具有传感和驱动功能的碳纤维柔性蒙皮研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变体机翼成为未来先进飞行器的发展方向之一。变体机翼为了实现光滑大变形以及承受较大的气动载荷,要求机翼蒙皮沿变形方向有较大柔度,在垂直变形方向有较强的抗弯刚度。波纹结构在沿波纹方向(纵向)有较大柔度,在垂直于波纹方向(横向)有较大的抗弯刚度,因此,可以作为变体机翼蒙皮的一种候选结构。本文的研究重点是波纹式碳纤维增强复合材料蒙皮,并就其集驱动器与传感器于一体的智能结构进行了初步探究。
     本文探索了波纹式碳纤维增强复合材料作为变体机翼蒙皮的可行性,推导了复合材料的密度、各相所占的分数、复合材料中的孔隙含量以及材料拉伸弹性模量的计算公式,研究了结构纵向变形能力和横向承载能力,为进一步研究奠定了基础。分析实验数据,并根据复合材料理论分析模型,得出试件理论拉伸曲线和三点弯曲载荷下的理论挠曲线,分别与实验数据进行比较。分析结果表明,复合材料中的孔隙含量小于1%,证明了试件的有效性;弹性模量实验值与理论值误差约为5%;该结构有较好的纵向变形能力和横向承载能力,在弹性变形段内,理论曲线与测试曲线基本吻合,误差小于10%,证明了波纹式碳纤维增强复合材料作为变体机翼蒙皮可行。
     在此基础上,本文初步探索了波纹式碳纤维增强树脂复合材料智能结构形式,研究了SMA丝驱动器及光纤传感器集基体于一体的制造工艺,并初步探索了驱动器的驱动方式,为进一步完善其智能功能奠定基础。
One of development directions of future aircrafts is morphing wing. Flexible in deformation direction and stiff in the direction perpendicular to the deformation direction are essential to get smooth large deformation and withstanding large aerodynamic loads. Corrugated-form is very flexible in the corrugation (longitudinal) direction and show enough resistance against bending loads in the direction (transverse) perpendicular to the corrugation. So, corrugated-form is expected to be a candidate to develop skin of morphing wings. In this investigation, research focus was put on the corrugated-form composites, And made the preliminary exploration to the intelligence structure of driver and sensor in one.
     This paper explored the feasibility of corrugated carbon fiber reinforced composite made as the morphing wings,Deduced the density of reinforced composite, the percentage each phase takes, content of pore in reinforced composite and the calculation formula of materials tensile elastic modulus,researched the longitudinal strain capacity and the transverse carrying capacity, and laid a foundation for further study. According to the analysis of experimental data, based on the theoretical model of composite, we can get a theoretical tensile curve of specimen and the theoretical deflection curves on 3-point bending load bending, then compared them with experimental data respectively. The results of analysis show that the content of the pore in composite is less than 1%,which proved the effectiveness of the specimen; the error between experimental value of Elastic modulus and theoretical value is about 5%, This structure has better longitudinal strain capacity and the transverse carrying capacity, In the elastic deformation section, theoretical curve and test curve fit basically, error is less than 10%, which proved that the corrugated carbon fiber reinforced composite made as the Variant wings is feasible.
     on that basis, this paper made preliminary exploration to the corrugated carbon fiber reinforced composite intelligence structure, researched the manufacturing engineering of SMA wires driver and FOS in one, and made preliminary exploration to the drive mode of driver, which set up the foundation for further improving its intelligent function.
