心构件的变形特性[J]. 清华大学学报(自然科学版),2002,42(11):1544-1547.
    [54] 邓 宗 才 , 李 庆 斌 . 形 状 记 忆 合 金 对 混 凝 土 梁 驱 动 效 应 分 析 [J]. 土 木 工 程 学报,2002,35(2):41-47.
    [55] Yefim Ivshin, Thomas J. Pence, A Constitutive Model for Hysteretic Phase Transition Behavior, Int. J. Engng. Sci. Vol.32, No.4, 1994, pp.681-704.
    [56] L. C. Brinson, M. S. Huang, Simplification and Comparisons of Shape Memory Alloy Constitutive Models, Journal of Intelligent Material Systems and Structures, Vo1.7, 1996, pp.108-114.
    [57] 严文裔,相变单晶体的细观力学本构研究.清华大学博士学位论文,1995.
    [58] Patoor E,Eberhardt A.Berveiller M.Potentiel Pseudoelastique et Plasticite de Transformation Martensitique dans les Monoet Polycristaux Metalliques.Acta Metall.198;35:2779
    [59] B. Raniecki, C. Lexcellent, K. Tanaka, Thermodynamic Model of Pseudoelastic Behavior of Shape Memory Alloys, Arch. Mech. Vo1.44, No.3,1992, pp. 261-284.
    [60] B. Raniecki, C. Lexcellent, RL-model of Pseudoelasticity and Their Specification for Shape Memory Solids, Eur. J. Mech., A/Solids, Vo1.13, No.l, 1994, pp.21-50.
    [61] B. Raniecki, K. Tanaka, On the Thermodynamic Driving Force for Coherent Phase Transformations Int. J. Eng. Sci. Vo1.32, No. 12, 1994,pp.1845 一 1858.
    [62] B. Raniecki, O. Bruhns, Thermodynamic Reference Model for Elastic-Plastic Solids Undergoing Phase Transformations, Arch. Mech., 43, 2-3, 1991, pp.343-376.
    [63] B. Raniecki, C. Lexcellent, Thermodynamics of Isotropic Pseudoelasticity in Shape Memory Alloys, Eur. J. Mech, A/Solids, Vol.17, No.2, 1998, pp.185-205.
    [64] B. Raniecki, J.Rejzner, C. Lexcellent, Anatomization of Hysteresis Loops in Pure Bending of Ideal Pseudoelastic SMA Beams, Int. J. Mech. Sci, Vol.43, No.5, 2001,pp.1339-1368.
    [65] CHROEDER B. Comparative assessment of models for describing the constitutive behavior of SMA[A].4th ESSM Conference[C]. Harrogate: IOP Publishing Ltd, 1998. 305-410.
    [66] N. Siredey, E. Patoor, M. Berveiller, A. Eberhardt, Constitutive Equations for Polycrystalline Thermoelastic Shape Memory Alloys. Part 1. Intragranular Interactions and Behavior of the Grain, International Journal of Solids and Structures, 36, 1999, pp.4289--4315.
    [67] M. Cherkaoui, M. Berveiller, H. Sabar, Micromechanical Modeling of Martensitic Transformation Induced Plasticity (TRIP) in Austenitic Single Crystals, International Journal of Plasticity, Vol. 14, No. 7, 1998, pp.597---626
    [68] M. Cherkaoui, M. Berveiller, X. Lemoine, Couplings Between Plasticity and Martensitic Phase Transformation: Overall Behavior of Polycrystalline TRIP Steels, International Journal of Plasticity, Vol. 16, 2000, pp. 1215-1241,
    [69] D. Entemeyer, E. Patoor, A. Eberhardt, M. Berveiller, Strain Rate Sensitivity in Superelasticity,International Journal of Plasticity, Vol. 16, 2000, pp.1269-1288.
    [70] Z. K. Lu, G. J. Weng, Martensitic Transformation and Stress-strain Relations of Shape-memory Alloys, J. Mech. Phys. Solids, Vol.45, No.ll/12, 1997, pp.1905-1928
    [71] A. Bhattacharyya, T. Sakaki, G. J. Weng, The Influence of Martensite Shape, Concentration, and Phase Transformation Strain on the Deformation Behavior of Stable Dual-Phase Steels, Metallurgical Transactions A Vol.24, 1993, pp.301-314.
