17β-雌二醇及结构类似物分子印迹聚合物合成和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹聚合物(MIP)属于功能性的高分子聚合物,对印迹分子有专一性识别位点以及对结构相似化合物具有一定的识别作用。成为一种快速、简便和有效的生物样品预处理方法,是促进现代仪器分析效能增益的热点研究技术。本课题研究了以加热及紫外光两种引发模式,分别以17β-雌二醇为主和雄烯二酮为辅作为模板分子,三羟甲基丙烷三甲基丙烯酸酯为交联剂,在逐一分析七种不同单体对模板分子结合作用以及乙腈和甲醇等致孔溶剂影响的基础上进行沉淀聚合,得到了不同的分子印迹聚合物和它们的非分子印迹聚合物对照。应用红外光谱、固相核磁、高效液相、气质联用、扫描电镜、激光粒度测定、原子力显微、差示量热、热重分析、固相萃取、固相微萃取技术和吸附动力学、热力学等方法对这些高分子聚合物外观形态学特征,以及对这些分子印迹聚合物与17β-雌二醇、17α-雌二醇、雄烯二酮和孕酮四种甾醇类性激素选择性识别、富集性能进行表征。并针对三氟甲基丙烯酸与三羟甲基丙烷三甲基丙烯酸酯的聚合物(TFMAA-co-TRIM)不同聚合阶段的红外谱图的变化、两种比例(1/4和1/8)的17β-雌二醇与三氟甲基丙烯酸分子印迹聚合物的串联柱色谱表征、TFMAA-co-TRIM分子印迹聚合物识别甾醇化合物的热力学特征、特异性吸附孕酮和富集甾醇化合物的分子印迹固相萃取洗脱程序等做了专门的研究。
     通过研究阐明:紫外聚合产物TFMAA-co-TRIM中的νO-H振动吸收峰在聚合16h后红移,νC=O振动吸收峰在聚合24h后红移;TFMAA-co-TRIM对雌二醇异构体的印迹因子(IF)达到了3.01,α为2.28,优于其它功能单体参与得到的聚合物识别特性;TFMAA-co-TRIM聚合物粒径介于300 nm至1.5μm之间,作为色谱固定相具有良好的通量和低的柱压;在乙腈流动相中,TFMAA-co-TRIM分子印迹固定相的分离过程主要被焓驱动,低温有利于分子印迹固定相分离甾醇结构类似物;TFMAA-co-TRIM分子印迹聚合物在255.84℃时开始熔融,Tp=257.40℃,聚合物CP的降解温度在267.79℃,MIP降解温度在343.11℃,制备的固相微萃取头初步经GC/MS 270℃的耐热性测定;不同的洗提溶剂筛选证明了选择接近聚合溶剂的洗脱体系更有利于MISPE发挥识别效应;分子印迹固相萃取柱(MISPE)对孕酮、17α-雌二醇、17β-雌二醇和雄烯二酮都具有不同程度的保留特性,可作为此类化合物的吸附材料,特别对孕酮强保留的富集特性,可作为孕酮的选择性识别吸附剂,其分子印迹聚合物对17β-雌二醇的吸附动力学测定显示在50 min内基本达到吸附平衡,具有作为传感器核心敏感材料的潜力;对比萃取奶粉中17β-雌二醇性能,MISPE柱比非分子印迹固相萃取柱(CSPE)和C18柱具有更高的保留,回收率依次为85.5%,43.7%和30.7%。
     以上研究展示了TFMAA-co-TRIM分子印迹聚合物的应用前景,并为开发甾醇化合物仿生传感器技术奠定了基础。
Molecularly imprinted polymer belongs to functional high molecule polymer with specific recognition site for template and partial binding for structure analogues. At present, molecularly imprinted technology has borne a focus on developing a fast, simple and effective pre-preparation method for bio-sample in order to promote performance of model analysis instrument.
     In this dissertation, synthesis of molecularly imprinted polymer and non-molecularly imprinted polymer were based on for investigation of the interaction of seven different monomers with templates. 17β-estradiol and 4-androstene-3, 17-dione were used as templates, trimethylolpropane trimethacrylate was used as a cross-linker and two initiation modes of heat-polymerization and photo-polymerization were adopted. At last, the polymerization was implemented according to precipitation polymerization method. Morphologic appearance of molecularly imprinted polymer was measured by Laser Particle Analysis, Scan Electron Microscope and Atomic Force Microscope. Polymer selectivity recognition and enrichment properties with 17β-estradiol, 17α-estradiol, progesterone and 4-androstene-3, 17-dione were characterized through application of Fourier Transform Infrared Spectroscopy, Solid Phase Nuclear Magnetic Resonance, High Performance Liquid Chromatography, Gas-liquid Chromatograph-Mass Spectroscopy, Differential Scanning Calorimeter, Thermo gravimetric Analysis, Solid Phase Extraction and Solid Phase Micro-Extraction. In addition, adsorption kinetics and thermodynamics were adopted for revealing sorbent temperament.
     Several experiments were specially designed in the study. Changes in different polymerization stages of TFMAA-co-TRIM was detected by Fourier Transform Infrared Spectroscopy. Two columns loaded with MIPs from various rates of 17β-estradiol vs. trifluoromethyl acrylic acid (1/4 and 1/8) were tandem linked for improving separation characteristics. Recognition principle MIP of TFMAA-co-TRIM for sterol compounds was revealed by thermodynamics means. Elution files for specific adsorption of progesterone and enrichment of sterol compounds were arduously screened out from a mass of chemical reagents.
     The conclusions were as follows: theνO-H andνC=O IR absorption maxima shifted towards higher wave numbers after imprinting 17β-estradiol on TFMAA-co-TRIM copolymer with the red shift of theνO-H groups being apparent after precipitation polymerization for 16h while that forνC=O groups being observed after polymerization for 24h. A strong interaction between TFMAA and 17β-estradiol was confirmed by the high selectivity for 17β-estradiol, as indicted by the values of the separation factor (α) of isomers of 17β-estradiol/17α-estradiol (2.28) and the imprinted factor (IF) (3.01). Particle diameter of TFMAA-co-TRIM polymer was between 300 nm and 1.5μm, which suited well for solid phase sorbent throughout at low column pressure. The recognition of imprinting TFMAA-co-TRIM polymer for sterol molecules was driven by enthalpy eluted with acetronitile, and low temperature was in favor of the separation of sterol structure analogues on imprinting column. TFMAA-co-TRIM polymer possessed of determinate anti-heat stability, with melting point beginning at 255.84℃, Tp=257.40℃, control TFMAA-co-TRIM polymer and imprinting TFMAA-co-TRIM polymer were respectively decompounded at 267.79℃and 343.11℃, and solid micro-extraction noddle prepared by the special polymerization also showed definite recognition for 17β-estradiol by GC/MS detecting at 270℃. By selection of various washing and elution solvents, elution reagents of close polymerization system were of more advantage in template molecules retention and recognition on molecularly imprinted solid phase extraction (MISPE) column. At a certain extent, progesterone, 17α-estradiol, 17β-estradiol and 4-androstene-3, 17-dione could be intercepted on the MISPE column. Especially, MISPE had high selectivity for progesterone, and imprinting TFMAA-co-TRIM polymer could achieve adsorption balance within 50 min by absorption kinetics test for 17β-estradiol. However, MISPE column showed better selectivity and enrichment property for 17β-estradiol than C18 and CSPE columns according to the data from HPLC and GC/MS analyses. Recovery of 17β-estradiol on MISPE column was up to 85.5% while when prime extracting solution of milk powder was sampled, the recovery of CSPE and C18 columns were 43.7% and 30.7%, respectively. Thus, the imprinting TFMAA-co-TRIM polymer should be used as specific sorbent of sterol judging from the results obtained with a potential predominance as a sensitive material for sensors.