引文
[1] Kingnide R, Olympio and Farhan Gandhi. Zero-νcellular honey comb flexible skins for one-dimensional wing morphing. AIAA, 2007-1735
    [2]杨士斌,徐敏.智能蒙皮飞行器的飞行控制研究.飞行力学,2007,25(1):39~42
    [3] Matt Detrick, Greg Washington. Morphing inflatable wing development for compact package unmanned aerial vehicles. AIAA, 2004-1807
    [4] David A, Perkins, John Let al. Morphing wing structures for loitering air vehicles. AIAA, 2004-1888
    [5]杨大智等.智能材料与智能系统.天津:天津大学出版社,2000: 1-37
    [6]陶宝祺等.智能材料结构.北京:国防工业出版社,1997: 1-57
    [7]姜德生,Richard O. Claus.智能材料器件结构与应用.武汉:武汉工业大学出版社,2000: 1-20
    [8]姚熹.材料机敏化与智能化的若干问题.西安交通大学学报,1996, 30(4): 18-29
    [9]杨亲民.智能材料的研究与开发.功能材料,1999, 30(6): 575-581
    [10]党智敏,王岚,王海燕.新型智能材料:电活性聚合物的研究状况.功能材料,2005, 36(7): 981-987
    [11]熊克.形状记忆合金增强复合材料自适应力学研究,[博士学位论文].南京:南京航空航天大学,1997
    [12] M. Shahinpoor, Y. Bar-Cohen, T. Xue, et al. Some Experimental Results on Ionic Polymer-Metal Composites (IPMC) As Biomimetic Sensors and Actuators. Yoseph Bar-Cohen, Part of the SPIE Conference on Smart Materials Technologies, San Diego, California: SPIE, 1998: 251-267
    [13]王善元,张汝光.纤维增强复合材料.北京:东华大学出版社,1998:1-169
    [14]陈绍杰.复合材料与大飞机.新材料产业,2008,1:31~35
    [15]杜善义.先进复合材料与航空航天.复合材料学报. 2007,24(1):1~12
    [16]贺福,孙微.碳纤维复合材料在大飞机上的应用.高科技纤维与应用,2007,32(6):5~8
    [17]顾正铭.平流层飞艇蒙皮材料的研究.航天返回与遥感,2007,28(1):62~66
    [18]沈关林,胡更开.复合材料力学.北京:清华大学出版社,2007:1-332
    [19]牟常伟.用于变体机翼的大变形柔性蒙皮构型及性能的初步探究,(硕士学位论文).南京:南京航空航天大学,2010
    [20]郝建伟.先进树脂基复合材料的技术现状及发展方向[J].航空制造技术.2001.3:22~25
    [21]王永贵,陈永清,侯军生.先进复合材料构件波纹梁的成型工艺.航空制造技术,2005:64~67
    [22]陈立军,武凤琴,张欣宇等.环氧树脂/碳纤维复合材料的成型工艺与应用.工程塑料应用,2007,35(10):77~80
    [23]王共冬,刘文剑.复合材料成型工艺方法的模糊综合评判.材料科学与工艺,2008,16(1):66~69
    [24]夏丽刚,李爱菊.碳纤维表面处理及其对碳纤维/树脂界面影响的研究.材料导报,2006(5)
    [25]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004
    [26]乌云其其格.碳纤维表面处理[J].高科技纤维与应用,2001,26(5):25-27
    [27]张岩梅,陆春华.碳纤维表面处理对碳纤维复合材料性能的影响.橡胶工业,2006(9)
    [28] K E Atkinson。G J Farrow and C Jones.Study of the interaction of carbon fiber surface with a monofunctional epoxy resin[J].Composite Part A。1996,27(A):799—804
    [29] GR Palmese,OA Andersen,VM Karbhari.Efect of glass fiber siz—ing on the cure kinetics of vinyl—ester resins[J].Composites Part A,1999,30:11—18
    [30] Mangeng Lu。Mija Shim and Sangwood Kim,Efect of filler on cure behavior of an epoxy system:Cure modeling[J].Polymer Engineering and Science,1999,39:274_285
    [31]石海洋,李鹏.乙烯基醛树脂复合材料的固化过程研究[J].材料工程,2006(1)
    [32] GB/T 1447-2005.纤维增强塑料拉伸性能试验方法.北京:中国标准出版社,2005
    [33] HB 7624-1998.碳纤维复合材料层合板弯曲疲劳试验方法.北京:中国标准出版社,.1999
    [34]褚洪生,杜增吉,阎金华等. MATLAB 7.2优化设计实例指导教程.,北京:机械工业出社,2007:1~329
    [35]飞思科技产品研发中心. MATLAB6.5辅助优化计算与设计.北京:电子工业出版社,2003:1~320
    [36]沈浩,靳岚,谢黎明.基于MATLAB的机床主轴结构参数优化设计.科学技术与工程,2008,8(16):4722~4744
    [37]谢慧萍,张瑛.基于MATLAB的气动凿岩机部分结构参数的优化设计.煤矿机械,28(9):17-19
    [38]陈威,张伟红,刘礼华等.NiTi基形状记忆合金加工工艺研究的现状和发展趋势[J] .锻压技术,2005,增刊:24-30
    [39]任文杰,李宏南,宋钢兵.基于频率效应的超弹性形状记忆合金本构模型.工程力学,2008, 25(9): 52-65
