基于SMA的空间解锁机构研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳帆板是航天器的主要供能系统。航天器从发射到入轨的过程中,太阳帆板经历了折叠固定到解锁展开两个阶段。本文研制的基于形状记忆合金(Shape Memory Alloy)的空间解锁机构,可以保证太阳帆板可靠固定及顺利解锁。
     本文在国防重点实验室自主课题的资助下,进行设计及研制工作,主要完成了如下的研究内容:
     首先,建立了SMA驱动器的实际模型,同时利用SMA的本构模型,推导出驱动器的一维数学模型。在Joule效应的基础上进一步推导出SMA通电加热的温度-时间关系,最终得到SMA-弹簧驱动器通电回复过程中应力、应变、温度、时间之间的数学关系,这为为实际的驱动器设计提供了理论基础。其次,设计出SMA空间解锁机构的本体结构,并进行加工。该结构采用吊钩锁紧方式,配合弹簧的预紧力,保证了机构连接的可靠性。基于上述数学模型,本文以解锁时间最短、解锁位移合适为主要设计原则,完成了驱动器元件的参数设计。基于ADAMS对解锁机构进行运动仿真,对其解锁速度进行检测,验证了方案的可行性。为了优化解锁机构地面试验效果,按地面试验条件对机构进行运动仿真,确定了影响机构性能的最大因素。对机构进行了强度校核,并确定了机构最大许用载荷。
     最后,基于仿真分析结果,搭建了解锁机构试验吊挂装置,可模拟解锁机构空间动作响应。设计了实验测试电路,可实现对解锁机构位移的精确测量,从而判定准确的解锁时间,达到测试机构性能的目的。
     实验结果表明:本文研制的基于SMA的空间解锁机构可实现解锁功能要求,并且具有良好的解锁同步性,机构质量轻、体积小、可重复使用。
The solar panels are the main energy supply system of the spacecraft. During the process of sending and entering into-orbit for the spacecraft, the solar panels undergoes two stages: folding fixed and unlocking deployment. The thesis introduces a release device which utilized Shape Memory Alloy (Shape Memory Alloy) as release actuator, and the device can guarantee proper locking and releasing of the solar panels
     This thesis is funded by independent subject of the Defense key laboratories, with the following work done:
     Firstly, the model of SMA-spring actuator has been established. According to the constitutive law of SMA material, we do the one-dimensional mathematic model derivation of the actuator. According to Joule effect, we do the time-temperature relationship derivation of the process of heating the SMA material by electric current, deduce strain-stress-temperature-time relationship of the actuator which is the theoretical basis of practical SMA-spring actuator design.
     Secondly, the structure has been designed and manufactured already. The release device is designed with the hook model and preloaded by spring which can guarantee the connection reliably. According to the least release time and the proper work displacement, the thesis has designed the SMA-spring actuator. The motion simulation, with the help of ADAMS, detect the movement velocity of the release device and verify the feasibility of the project. In order to optimize the results of the ground test, the motion simulation is carried on the basis of the ground test condition, to determine the most important effect factor.
     Lastly, according to the simulation results, experimental hanging structure has been established which can imitate the space installation of the release device. The experimental circuit has been designed which can measured the release time accurately,.
     The results obtained from the research of this thesis show that: the release mechanism based on SMA can achieve the expected technique data, and the synchronous property is rather good. Also the device is light, small, and reusable.
引文
[1]陈烈民.航天器结构与机构[M].北京:中国科学技术出版社,2005:16-31.
    [2]胡照.火工品制造工艺的发展[J].硅谷,2010,9(6):127-128.
    [3]李志强.火工装置在航天飞行器上应用[J].航天返回与遥感,1997,17(6):63-67.
    [4]杨谋祥,郝芳.航天火工装置[J].航天返回与遥感,1999,19(4):37-40.
    [5] Kim A, Liu Zhigang, Crampton G. Study of Explosion Protection in a Small Compartment[J]. Fire Technology, 2007, 43(2):145-172.