引文
1 Mosbach K, Haupt K. Some new developments and challenges in noncovalent molecular imprinting technology[J]. J Mol Recogn, 1998, 11: 62-68
    2 Haupt K. Creating a good impression[J]. Nature Biotechnology, 2002, 20: 884-885
    3 Pauling L. A theory of the structure and process of formation of antibodies[J]. J Am Chem Soc, 1940, 62: 2643-2657
    4 Olof Ramstr?m. Molecular imprinting technology - A way to make artificial locks for molecular keys [EB/OL]. http://www.smi.tu-berlin.de/story/Intro.htm, 2007-04-20
    5 Mosbach K. The technique of molecular imprinting and applications of the imprinted resulting materials in various areas molecular imprinting-principle[EB/OL]. http://www.klausmosbach.com/ Principle_molecularimprinting.htm, 2007-04-20
    6 Dickert F L, Hayden O. Bioimprinting of polymers and sol-gel-phases. Selective detection. of yeasts mit imprinted polymers[J]. Anal. Chem, 2002, 74: 1302-1306
    7 Hayden O, Bindeus R, Hadersp?ck C, et al. Mass-sensitive detection of cells, viruses and enzymes with artificial receptors[J]. Sensors and Actuators B: Chemical, 2003, 91 (1-3): 316-319
    8 Mayes A G, Whitcombe M J. Synthetic strategies for the generation of molecularly imprinted organic polymers[J]. Advanced Drug Delivery Reviews, 2005, 57: 1742-1778
    9 Andersson L I. Molecular imprinting: developments and applications in the analytical chemistry field[J]. J Chromatogr B, 2000, 745: 3-13
    10徐伟平,李光宪.分子自组装研究进展[J].化学通报, 1999, (2): 21-25
    11 Wullf G, Laucer M, Bohnke H. Rapid proton transfer as cause of an unusually large neighboring group effect[J]. Angew Chem Int Ed Engl, 1984, 23(9):741-742
    12 Wulff G, Schulze I, Zabrocki K, et al.über enzymanalog gebaute Polymere, 11. Bindungsstellen im Polymer mit unterschiedlicher Zahl der Haftgruppen[J]. Makromol Chem, 1980, 181 (3): 531-544
    13 Andersson L I, O’Shannessy D J, Mosbach k. Molecular recognition in synthetic polymers. Preparation of chiral stationary phases by molecular imprinting of amino acid amides[J]. J Chromatogr A, 1990, 513: 167-179
    14赖家平,何锡文,郭洪声,等.分子印迹技术的回顾、现状与展望[J].分析化学, 2001, 29 (7): 836-844
    15 Fujii Y, Kikuchi K, Matsutani K, et al. Template synthesis of polymers chiff base cobalt (II) complex and formation of specific cvity for chiral amino acid[J]. Chem Letter, 1984, 153 (9): 1487-1490
    16 Fujii Y, Matsutani K, Kikuchi K. Formation of a specific co-ordination cavity for a chiral amino acid by template synthesis of a polymers chiff base cobalt (II) complex[J]. J Chem Soc Chem, Commun, 1985, 7: 415-417
    17 Yin J F, Yang G L, Chen Y. Rapid and efficient chiral separation of nateglinide and its l-enantiomer on monolithic molecularly imprinted polymers[J]. J Chromatogr A, 2005, 1090: 68-75
    18王夔.中药研究现代方法学[M].北京:化学工业出版社,2004. 43
    19 Zhang T L, Liu F, Chen W, et al. Influence of. intramolecular hydrogen bond of templates on molecular recognition of molecularly imprinted polymers[J]. Anal Chim Acta, 2001, 450: 53-61
    20 Ramstr?m O, Ye L, Mosbach K. Artificial. antibodies to corticosteroids prepared by molecular imprinting[J]. Chem & Biol, 1996, 3: 471-477
    21 Baggiani C, Giraudi G, Trotta F, et al. Chromatographic characterization of a molecular imprinted polymer binding cortisol[J]. Talanta, 2000, 51 (1): 71-75
    22 Cheong S, Rachkov A E, Park J, et al. Synthesis and binding properties of a noncovalent molecularly imprinted testosterone-specific polymer[J]. J Polym Sci, Part A: Polym Chem, 1998, 36: 1725-1732
    23 Rachkov A E, Cheong S, El’Skaya A V, et al. Molecularly imprinted polymers as artificial steroid receptors[J]. Polym Adv Technol, 1998, 9: 511-519
    24 Szumski M, Buszewski B. Molecularly imprinted polymers: A new tool for separation of steroid isomers[J]. J Sep Sci, 2004, 27: 837-842
    25 Ye L, Weiss R, Mosbach K. Synthesis and Characterization of Molecularly Imprinted Microspheres[J]. Macromolecules, 2000, 33: 8239-8245
    26 William W J, Kofinas P. Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding[J]. Biomaterials, 2001, 22 (12): 1485-1491
    27 Kempe M, Mosbach K. Separation of amino acids peptides and proteins on molecularly imprinted stationary phases[J]. J Chromatogr A, 1995, 691 (1-2): 317-323
    28王进防,周良模,刘学良,等.三元交联剂分子烙印手性固定相[J].分析化学, 2000, 28: 1224-1228
    29 Zhu Q Z, Haupt K, Knopp D, et al. Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides[J]. Anal Chim Acta, 2002, 468: 217-227
    30 Ye L, P A G Cormack, Mosbach K. Molecular imprinting on microgel spheres[J]. Anal Chim Acta, 2001, 435 (1): 187-196
    31郑细鸣,涂伟萍.分子印迹聚合物结合与识别能力的影响因素[J].材料导报, 2004, 18 (10): 57-59
    32 Haginaka J, Sanbe H. Uniformly sized molecularly imprinted polymer for (S)-naproxen: Retention and molecular recognition properties in aqueous mobile phase[J]. J Chromatogr A, 2001, 913 (1-2): 141-146
    33 Wullf G. Selective binding to polymers via covalent bonds the construction of chiral cavities as specificre ceptorsites[J]. Pure and Applied Chemistry, 1982, 54 (11): 2093-2102
    34董襄朝,孙慧,吕宪禹,等.邻羟基苯甲酸分子印迹聚合物对于异构体的识别及色谱行为研究[J].化学学报, 2002, 60 (11): 2035-2042
    35 Ramstr?m O, Ansell R J. Molecular Imprinting Technology: Challenges and Prospects for the Future[J]. Chirality, 1998, 10: 195-209
    36 Wu L Q, Zhu K C, Zhao M P, et al. Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens[J]. Anal Chim Acta, 2005, 549: 39-44
    37 Allender C J, Heard C M, Brain K R. Mobile Phase Effects on Enantiomer Resolution Using Molecularly Imprinted Polymers[J]. Chirality, 1997, 9: 238-242
    38 Ansell R J, Mosbach K. Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent[J]. J Chromatogr A, 1997, 787: 55-66
    39 Lin J M, Nakagama T, Uchiyama K, et al. Temperature effect on chiral recognition of some amino acids with molecularly imprinted polymer filled capillary electrochromatography[J]. Biomed Chromatogr 1997, 11 (5): 298-302
    40 Sreenivasan K. Molecularly Imprinted Polyacrylic Acid Containing Multiple Recognition Sites for Steroids[J]. J Appl Polym Sci, 2001, 82: 889-893