    [72] A. Bhattacharyya, G. J. Weng, An Energy Criterion for the Stress-induced Martensitic Transformation in a Ductile System, J. Mech. Phys. Solids, Vol.42, No. 11, 1994, pp. 1699- 1724.
    [73] Z. K. Lu, G. J. Weng, A Self-consistent Model for the Stress-strain Behavior of Shape-memory Alloy Polycrystals, Acta Mater., Vo1.46, No. 15, 1998, pp.5423--5433.
    [74] Z. K. Lu, G. J. Weng, A Micromechanical Theory for the Thermally Induced Phase Transformation in Shape Memory Alloys, Smart Mater. Struct., Vol.9, No.5, 2000, pp.582-591.
    [75] Z. K. Lu, G. J. Weng, A Two-level Micromechamcal Theory for a Shape-memory Alloy Reinforced Composite, International Journal of Plasticity, 16, 2000, pp.1289-1307.
    [76] Petr Sittner, Yasuhiro Hara, and Masataka Tokuda, Experimental Study on the Thermoelastic Martensitic Transformation in Shape Memory Alloy Polycrystal Induced by Combined External Forces, Metallurgical and Materials Transaction A, Vol.26, 1995, pp.2923---2935.
    [77] F. D. Fischer and G. Reisner, A Criterion for the Martensitic Transformation of a Microregion in an Elastic-plastic Material. Acta. Mater. Vol.46, No.6, 1998. pp.2095-2102.
    [78] W. Huang, "Yield" Surface of Shape Memory Alloys and Their Applications, Acta Mater., Vol.47, No.9. 1999, pp.2769--2776
    [79] A. H. Y. Lue, Y Tomota, M. Taya, K. Inoue. T. Mori, Micro-mechanic modeling of the Stress-strain Curves of a TiNiCu Shape Memory Alloy, Material Science and Engineering A285, 2000, pp.326-337.
    [80] X. Y. Zhang, L. C. Brinson and Q. P. Sun, The Variant Selection Criteria m Single-crystal CuAlNi Shape Memory Alloys, Smart Mater. Struct. Vol.9, 2000, pp.571-581.
    [81] Cherkaoui, Mohammed, Berveiller, Marcel, International Journal of Plasticity, Vol.16, Issue: 10--11, 2000.
    [82] Abhijit Bhattacharyya, Dimitris C Lagouds, Smart Materials and Structures, Vol.9, No.5, October, 2000
    [83] P. Sinner, V Novak, and N. Zarubova, Deformation by Moving Interfaces form Single Crystal Experiments to the Modeling of Industrial SMA, Int. J. Mech. Sci., Vo1.40, 1998, pp. 159-172.
    [84] M. Tokuda, M.Ye, M. Takakura, and P. Sittner, Calculation of Mechanical Behaviors of ShapeMemory Alloy under Multi-axial Loading Conditions. Int. J. Mech. Sci., Vo1.40, 1998, pp.227-235.
    [85] T. Jesse Lim, David L. Mcdowell, Mechanical Behavior of an Ni-Ti Shape Memory Alloy Under Axial-Torsional Proportional and Nonproportional Loading, Journal of Engineering Materials and Technology, Vol. 121. 1999, pp.9-18.
    [86] Fumihito Nishimura. Noriko Watanabe. Kikuaki Tanaka, Evolution of Martensite Start Condition in General Thermomechanical Loads of Fe-based Shape Memory Alloy, International Journal of Mechanical Sciences, 42. 2000, pp.347-365.
    [87] Christophe Bouvet, Sylvain Calloch, Christian Lexcellent A phenomenological model for pseudelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings European Journal of Mechanics A/Solids 23 (2004)37-61
    [88] Shaw J. A. and Kyriakides S., Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, Int. J. Plasticity, 13(10), 837-871, 1998.
    [89] Sun Q.P. and Li Z.Q., Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion––from localization to homogeneous deformation, Int. J. Solids and Structures 39 3797–3809, 2002.
    [90] Lim T.J., McDowell D.L., Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy, J. Mech. Phys. Solids, 50, 651 – 676, 2002.