    [6]白志富,果琳丽,陈岱松.新型非火工星箭连接分离技术[J].导弹与航天运载技术,2009,38(1):31-37.
    [7] Mckinnis D N. Fastening Apparatus Having Shape Memory Alloy Actuator[P]. Patent NumberEP 882, 408. May 13, 1992.
    [8] Peffer A, Denoyer K, Fosness E, et al. Development and Transition of Low-Shock Spacecraft Release Devices for Small Satellites[C]. Aerospace Conference Proceedings(IEEE), 2000:277-284.
    [9] Tuszynski A. Alternatives to Pyrotechnics-Nitinol Release Mechanisms[C]. Proceedings of the 36th Aerospace Mechanisms Symposium, 2002:137-139.
    [10]包锦忠,姚芳,常新亚等.张开型自收拢记忆合金解锁器[P].申请号:200810056504.X,2008.
    [11]蔡伟,隋解和,高智勇.记忆合金智能解锁机构[P].申请号:200810137546.6,2009.
    [12]贺志荣,张永宏,解念锁.TiNi相变、形状记忆及超弹性行为研究[J].陕西工学院学报,1998, 14(4):1-6.
    [13] Ahluwalia R, Lookman T, Saxena A. Landau theory for shape memory polycrystals[J].Acta Materialia, 2004, 52(6):209-218.
    [14] Iadicola M A, Shaw J A. The effect of uniaxial cyclic deformation on the evolution of phase transformation fronts in pseudoelastic NiTi wire[J]. Journal of Intelligent Material Systems and Structures, 2002, 13(2):143-156.
    [15] Muller I, Seelecke S. Thermodynamic aspects of shape memory alloys[J]. Mathematical and computer modeling, 2001, 34(12):1307-1355.
    [16] Ng K L, Sun Q P. Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes[J]. Mechanics of materials, 2006,38(5):41-56.
    [17] Auricchio F, Faravelli L, Magonette G. Shape Memory Alloys: Advances in Modelling and Applications[M]. Barcelona:CIMNE, 2001:203-247.
    [18]张义辽.SMA直线驱动器结构原理及试验研究[D].合肥:中国科学技术大学学位论文,2010:13-96.
    [19] Auricchio F, Marfia S, Sacco E. Modelling of SMA materials: Training and two way memory effects[J]. Computers & Structures, Vol.81, pp 2301-2317, 2003.
    [20] Khandelwal A, Buravalla V. Models for Shape Memory Alloy Behavior: An overview of modeling approaches[J]. Mechanics and Applications, Vol.1, pp111-148, 2009.
    [21]陶宝祺.智能材料结构[M].北京:国防工业出版社,1997:22-43.
    [22]杜善义,冷劲松,王富殿.智能材料系统与结构[M].北京:科学出版社,2001:63-85.
    [23]杨杰,吴月华.形状记忆合金及其应用[M].合肥:中国科学技术大学出版社,1993:25-43.
    [24] Ishihara H, Arai F, Fukuda T. Micro mechatronics and micro actuators[J]. Mechatronics, IEEE Transactions on, Vol.1, pp 68-79, 2002.
    [25] Kuribayashi K. A new actuator of a joint mechanism using TiNi alloy wire[J]. The Int. Journal of Robotics Research, Vol.4, pp 47-58, 1986.
    [26] Grant D, Hayward V. Design of shape memory alloy actuator with high strain and variable structure control[C]. Proc. of IEEE International Conference on Robotics and Automation, Vol 3, pp 2305-2312, 1995.
    [27] Zhong Z W, Chan S Y, Investigation of a gripping device actuated by SMA wire[J]. Sensors and Actuators, 2007, 136(1):335-338.
    [28] He Zhirong. Engineering application research status and development prospect of Ti-Ni shape memory alloys[J]. Materials Reviews, 2005, 19(4):50-53.