    41 Sreenivasan K. On the feasibility of using molecularly imprinted poly (Hema) as a sensor component[J]. Talanta, 1997, 44 (6): 1137-1140
    42孙瑞丰,于慧敏,罗晖,等.分子印迹聚合物的制备及孔结构研究[J].高分子学报, 2005, (2): 248-253
    43 Norell M C, Andersson H S, Nicholls I A. Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism[J]. J Mol Recogn, 1998, 11: 98-102
    44赖家平,卢春阳,何锡文.水溶液微悬浮聚合法制备酸性药物吲哚美辛分子印迹微球及其色谱表征[J].高等学校化学学报, 2003. 24 (7): 1175-1179
    45 Lai J P, Lu X Y, Lu C Y, et al. Preparation and evaluation of molecularly imprinted polymeric microspheres by aqueous suspension polymerization for use as a high-performance liquid chromatography stationary phase[J]. Anal Chim Acta, 2001, 442 (1): 105-111
    46 Haginaka J, Sanbe H, Takehira H. Uniform-sized. molecularly imprinted polymer for (S)-ibuprofen. Retention properties in aqueous mobile phases[J]. J Chromatogr A, 1999, 857: 117-125
    47 Sanbe H, Haginaka J. Uniformly sized molecularly imprinted polymers for bisphenol A andβ-estradiol: retention and molecular recognition properties in hydro-organic mobile phases[J]. J Pharm Biomed Anal, 2002, 30: 1835-1844
    48 Andersson L I, Muèller R, Vlatakis G, et al. Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine[J]. Proc Natl Acad Sci, USA, 1995, 92: 4788-4792
    49 Andersson L I. Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol[J]. Anal Chem, 1996, 68: 111-117
    50 Haupt K, Dzgoev A, Mosbach K. Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as arti?cial recognition element[J]. Anal Chem, 1998, 70: 628-631
    51 Nicholls I A. Thermodynamic considerations for the design of and ligand recognition by molecularly imprinted polymers[J]. Chem Lett, 1995, 24:1035-1036
    52 Nicholls I A. An approach toward the semiquantitation of molecular recognition phenomena in non-covalent molecularly imprinted polymer systems: consequences for molecularly imprinted polymerdesign[J]. Adv Mol Cell Biol, 1996, 15: 667-674
    53 Andrews P R, Craik D J, Martin J L. Functional group contributions to drug receptor interactions[J]. J Med Chem, 1984, 27: 1648-1657
    54 Williams D H, Cox J P L, Doig A J, et al. Towards the semiquantitative estimation of binding constants. Guides for peptide±peptide binding in aqueous solution[J]. J Am Chem Soc, 1991, 113: 7020-7030
    55 Nicholls I A. Towards the rational design of molecularly imprinted polymers[J]. J Mol Recogn, 1998, 11: 79-82
    56孙瑞丰,于慧敏,罗晖,等.分子印迹手性分离过程的热力学研究[J].化学学报, 2005, 63 (3): 189-195
    57 Svec F, Fréchet M J. Continuous rods of macroporous polymer as high-performanceli quidchromatography separation media[J]. Anal Chem, 1992, 64: 820-822
    58 Matsui J, Miyoshi Y, Dier O D, et al. A molecularly imprinted synthetic polymer receptors elective for atrazine[J]. Anal Chem, 1995, 67: 4404-4408
    59 Galdwell J. Chiral pharmacology and the regulation of new drugs[J]. Chemistry & Industry, 1995, 53: 176-179
    60 Matsui J, Kato T, Takeuchi T. Molecular recognitionin continuous polymer rods prepared by a molecular imprinting technique[J]. Anal Chem, 1993, 65: 22-23
    61吕睿,张洪涛,陈敏.分子印迹核单分散聚合物微球的研究进展[J].胶体与聚合物, 2002, 20 (4): 32-35
    62 Ye L, Ramstrm O, Mosbach K. Molecularly Imprinted Polymeric Adsorbents for Byproduct Removal[J]. Anal Chem, 1998, 70: 2789-2795
    63 Jean M J, Frechet J M J. Influence of the seed polymer on the chromatographic properties of size media prepared by a multi-step swelling and polymerization method[J]. J Polym Sci: Part A: Polym Chem, 1993, 31: 2129-2141
    64 Haginaka J, Takehira H, Hosoya K, et al. Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen comparison of molecular recognition ability of the molecularly imprinted polymers prepared by thermal and redox polymerization techniques[J]. J Chromatogr A, 1998, 816: 113-121
    65 Yoshida M, Uezu K, Nakashio F, et al. Spacer effect of novel bifunctional organophosphorous monomers in metal-imprinted polymers prepared btsyrface template polymerization[J]. J Polym Sci A, 1998, 36 (15): 2727-2734
    66 Yoshida M, Uezu K, Goto M. Surface imprinted polymers recognizing amino acid chirality[J]. J Appl Polym Sci, 2000, 78 (4): 695-703
    67 Yoshida M, Uezu K, Goto M, et al. Metalion imprinted microsphere prepared by surface molecular imprinting technique using water in oil-in-water emulsions[J]. J Appl Polym Sci, 1999, 73: 1223-1230
    68 Piletsky S A, Dubey I Y, Fedoryak D M, et al. Substrate-Selective Polymeric Membranes. Selective Transfer of Nucleic Acid Components[J]. Biopolym Kletka, 1990, 6: 55-58
    69 Dzgoev A, Haupt K. Molecularly Imprinted Polymer Membranes for Chiral Separation[J]. Chirality, 1999, 11: 465-469
    70 Lehmann M, Brunner H, Tovar G E M. Selective separations and hydrodynamic studies: a new approach using molecularly imprinted nanosphere composite membranes[J]. Desalination, 2002, 149: 315-321
    71 Koter I, Ceynowa J. Kinetic resolution of chiral alcohols in bifunctional membrane exhibitingenzymeactivity and enantioselective permeation[J], Journal of Molecular Catalysis. B, Enzymatic, 2003,23-25(1): 17-26
    72 Kielczynski R, Bryiak M. Molecularly imprinted membranes for cinchona alkaloids separation [DB/OL]. http://cat.inist.fr/?aModele=afficheN&cpsidt=16575866, 2007-05-24
    73 Hedborg E, Winquist F, Lundstrone I, et al. Some studies of molecularly-imprinted polymer membranes in combination with field effect devices[J]. Sensor and Acuators A, 1993, 37/38: 796-799
    74 Jakusch M, Janotta M, Mizaikoff B, et al. Molecularly Imprinted Polymers and Infrared Evanescent Wave Spectroscopy A Chemical Sensors Approach[J]. Anal Chem, 1999, 71: 4786-4791
    75 Kobayashi T, Wang H Y, Fujii N. Molecular Imprint Membranes of Polyacrylonitrile Copolymer with Different Acrylic Acid Segment[J]. Anal Chim Acta, 1998, 365: 81-88
    76 Wang H Y, Kobayashi T, Fujii N. Molecular imprint membranes prepared by the phase inversion precipiation technique[J]. Langmuir, 1996, 12: 4850-4856