    [40]徐祖耀等.形状记忆材料.上海:上海交通大学出版社,2000:1-437
    [41]舟久保,熙康.形状记忆合金(千东范译).北京:机械工业出版社,1992: 1-212
    [42]刘芹,任建亭,姜节胜等. SMA本构模型及其应用的研究进展.力学进展,2007, 37(2):189-204
    [43] F. Auricchio, E. Sacco. A Temperature-dependent Beam for Shape Memory Alloys: Constitutive Modeling, Finite-element Implementation and Numerical Simulations. Computer Methods in Applied Mechanics and Engineering, 1999, 174: 171-190
    [44] E. R. Oberaigner, K. Tanaka. F. D. Fischer. The Influence of Transformation Kinetics on Stress-Strain Relations of Shape Memory Alloys in Thermomechanical Processes. Journal of Intelligent Material Systems and Structures. 1994, 5(7): 474-486
    [45]朱祎国,吕和祥.形状记忆合金本构模型的热力学框架.大连理工大学学报,2003, 43(6): 729-732
    [46]任文杰,李宏南,宋钢兵.一种新的超弹性形状记忆合金本构模型.大连理工大学学报,2006, 46(12): S158-S161
    [47]崔迪,李宏南,宋钢兵.形状记忆合金超弹性本构关系的神经网络模型.振动工程学报,2006, 19(1): 109-113
    [48]李明东,马培荪,马建旭等.形状记忆合金驱动器驱动方式研究.机械设计与研究,1999.
    [49] Rogers C A. Active vibration and structural acoustic control of shape memory alloy hybrid composites: experimental results [J]. Journal of the Acoustical Society of America, 1990,88 (6) :2803-2811
    [50] Rogers C A, Hang C, Fuller C R. Modeling of shape memory alloy hybrid composites for structural acoustic control [J].Journal of the Acoustical Society of America, 1991, 89 ( 1 ) : 210-220
    [51] Rogers C A, Liang C, Jia J. Structural modification of simply supported laminated plates using embedded shape memory alloy fibers[ J]. Comput Struct,1991,38 : 569-580
    [52] Epps J, Chandra R. Shape memory alloy actuation for active tuning of composite beams[ J ]. Smart Mater Struct, 1997, 6 : 251-264
    [53] Lee H J, Lee J J, Huh J S. A simulation study on the thermal buckling behavior of laminated composite shells with em- bedded shape memory alloy (SMA) wires. Lee H J, Lee J J- Smart Mater. Struct, 2000,780-787
    [54]张洪润,张亚凡,邓洪敏.传感器原理及应用.北京:清华大学出版社,2008
    [55]李川,张以谟,李永贵等.光纤光栅原理、技术与传感应用[M] .北京:科学出版社,2005
    [56]梁磊,姜德生.光纤Bragg光栅传感器在桥梁工程中的应用[J] .光学与光电技术,2003(6) :36 - 39
    [57]刘云红,光纤光栅传感器技术及其应用[J ] .传感器世界,2005 (3) :20 - 23
    [58]姜德生,何伟.光纤光栅传感器的应用概况.光电子.激光,2002,13(4):420~430.
    [59]涂亚庆,刘兴长.光纤智能结构.重庆:重庆出版社,2001:9~12.
    [60] C Rosalie, A Chan, W K Chiu et al.Structural health monitoring of composite structures using stress wave methods.Composite Structures,2005,67(2):157~158.
    [61]李尚俊.光纤智能结构/蒙皮在航空上的应用.中国民航飞行学院学报, 2000(2):29~30.
    [62]刘兴长,涂亚庆.军用航空器的光纤智能结构分析.压电与声光,2002,24(2):97~100.
    [63] Alan Baker, Nik Rajic, Claire Davis.Towards a practical structural health monitoring technology for patched cracks in aircraft structure. Composites Part A: Applied Science and Manufacturing, 2008:6~12.
    [64]李川,张以谟,赵永贵,等.光纤光栅原理、技术与传感应用.北京:科学出版社, 2005: 200~205.
    [65]贾宏志.光纤光栅传感器的理论和技术研究, (博士学位论文).西安:西安光学精密机械研究所,2000.
    [66]卢吉云.光纤光栅在智能结构动态监测中的应用研究, (博士学位论文).南京:南京航空航天大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700