    [29]任秉银,陈本清.偏动式形状记忆合金驱动器系统建模与仿真[J].哈尔滨工业大学学报,2009, 55(1):58-61.
    [30]胡冰山,吴明晖,付庄等.差动式形状记忆合金驱动器的仿生吸盘[J].华中科技大学学报(自然科学版),2010, 38(7):16-19.
    [31]李明东,储金获,奚汉达.偏动式双程SMA驱动器工作机理与能量转换研究[J].机械设计与研究,2000,2(4):20-25.
    [32]朱祎国,吕和祥,杨大智.形状记忆合金的本构模型[J].材料研究学报,2001, 14(3):263-268.
    [33] Liang C, Rogers C A. One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials[J]. Journal of Intelligent Material Systems and Structures, 1990, 1(2):207-234.
    [34] Brinson L C. One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Contant Material Functions and Redefined Material Functions and Redefined Martensite Internal Variable[J]. Journal of Intelligent Material Systems and Structures, 1993, 4(2):229-242.
    [35] Dye T E.“An Experimental Investigation of the Behavior of Nitinol”[D]. Virginia Tech:MS thesis, 1990.
    [36] Tanaka K. A Thermomechanical Sketch of Shape Memory Effect: One-dimensional Tensible Behavior[J].Res. Mechanica, 1986,18(2): 251-263.
    [37]王宏,姚熊亮.一种基于SMA的摆动式驱动器驱动原理及实验[J].传感器与微系统,2006,25(10):41-43.
    [38] Liang C, Rogers C A. Design of Shape Memory Alloy Acturators[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(4):303-313.
    [39] Dutta S, Ghorbel F. Differential Hysteresis Modeling of a Shape Memory Alloy Wire Actuator[J]. IEEE Transactions on Mechatronics, 2005, 10(2):189-197.
    [40]黄子高.论触点的粘结(冷焊)及解决方法[J].机电元件,1982,2(2):23-27.
    [41]琚红亮.铝件电镀前处理的注意事项[J].电镀与涂饰,2009,28(9):28-29.
    [42] Chang Bi-Chiau, Shaw J A, Iadicola M A. Thermodynamics of shape memory alloy wire: modeling, experiments, and application[J]. Continuum Mechanics and Thermodynamics, 2006, 18(2):83-118.
    [43]甄睿.形状记忆合金相变温度的常用测量方法[J].南京工程学院学报(自然科学版),2006,4(1):27-32.
    [44]王晓宏,张博明,杜善义.不同初始组织结构的形状记忆合金性能及参数研究[J].材料开发与应用,2009,31(1):12-15.
    [45]李尚荣.NiTi记忆合金动态特性实验研究及其在仿生机器鱼上的应用[D].合肥:中国科学技术大学学位论文,2006:45-48.
    [46]张英会,刘辉航,王德成.弹簧手册[M].北京:机械工业出版社,1999,:218-225.
    [47] Calassa M C, Russell K. Solar Array Deplyment Mechanis[C]. The 29th Aerospace Mechanisms Symposium, 1995:79-93.
    [48]李岩,闫洪,陈小会.7075铝基复合材料多级固溶和时效处理工艺[J].塑性工程学报,2011,18(2):88-92.
    [49] Cheng Weilun, Hill S, Betenbaug T M. Solar Array and High Gain Antenna Deployment Mechanisms of the STEREO Obseratory[C]. AIAA SPACE 2007 Conference and Exposition. California:2007:18-20.
    [50] Jennifer R. Material considerations in the STEREO solar array design[J]. Science Direct Acta Astronautica, 2008, 63(2):1239-1245.
    [51] Mcguire J R, Yura J A. Advances in the Analysis and Design of Constant-Torque Spring[C]. 30th Aerospace Mechanisms Symposium, 1996:205-220.
    [52] Feng Y S. The Deployment of theory of mechanism reliability[J]. Reliability Engineering & System Safety, 1993, 41(1):95-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700