    77 Kobayashi T, Wang H Y, Fukaya T, et al. Molecular imprint membranes prepared by the phase inversion technique.(2)Influence of coagulation temperature in the phase inversion process on the encoding in polymeric membranes [J]. Langmuir, 1997, 13: 5396-5400
    78 Mathew-Krotz J, Shea K J. Imprinted Polym er Membranes for the Selective Transport of Targeted Neutral Molecules[J]. J A m Chem Soc, 1996, 118 (34): 8154-8155
    79 Piletsky S A, Matuschewski H, Schedler U, et al. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water[J]. Macromolecules, 2000, 33 (8): 3092-3098
    80 Sergeyeva T A, Matuschewski H, Piletsky S A, et al. Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization[J]. J Chromatogr A, 2001,907 (1-2): 89-99
    81 Yoshikawa M, Fujisawa T, Izumi J, et al. Molecularly imprinted polymeric membranes involving tetrapeptide EQKL derivatives as chiral-recognition sites toward amino acids[J]. Anal Chim Acta, 1998, 365: 59-67
    82 Molinelli A. Molecularly imprinted polymers: towards a rational understanding of biomimetic materials[D].[ Dissertation of doctor of philosophy]. Georgia: School of Chemistry, Georgia Institute of Technology, 2004
    83 Lanza F, Sellergren B. The application of molecular imprinting technology to solid phase extraction[J]. Chromatographia, 2001, 53: 599-611
    84 Wu S G. Molecularly imprinted solid phase extraction-pulsed elution for rapid screening and determination of cephalexin inα-aminocephalosporin antibiotics[D]. [ Dissertation of doctor of philosophy]. Ottawa: Department of chemistry, Carleton University,2002
    85 Chapuis F, Pichon V, Lanza F, et al. Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers - Application to the extraction of triazines from complex matrices[J]. J Chrom B, 2004, 804(1): 93-101.
    86 Mullett W M, Dirie M F, Lai E P C, et al. A 2-aminopyridine molecularly imprinted polymer surrogate micro-column for selective solid phase extraction and determination of 4-aminopyridine[J]. Ana.Chim Aata, 2000, 414(1-2):123-131
    87 Baggiani C, Trotta F, Giraudi G, et al. A molecularly imprinted polymer for the pesticide bentazone[J]. Anal Commun, 1999, 36 (7): 263-266
    88郭洪声,贾裕梅,曹现峰,等.微球形4-氨基吡啶分子模板聚合物的合成及结合性质研究[J].高等学校化学学报, 2001, 22(3): 371-375
    89 Kugimiya A, Takeuchi T. Application of indoleacetic acid-imprinted polymer to solid phase extraction[J]. Anal Chim Acta, 1999, 395 (3): 251-255
    90 Kempe M, Mosbach K. Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase[J]. J Chromatogr A, 1994, 664 (2): 276-279
    91 Mullett W M, Lai E P C, Sellergren B. Determination of nicotine in tobacco by molecular imprinting solid phase exteaction with differential pulsed elution [J]. Anal Commun, 1999, 36: 217-220
    92 Cruz E O D, Muguruma H, Jose W I, et al. Molecular. imprinting of methyl pyrazines[J]. Anal Lett, 1999, 32 (5): 841-854
    93 Andersson L I, Paprica A, Arvidsson T. A highly selective solid-phase extraction sorbent for preconcentration of sameridine made by molecular imprinting[J]. Chromatographia, 1997, 46 (2): 57-62
    94 Andersson L I, Hardenborg E, Sandberg-St?ll M, et al. Development of a molecularly imprinted polymer based solid-phase extraction of local anaesthetics from human plasma[J]. Anal Chim Acta, 2004, 526: 147-154
    95 Puoci F, Garreffa C, Iemma F et al. Molecularly imprinted solid phase extraction for detection of sudan I in food matrices[J]. Food Chem, 2005, 93: 349-353
    96 Vaz J M. Screening direct analysis of PAHS in atmospheric particulate matter with SPME[J]. Talanta, 2003, (4): 687-693
    97 Lin H H, Sung Y H, Huang S D. Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of phenylurea herbicides in aqueous samples[J]. J Chromatogra A, 2003, (1): 57-66
    98 Hakkarainen M. Qualitative and quantitative solid-phase microextraction gas chromatographic-mass spectrometric determination of the low-molecular-mass compounds released from poly (vinyl chloride) /polycaprolactonepolycarbonate during agein[J]. J Chromatogr A, 2003, (1): 9-16
    99 Sanusi A, Ferrari F, Millet M, et al. Pesticide vapours in confined atmospheres. Determination of dichlorvos by SPME-GC-MS at the mug.m-3 level[J]. J Enviroment Monitoring, 2003, (4): 574-577
    100 da Silveira C B, de Oliveira A F, de Campos S D, et al. Glass fibers coated with Nb2O5 for use in SPME[J]. Colloid Surface A, 2005, (1-3): 15-22
    101 Li X J, Zeng Z R, Zhou J J, et al. Novel fiber coated with amide bridgedcalix[4] arene used for solid-phase microextraction of aliphatic amines[J]. J Chromatogr A, 2004, (1-2): 1-9
    102 Hou J G, Ma Q, Du X Z, et al. Inorganic/organic mesoporous silica as a novel fiber coating of solid-phase microextraction[J]. Talant, 2004, (2): 241-246
    103 Switaj A, Przyk E, Szczygelska-Tao J, et al. Applicability of glass fiber as a support material for generation of gaseous standard mixtures using thermal decomposition of the surface compound. Calibration of analytical equipment[J]. J Sep Sci, 2003, (11): 1057-1062
    104 Mullett W M, Martin P, Pawliszyn J. In-tube molecularly imprinted polymer solid-phase microextraction for the selective determination of propranolol[J]. Anal Chem, 2001, 73 (11): 2383-2389
    105 Koster E H M, Crescenzi C, den-Hoedt W, et al. Fibers coated with molecularly imprinted polymers for solid- phase microextraction[J]. Anal Chem, 2001, 73 (13): 3140-3145
    106 Yang L H, Luan T G, Lan C Y. Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography–mass spectrometry[J]. J Chromatogr A, 2006, 1104: 23-32
    107史瑞雪,郭成海,邹小红,等.分子印迹技术研究进展[J].化学进展, 2002, 14 (3): 182-191
    108姚守拙.从压电传感的发展看学科交叉创新[J].大连化学, 2001, 16 (1): 21-25
    109 Mosback K. Molecular Imprinting Database[DB/OL] , http://www.smi.tu-berlin.de/Base/Database.htm,2007-5-27
    110 Kugimiya A, Kuwada Y, Takeuchi T. Preparation of sterol-imprinted polymers with the use of 2-(methacryloyloxy)ethyl phosphate[J]. J Chromatogr A, 2001, 938: 131-135
    111 Rachkov A, McNiven S, El’skaya A, et al. Fluorescence detection of b-estradiol using a molecularly imprinted polymer[J]. Anal Chim Acta, 2000, 405: 23–29.