    [91] S. Stupkiewicz, H. Petryk Modelling of laminated microstructures in stress-induced martensitic transformations Journal of the Mechanics and Physics of Solids 50 (2002) 2303 – 2331
    [92] Qing-Ping Sun Zheng Zhong An inclusion theory for propagation of martensite band in NiTi shape memory alloy wires under tension International Journal of Plasticity 16(2000) 1169-1187
    [93] Peng X, Fan J. and Yang Y., A microstructure-based constitutive description for pearlitic steel with experimental verification, Int. J. Solids and Structures, 39(2): 419-434, 2002.
    [94] Peng, X, Fan, J. and Zeng, J., A microstructure-based description for the constitutive behavior of single pearlitic colony, Int. J. Solids and Structures, 39(2): 435-448, 2002.
    [95] Mori T. and Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall Mater, 21: 571-574, 1973.
    [96] Kuster G T and Toksoz M N. Velocity and attenuation of seismic waves in two phase media: I Theoretical formulation. Geophysics, 39: 587-606, 1974.
    [97] Norris A N. A differential scheme for the effective moduli of composites. Mech Mat, 4: 1-16, 1985.
    [98] Christensen R M and Lo K M. Solutions for effective shear properties in three phase spaceand cylinder model. J. Mech Phys Solids, 27: 315-330, 1979.
    [99] Hori M and Nemat-Nasser S. Micromechanics: overall properties of heterogeneous materials. North-Holland: Elsevier, 1993
    [100] Zheng Q S and Du D X. Closed-form interacting solutions for overall elastic moduli of composite materials with multiphase inclusions, holes and microcracks. Key Engineering Materials, 145-149: 479-488, 1998.
    [101] 胡更开、郑泉水、黄筑平. 复合材料有效弹性性质分析方法, 力学进展, 31(3): 361-393, 2001.
    [102] 哈森等 材料的塑性变形与断裂 材料科学与技术丛书(第 6 卷) 科学出版社
    [103] Y Liu, Z L Xie, J V Humbeeck. Materials Science and Engineering, 1999, A273-275:673
    [104] Xiong K, Talo B Q, He C F. Journal of Nanjing University of Aeronautics and Astrnautics,1993;31:464(In Chinese)
    [105] Li L, Zhao Z L, Ren Y S. Journal of Taiyuan University of Technology,2002;33:13(In Chinese)
    [106] Gong J M, Hisaaki T, Kazuyuki T et al. Journal of Aearonautical Materials,2002;22:6(In Chinese)
    [107] Lu Z K, Weng G J. J. Mech. Phys. Solids,1997,45:1905
    [108] Lu Z K, Weng G J. Acta mater,1998,46:5423
    [109] Zhu J J, Liang N G, Huang W M et al. International Journal of solids and Structures,2002,39:741
    [110] Helm D, Haupt P. Active Materials Behavior and Mechanics, SPIE,2001,4333:302
    [111] McNaney J M, Imbeni V, Jung Y et al. Mechanics of Materials, In press.
    [112] 王心美 王亚芳 岳珠峰 等 NiTi 形状记忆合金薄壁圆管在拉-扭组合循环加载下的超弹性实验研究 力学学报 待发表
    [113] Z.Q. Li*, Q.P. Sun The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension International Journal of Plasticity 18 (2002) 1481–1498
    [114] 王立民, 徐久军, 严立等不同材料模型的超弹 TiNi 合金法向接触的有限元分析中国有色金属学报 Vol. 13 No.1 Feb. 2003 100-105
    [115] Honeycombe, R.W.K. and Boas, W.(1948). Aust.J. Scient. Res., 1,70
    [116] Hill R., Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 1965, 13, 89-101.
    [117] J.Fan. A micro/macrosocopic analysis for cyclic plasticity of dual-phase materials. Journal of applized mechanics. 1999.Vol.66. 124-136.
    [118] J Fan , Cyclic meso-stress and meso-cracking of dual-phase material, Mesomechanics2000. Vol 2: 1047-1056
    [119] Peng X, Zeng X, Fan J. On a nonclassical constitutive theory of crystal plasticity. Mechanics Research Communications, 1997, 24, 631-638
    [120] Peng X, Fan J. A new approach to the analysis of polycrystal plasticity. Arch. Mech. 2000, 52, 103-125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700