    112 Bravo J C, Fernández P, Durand J S. Flow injection fluorimetric determination ofβ-estradiol using a molecularly imprinted polymer[J]. Analyst, 2005, 130: 1404–1409
    113 Watabe Y, Kubo T, Nishikawa T, et al. Fully automated liquid chromatography–mass spectrometry determination of 17β-estradiol in river water[J]. J Chromatogr A, 2006, 1120(1-2): 252-259
    114刘峻,林汉华,隋洪艳,等.内分泌干扰物17β-雌二醇荧光分子印迹识别方法[J].环境科学研究, 2006, 19(5): 91-95
    115胡树国,李礼,何锡文.一种高选择性固相萃取吸附剂--分子印迹聚合物[J].化学进展, 2005, 17 (3): 531-543
    116 Hartmann S, Steinhart H. Simultaneous determination of anabolic and catabolic steroid hormones in meat by gas chromatography-mass spectrometry[J]. J Chromatogr B, 1997, 704: 105-117
    117 Wiseman A, Goldfarb P, Ridgway T, et al. Gender Hazards of Oestrogens and Mimics in water Environments[J]. J Chem Technol Biotechnol, 1998, 71: 3-5
    118 Barnhoorn I E J, Bornman M S. Pieterse G M. Histological Evidence of Intersex in Feral Sharptooth Cat.sh (Clarias gariepinus) from an Estrogen-Polluted Water Source in Gauteng[J]. South Africa Environ Toxicol, 2004, 19: 603-608
    119 Harvey P W, Darbre P. Endocrine Disrupters and Human Health: Could Oestrogenic Chemicals in Body Care Cosmetics Adversely Affect Breast Cancer Incidence in Women?[J]. J Appl Toxicol, 2004, 24: 167-176
    120 International Prostate Health Council Study Group. Estrogens and Prostatic Disease[J]. The Prostate, 2000, 45: 87-100
    121 Hartmann S, Lacorn M, Steinhart H. Natural occurrence of steroid hormones food[J]. Food Chemistry, 1998, 62 (1): 7-20
    122 Sanderson H, Brain R A, Johnson D J. Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones[J]. Toxicology, 2004, 203: 27-40
    123 Wei S T, Molinelli A, Mizaikoff B. Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol[J]. Biosens Bioelectron, 2006, 21: 1943-1951
    124 Piscopo L, Prandi C, Coppa M, et al. Uniformly Sized Molecularly Imprinted Polymers (MIPs) for 17β-Estradiol[J]. Macromol Chem Phys, 2002, 203: 1532-1538
    125 Noir M L, Lepeuple A S, Guieysse B, et al. Selective removal of 17β-estradiol at trace concentration using a molecularly imprinted polymer[J]. Water Research, 2007, 41(12): 2825-2831
    126 Idziak I, Benrebouh A, Deschamps F. Simple NMR experiments as a means to predict the performance of an anti-17α-ethynylestradiol molecularly imprinted polymer[J]. Anal Chimi Acta, 2001,435: 137-140
    127 Idziak I, Benrebouh A. A molecularly imprinted polymer for 17α-ethynylestradiol evaluated by immunoassay[J]. Analyst, 2000, 125: 1415-1417
    128 He D, Tong A J, Li L D. Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection[J]. Spectrochim Acta, Part A, 2003, 59: 279-284
    129 Seo J, Kim H Y, Chung B C, Hong J. Simultaneous determination of anabolic steroids and synthetic hormones in meat by freezing-lipid filtration, solid-phase extraction and gas chromatography–mass spectrometry[J]. J Chromatogr A, 2005, 1067: 303-309.
    1 Chen Z Y, Zhao R, Shangguan D H, et al. Preparation and evaluation of uniform-sized molecularly imprinted polymer beads used for the separation of sulfamethazine[J]. Biomed Chromatogr, 2005, 19: 533-538
    2 Lai J P, Lu X Y, Lu C Y, et al. Preparation and evaluation of molecularly imprinted polymeric microspheres by aqueous suspension polymerization for use as a high-performance liquid chromatography stationary phase[J]. Anal Chim Acta, 2001, 442: 105-111
    3 Rachkov A E, Cheong S H, Anna V E, et al. Molecularly imprinted polymers as artificial steroid receptors[J]. Adv Technol, 1998, 9: 511-519
    4 Piacham T, Josell A, Arwin H, et al. Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator[J]. Anal Chim Acta, 2005, 536: 191-196
    5 Ye L, Mosbach K. Molecularly imprinted microspheres as antibody binding mimics[J]. Funct Polym, 2001, 48: 149-157
    6 Kugimiya A, Takeuchi T. Imprinted polymer-coated QCM sensors[J]. Electroanalysis, 1999, 15: 1158-1160
    7 Mosbach K, Haupt K. Some new developments and challenges in noncovalent molecular imprinting technology[J]. J Mol Recognit, 1998, 11: 62-68
    8 Szumski M, Buszewski B. Molecularly imprinted polymers:A new tool for separation of steroid isomers[J]. J Sep Sci, 2004, 27: 837-842
    9 Vaihinger D, Landfester K, Kraüter I, et al. Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation[J]. Macromol Chem Phys, 2002, 203: 1965-1973
    10 Yilmaz E, Mosbach K, Haupt K. Influence of functional and cross-Linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays[J]. J Mol Recognit, Anal Commun, 1999, 36: 167-170
    11张杰,王永健,于奡.分子印迹技术在甾类物质识别和分析中的应用[J].化学试剂, 2005, 27 (6): 331-335;351
    12 He D, Tong A J, Li L D. Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection[J]. Spectrochim Acta, Part A, 2003, 59: 279-284
    13 Hartmann S, Steinhart H. Simultaneous determination of anabolic and catabolic steroid hormones in meat by gas chromatography-mass spectrometry[J]. J Chromatogr B Biomed Sci Appl, 1997, 704 (1-2): 105-117
    14 Piscopo L, Prandi C, Coppa M, et al. Uniformly Sized Molecularly Imprinted Polymers (MIPs) for 17β-Estradiol[J]. Macromol Chem Phys, 2002, 203: 1532-1538
    15卢春阳,何海成,马向霞,等.除草剂青莠定分子印迹聚合物的合成及结合性能研究[J].化学学报, 2004, 62 (8): 799-803
    16 Yin J, Yang G, Chen Y. Rapid and efficient chiral separation of nateglinide and its l-enantiomer on monolithic molecularly imprinted polymers [J]. Chromatogr A, 2005, 1090: 68-75
    17 Wei S T, Molinelli A, Mizaikoff B. Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol[J]. Biosens Bioelectron, 2006, 21: 1943-1951
    18王进防,周良模,刘学良.三元交联剂分子烙印手性固定相[J].分析化学, 2000, 28: 1224-1228
    19苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:上海华东理工大学出版社, 2002. 66
    20 Yavuz H, Karako? V, Türkmen D, et al. Synthesis of cholesterol imprinted polymeric particles[J]. International Journal of Biological Macromolecules, 2007, 41 (1): 8-15
    21于世林.高效液相色谱方法及应用[M].北京:化学工业出版社, 2005. 333
    22 Tamayo F G, Casillas J L, Martin-Esteban A. Evaluation of new selective molecularly imprinted polymers prepared by precipitation polymerisation for the extraction of phenylurea herbicides[J]. J Chromatogr A, 2005, 1069: 173-181
    23 Jun M, Otto D D, Toshifumi T. 2-(Trifluoromethyl)acrylic acid: a novel functional monomer in non-covalent molecular imprinting[J]. Anal Chim Acta, 1997, 343: 1-4
    24 Wang H Y, Xia S L, Sun H, et al. Molecularly imprinted copolymer membranes functionalized by phase inversion imprinting for uracil recognition and permselective binding[J]. J Chromatogr B, 2004, 804: 127-134
    25 Courtois J, Fischer G, Schauff S, et al. Interactions of bupivacaine with a molecularly imprinted polymer in a monolithic format studied by NMR[J]. Anal Chem, 2006, 78: 580-584
    26 Schantz S. Structure and mobility in poly(ethylene oxide)/poly(methylmethacrylate) blends investigated by 13C solid-state NMR[J]. Macromolecules, 1997, 30: 1419-1425
    27 McGrath K J, Roland C M. NMR study of the morphology of polystyrene linear/microgel blends[J]. Macromolecules, 2000, 33: 8354-8360
    28 Kondo S, Ishikawa T, Abe I,著.李国希,译.吸附科学[M].北京:化学工业出版社,2006. 26
    29 Piscopo L, Prandi C, Coppa M, et al. Uniformly sized molecularly imprinted polymers (MIPs) for 17β-estradiol[J]. Macromol Chem Phys, 2002, 203 (10/11): 1532–1538
    30 Batra D, Shea K J. Combinatorial methods in molecular imprinting [J]. Curr Opin Chem Biol, 2003, 7 (3): 434-444
    1. Ansell R J. Molecularly imprinted polymers for the enantioseparation of chiral drugs[J]. Advanced Drug Delivery Reviews, 2005, 57: 1809-1835
    2. Ou J J, Kong L, Pan C S. Determination of DL-tetrahydropalmatine in Corydalis yanhusuo by L-tetra- hydropalmatine imprinted monolithic column coupling with reversed-phase high performance liquid chromatography[J]. Journal of Chromatography A, 2006, 1117: 163-169
    3. Mosbach K, Haupt K. Some new developments and challenges in noncovalent molecular imprinting technology[J]. Journal of molecular recognition,1998, 11: 62-68
    4. Zhang M L, Xie J P, Zhou Q, et al. On-line solid-phase extraction of ceramides from yeast with ceramide III imprinted monolith[J]. Journal of Chromatography A, 2003, 984: 173-183
    5. Rachkov A E, Cheong S H, Anna V E, et al. Molecularly imprinted polymers as artificial steroid receptors[J]. Adv Technol, 1998, 9: 511-519
    6. Zurutuza A, Bayoudh S, Cormack P A G, et al. Molecularly imprinted solid-phase extraction of cocaine metabolites from aqueous samples[J]. Analytica Chimica Acta, 2005, 542: 14-19
    7. Puoci F, Garreffa C, Iemma F, et al. Molecularly imprinted solid phase extraction for detection of sudan I in food matrices[J]. Food Chemistry, 2005, 93: 349-353
    8. Ye L, Mosbach K. Molecularly imprinted microspheres as antibody binding mimics[J]. Reactive & Functional Polymers, 2001, 48: 149-157
    9. Piacham T, Josell A S, Arwin H, et al. Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator[J]. Analytica Chimica Acta, 2005, 536: 191-196
    10. Kugimiya A, Takeuchi T. Molecularly imprinted polymer-coated quartz crystal microbalance for detection of biological hormone[J]. Electroanalysis, 1999, 15: 1158-1160
    11. Yilmaz E, Mosbach K, Haupt K. Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays[J]. Anal Commun, 1999, 36: 167-170
    12. Szumski M, Buszewski B. Molecularly imprinted polymers:A new tool for separation of steroid isomers[J]. J Sep Sci, 2004, 27: 837-842
    13. Vaihinger D, Landfester K, Kraüter I, et al. Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation[J]. Macromol Chem Phys, 2002, 203: 1965-1973
    14. He D, Tong A J, Li L D. Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection[J]. Spectrochimica Acta Part A, 2003, 59: 279-284
    15. Cheong S H, Rachkov A E, Park J K. Synthesis and binding properties of a noncovalent molecularly imprinted testosterone-specific polymer[J]. Journal of Polymer Science:Part A, Polymer Chemistry, 1998, 36: 1725-1732
    16. Egawa Y, Shimura Y, Nowatari Y. Preparation of molecularly imprinted cyclodextrin microspheres[J]. International Journal of Pharmaceutics, 2005, 293: 165-170
    17.张杰,王永健,于奡.分子印迹技术在甾类物质识别和分析中的应用[J].化学试剂, 2005, 27 (6): 331-335;351
    18. Ramstrêm O, Ye L, Mosbach K. Artificial antibodies to corticosteroids prepared by molecular imprinting[J]. Chem.&Biol, 1996. 3: p. 471-477
    19. Piscopo L, Prandi C, Coppa M, et al. Uniformly sized molecularly imprinted polymers (MIPs) for 17β-Estradioll[J]. Macromol Chem Phys, 2002, 203: 1532-1538
    20. Sellergren B, Lepisto M, and Mosbach K. Highly enantioselective and substrate -selective polymers obtained molecular imprinting utilizing noncovalent interactions.NMR and chromatographic studies on the nature of recognition[J]. Journal of the American Chemical Society, 1998, 110(17): 5853-5860
    21. Puoci F, Iemma F, Muzzalupo R, et al. Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymerization in the controlled delivery of sulfasalazine[J]. Macromol Biosci, 2004, 4: 22-26
    22. Hartmann S, Lacorn M, Han S. Natural occurrence of steroid hormones in food[J]. Food Chemistry, 1998, 62(1): 7-20
    23.张福根.粉体粒度测试技术[EB/OL].武汉:办公设备技术与信息, 2005, http://www.cqvip.com,2007-04-20
    24.张福根,郭华.水泥工业现代粒度测试技术探讨[J].水泥技术(增刊), 2002: 46-48
    25.郑细鸣,涂伟萍.分子印迹聚合物微球的粒径尺寸及分布[J].化学时刊, 2004, 18(6): 12-15
    26.胡杰,刘百玲,汪地强.水介质中单分散聚甲基丙烯酸甲酯微球的制备[J].高分子化学, 2003, 4: 540-543
    27.于世林高效液相色谱方法及应用[M].北京:化学工业出版,第二版, 2005. 67
    28.王进防,周良模,刘学良.三元交联剂分子印迹手性固定相[J].分析化学, 2000, 28: 1224-1228
    29.赵中璋,杨树明,杨彦果,等.分散聚合制备粒度均匀的聚甲基丙烯酸环氧丙酯微球[J].高分子化学, 1999, (1): 31-36
    30. Hart B R. Design, synthesis and evaluation of molecularly imprinted polymers[D]: [Dissertation of doctor degree]. Irvine: University of California, 2001. 207.
    31. Nicholls I A. Towards the rational design of molecularly imprinted polymers[J]. J Mole Rec, 1998, 11: 79-82
    32.杨座国,许振良.热聚合法制备二苯甲酰-L-酒石酸手性分子印迹聚合物I.热聚合条件的优化[J].华东理工大学学报(自然科学版), 2005, 31(5): 580-584;611
    1 Hartmann S, Steinhart H. Simultaneous determination of anabolic and catabolic steroid hormones in meat by gas chromatography-mass spectrometry[J]. Journal of Chromatography B, 1997, 704 (1-2): 105-117
    2 Van Ginkel G, Van Langen H, Levine Y K. The membrane fluidity concept revisited by polarized fluorescence spectroscopy on different model membranes containing unsaturated lipids and sterols[J]. Biochimie, 1989, 71 (1): 23-32
    3 Scarlata S F. Effects of cholesterol on membrane surfaces as studied by high-pressure fluorescence spectroscopy [J]. Biophysical Chemistry, 1997, 69 (1): 9-21
    4 Palmgrén J J, T?yr?s A, Mauriala T, et al. Quantitative determination of cholesterol, sitosterol, and sitostanol in cultured Caco-2 cells by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry[J]. J Chromatogr B, 2005, 821 (2): 144-152
    5 Grob K, Lanfranchi M, Mariani C. Determination of free and esterified sterols and of wax esters in oils and fats by coupled liquid chromatography-gas chromatography [J]. J Chromatogr A, 1989, 471: 397-405
    6 Truong T T, Marriott P J, Porter N A, et al. Application of comprehensive two-dimensional gas chromatography to the quantification of overlapping faecal sterols [J]. J Chromatogr A, 2003, 1019 (1-2): 197-210
    7 Pazos A J, Silva A, Vázquez V, et al. Sterol composition of gonad, muscle and digestive gland of Pecten maximus from Málaga (South Spain)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2003, 134 (3): 435-446
    8 Tanaka T, Takeda H, Ueki F, et al. Rapid and sensitive detection of 17β-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles[J]. J Biotech, 2004, 108 (2): 153-159
    9 Abraham G E. Radioimmunoassay of steroids in biological fluids[J]. J Steroid Biochem, 1975, 6 (3-4): 261-270
    10 Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates a way towards artificial antibodies[J]. Angew Chem, Int Ed Engl, 1995, 34: 1812-1832
    11 Mosbach K, Ramstr?m O. The emerging technique of molecular imprinting and its future impact on biotechnology[J]. Bio/Technology, 1996, 14: 163-170
    12 Yang G L, Yin J F, Li Z W. Chiral Separation of Nateglinide and its L Isomer on a Molecularly Imprinted Polymer-Based Stationary Phase[J]. Chromatographia, 2004, 59: 705-708
    13 Masci G, Aulenta F, Crescenzi V. Uniform-Sized Clenbuterol MIPs Prepared with Methacrylic Acid or Acrylamide as an Interacting Monomer[J]. Journal of Applied Polymer Science, 2002, 83: 2660-2668
    14 Ye L, Ramstr?m O, Ansell R J, t al. Use of MIPs in a Biotransformation Process[J]. Biotechnology and bioengineering, 1999, 64 (6): 650-655
    15 Suedee R, Intakong W, Dickert F L. Molecularly imprinted polymer-modified electrode for on-line conductometric monitoring of haloacetic acids in chlorinated water[J]. Analytica Chimica Acta, 2006, 569: 66-75
    16 Ers?z A, Denizli A, ?zcan A, et al. Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance[J]. Biosensors and Bioelectronics, 2005, 20 (11): 2197-2202
    17 Ebarvia B S, Sevilla III F. Piezoelectric quartz sensor for caffeine based on molecularly imprinted polymethacrylic acid[J]. Sensors and Actuators B, 2005, 107 (2): 782-790
    18 Dong H, Tong A J, Li L D. Syntheses of steroid-based MIPs and their molecular recognition study with spectrometric detection [J]. Spectrochimica Acta Part A, 2003, 59: 279-284
    19 Ye L, Weiss R., Mosbach K. Synthesis and characterization of molecularly imprinted micro-spheres[J]. Macromolecules, 2000, 33: 8239-8245
    20 Piscopo L, Prandi C, Coppa M, et al. Uniformly Sized MIPs (MIPs) for 17-β-estradiol[J]. Macromol Chem Phys, 2002, 203 (10): 1532-1538
    21 Ye L, Mosbach K. Molecularly imprinted microspheres as antibody binding mimics[J]. Reactive & Functional Polymer, 2001, 48: 149-157
    22 Wei S T, Molinelli A, Mizaikoff B. Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol[J]. Biosensors and Bioelectronics, 2006, 21: 1943-1951
    23 Ju J Y, Shin C S, Whitcombe M J, et al. Imprinted polymers as tools for the recovery of secondary metabolites produced by fermentation[J]. Biotechnology and Bioengineering, 1999, 64 (2): 232-239
    24 Szumski M, Buszewski B. Molecularly imprinted polymers:A new tool for separation of steroid isomers[J]. J Sep Sci, 2004, 27: 837-842
    25 Yin J F, Yang G L, Chen Y Y. Rapid and efficient chiral separation ofnateglinide and its L-enantiomer on monolithic molecularly imprinted polymers[J]. J Chromatogr A, 2005, 1090 (1-2): 68-75
    26 Idziak I, Benrebouh A. A molecularly imprinted polymer for 17α-ethynylestradiol evaluated by immuno-assay [J]. Analyst, 2000, 125: 1415-1417
    27 Sanbe H, Haginaka J. Uniformly sized MIPs for bisphenol A andβ-estradiol: retention and molecular recognition properties in hydro-organic mobile phases[J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30: 1835-1844
    28 Sreenivasan K. Molecularly imprinted polyacrylic acid containing multiple recognition sites for steroids[J]. Journal of Applied Polymer Science, 2001, 82: 889-893
    29 Matsui J, Doblhoff-Dier O, Takeuchi T. 2-(Trifluoromethyl)acrylic acid: a novel functional monomer in non-covalent molecular imprinting[J]. Analytica Chimica Acta, 1997, 343 (1-2): 1-4
    30 Wang H Y, Xia S L, Sun H, et al. Molecularly imprinted copolymer membranes functionalized byphase inversion imprinting for uracil recognition and permselective binding[J]. J Chromatogr B, 2004, 804: 127-134.
    31 Tamayo F G, Casillas J L, Martin-Esteban A. Evaluation of new selective molecularly imprinted polymers prepared by precipitation polymerisation for the extraction of phenylurea herbicides[J]. J Chromatogr A, 2005, 1069: 173-181
    32 Lai J P, Niessner R, Knopp D. Benzo[a]pyrene imprinted polymers: synthesis, characterization and SPE application in water and coffee samples[J]. Anal Chim Acta, 2004, 522 (2): 137-144
    33周先碗,胡晓倩.生物化学仪器分析与实验技术[M].北京:化学工业出版社, 2003. 55-326.
    34 Kugimiya A, Kuwada Y, Takeuchi T. Preparation of sterol-imprinted polymers with the use of 2-(methacryloyloxy)ethyl phosphate[J]. J Chromatogr A, 2001, 938: 131-135
    35 Rachkov A, McNiven S, El’skaya A, et al. Fluorescence detection of b-estradiol using a molecularly imprinted polymer[J]. Anal Chim Acta, 2000, 405: 23–29.
    1 Mosbach K. Molecular imprinting[J]. Trends Biochem Sci, 1994, 19: 9-14
    2 O’Shannessy D J, Ekberg B, Mosbach K. Molecular imprinting of amino acid derivatives at low temperature (0 degree) using photolytic homolysis of azobisnitriles[J]. Anal Biochem, 1989, 177: 144-149
    3 Lin J M, Nakagama T, Uchiyama K,et al. Temperature effect on chiral recognition of some amino acids with molecularly imprinted polymer filled capillary electrochromatography[J]. Biomedical Chromatography, 1997, 11: 298-302
    4焦飞鹏,黄可龙,于金刚,等.萘普生分子印迹拆分过程热力学研究[J].材料导报, 2005, l9 (8): 114-116
    5 Kim H J, Kaczmarski K, Guiochon G. Thermodynamic analysis of the heterogenous binding sites of molecularly imprinted polymers[J]. J Chromatogr A, 2006, 1101: 136-152
    6刘志航,宦双燕,沈国励,等.以分子印迹电聚合膜为仿生受体检测辛可宁[J].高等学校化学学报, 2005, 26 (6): 1049-1051
    7孙瑞丰,于慧敏,罗晖,等.分子印迹手性分离过程的热力学研究[J].化学学报, 2005, 63 (3): 189-195
    8王进防,周良模,刘学良,等.分子烙印手性固定相分离过程热力学研究[J].高等学校化学学报, 2000, 21 (6): 930-933
    9雷建都,谭天伟.酮洛芬分子印迹拆分及分离过程热力学研究[J].化学学报, 2002, 60: 1279-1283
    10 Sun R F, Yu H M, Luo H, et al. Construction and application of a stoichiometric displacement model for retention in chiral recognition of molecular inprinting[J]. J Chromatogr A, 2004, 1055 (1-2): 1-9
    11刘振海.聚合物量热测定[M].北京:化学工业出版社,2002. 15-20
    12 Ozawa T. Thermal analysis review and prospect [J]. Thermo-chimica Acta, 2000, 355: 35-42
    13 Yang L H, Luan T G, Lan C Y. Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography–mass spectrometry[J]. J Chromatogr A, 2006, 1104: 23-32
    14 Hu X G, Hu Y L, Li G K. Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography[J].J Chromatogr A, 2007, 1147(1): 1-9
    1 Caro E, MarcéR M, Borrull F, et al. Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples[J]. Trends Anal Chem, 2006, 25 (2): 143-154
    2 LüB, Shi D, Zhang J H, et al. Selective solid phase extraction of cholesterol from different biological samples using different molecular imprinted polymers[J], Acta Med Univ Sci Technol Huazhong, 2005, 34 (5): 639-641
    3 Hu S G, Wang S W, He X W. An amobarbital molecularly imprinted microsphere for selective solid-phase extraction of phenobarbital from human urine and medicines and their determination by high-performance liquid chromatography[J]. Analyst, 2003,128: 1485-1489
    4 Caro E, Marc′e R M, Cormack P A G, et al. Novel enrofloxacin imprinted polymer applied to the solid-phase extraction of fluorinated quinolones from urine and tissue samples[J]. Analytica Chimica Acta, 2006, 562: 145-151
    5 de Prada A G V, Mart′?nez-Ruiz P, Reviejo A J, et al. Solid-phase molecularly imprinted on-line preconcentration and voltammetric determination of sulfamethazine in milk[J]. Analytica Chimica Acta, 2005, 539: 125-132
    6 Caro E, Marce R M, Cormack P A G, et al. On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water[J]. J Chromatogr A, 2003, 995: 233-238
    7 Tamayo F G, Turiel E, Martín-Esteban A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends[J]. J Chromatogr A, 2007, 1152: 32–40
    8 Noppe H, de Wasch K, Poelmans S, et al. Development and validation of an analytical method for detection of estrogens in water[J]. Anal Bioanal Chem, 2005, 382 (1): 91-98
    9 Wei S T, Molinelli A, Mizaikoff B. Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol[J]. Biosens Bioelectron, 2006, 21: 1943-1951
    10 Dong H, Tong A J, Li L D. Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection[J]. Spectrochim Acta Part A, 2003, 59: 279-284
    11 Piscopo L, Prandi C, Coppa M, et al. Uniformly sized molecularly imprinted polymers (MIPs) for 17β-Estradiol[J]. Macromol Chem Phys, 2002, 203: 1532-1538
    12 Szumski M, Buszewski B. Molecularly imprinted polymers:A new tool for separation of steroid isomers[J]. J Sep Sci, 2004, 27: 837-842
    13 Dirion B, Lanza F, Sellergren B, et al. Selective solid phase extraction of a drug lead compound using molecularly imprinted polymers prepared by the target analogue approach[J]. Chromatographia, 2002, 56 (3-4): 237-241
    14 Paprica A, Andersson L I, Arvidsson T. A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting[J]. Chromatographia, 1997, 46: 57-62
    15 Andersson L I, Abdel-Rehim M, Nicklasson L, et al. Towards molecular-imprint based SPE of local anaesthetics[J]. Chromatographia, 2002, 55: S65-S69
    16 Hu S G, Wang S W, He X W. Study of paracetamol molecularly imprinted polymers applied to solid phase extraction[J]. Acta Chimica Sinica, 2003, 62 (9): 864-868
    17 Mullett W M, Dirie M F, Lai E P C, et al. A 2-aminopyridine molecularly imprinted polymer surrogate micro-column for selective solid phase extraction and determination of 4-aminopyridine[J]. Anal Chim Acta, 2000, 414: 123-131
    18王进防,周良模,刘学良,等.分子烙印手性固定相分离过程热力学研究[J].高等学校化学学报, 2000, 21 (6): 930-933

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700