米渣蛋白酶解物的制备与微囊化特性及其对SD鼠生长性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以淀粉糖工业的主要副产物米渣为原料,采用可控生物酶法制备米蛋白的多肽混合物,然后以此多肽混合物为主要壁材组成成分建立其稳定的O/W乳化体系,制备出米肽壁材型微囊化调和油,并对所制得多肽混合物及其壁材型微囊化脂肪的营养效应进行研究,旨在探讨制备米蛋白的多肽混合物、米渣蛋白酶解物壁材型微囊化脂肪的技术,并对在断奶鼠肠组织形态和生长轴因子方面的营养效应进行评定,为米渣蛋白资源的综合开发利用提供技术指导和理论依据。
     1.以蛋白质得率(YP)、水解度(DH)为指标,通过二次响应面旋转中心组合设计优化出胰蛋白酶的工艺条件:PH7.6、52.83℃、E/RD 0.89:1000 (m/m)、RD/水0.17:1(g/m1)、水解2.43h。在此条件下米渣蛋白水解度、蛋白质得率分别为6.94%、75.81%。水解度(DH)和蛋白质得率(YP)的预测模型分别为:
     2.运用实验研究结合数学推导的方法,对最优参数下胰蛋白酶有限水解米渣蛋白的动力学机制进行了研究。结果表明:在反应过程中底物存在着促进反应速度和抑制酶活性的双重作用,酶催化的水解速率随水解进程呈指数下降;由实验数据推导出胰蛋白酶限制性水解米渣蛋白的水解速率(V)动力学模型和水解度(x)动力学模型分别为:
     3.采用化学分析法、凝胶排阻色谱法对所制备米渣蛋白酶解物的常规养分、氨基酸组成,及肽分子量分布进行了分析。结果表明:米渣蛋白酶解物是一种主要由小肽(52.2%)和游离氨基酸(18.7%)组成的混合物;以FAO/WHO/UNU(1985)中鸡蛋、牛奶为参考蛋白,酶解物蛋白的EAAI分别为0.93和0.96,非必需氨基酸中Glu、Arg含量分别为180.61、90.61 mg/g。这些表明米渣蛋白酶解物是一种优质的蛋白质资源。
     4.研究了干燥方法对米渣蛋白酶解物功能特性、理化特性和蛋白质分子二级结构的影响。结果表明:米渣蛋白酶解物在pH 2-12范围内的氮溶解指数>80%、乳化活性>30%、乳化稳定性>45%;喷干粉、冻干粉的表面疏水性指数分别为62.633和16.725,变性起始温度分别为88.96℃和98.64℃、峰值温度分别为107.3℃和99.53℃、热焓值分别为20.058 J/g和25.432 J/g;FTIR分析表明干燥方法对酶解物蛋白质分子酰胺I带二级结构影响较大,而对酰胺Ⅲ带二级结构影响较小,喷干粉酰胺I带p-折叠结构(23.68%)比冻干粉少16.38%、α-螺旋结构(8.33%)比冻干粉少1.48%、p-转角(20.33%)比冻干粉少6.13%,而无规卷曲结构(47.66%)比冻干粉多24.00%。这些表明,真空冷冻干燥有利于酶解物蛋白质分子稳定结构的形成,而喷雾干燥使酶解物蛋白质亚基进一步暴露。
     5.采用喷雾干燥法研究了米渣蛋白酶解物对富含MCFA调和油的微胶囊化工艺。通过单因素和正交试验确定其稳定体系最优工艺条件为:芯材含量25%,壁材中米渣酶解物(RP):麦芽糊精(MD)=5:5(m:m),乳化剂添加量3%、吐温-80:单甘酯:蔗糖酯=16:81:3(m:m:m),羧甲基纤维素添加量0.45%,黄原胶添加量1%,45℃乳化20 min,乳液固形物含量20%,10 MPa均质二次,喷雾干燥进风温度、出风温度分别为190℃、95℃。在此条件下,所制乳液稳定性好,乳液平均粒径为261 nm,微囊化效率达83.6%。微囊化工艺优化中,壁材组成对微囊化效率影响最大但不具有统计学显著性。
     6.通过分析乳液粒度、流变学特性和乳液稳定性,比较研究了壁材组成中RP、MD、变性淀粉(MS)的不同配比对O/W乳液性质的影响,并对喷雾干燥所得的微胶囊产品进行电镜扫描分析。结果表明:不同壁材体系所配制乳液的粘度相差不大,但以RP:MD=5:4、4:5体系的乳液较稳定,其乳液平均粒径较小(分别为152.4、132.1 nm),体系表面张力最小(30.492、29.904 mN/m),60℃水浴30mmin后的稳定性分别为97.81%、98.15%,所得微胶囊产品颜色浅黄,粒径较小(10-20um),颗粒表面形态光滑、结构完整。
     7.通过差示扫描热分析和Schaal烘箱加速储藏试验研究了壁材组成中RP、MD、MS的不同配比对微胶囊玻璃化转变特性、贮藏稳定性的影响。DSC结果表明:RP的添加可使玻璃化转变温度(Tg)降低;MD比例的增加使玻璃化转变时壁材组分间的相变协同性降低,使Tg值升高、相变热焓增加;MS比例的增加使玻璃化转变时壁材各组分间的相变协同性增强,相转变温度范围变窄,相变热焓降低。TG-DTG分析表明,调和油经微囊化后其分解温度油由270℃左右升高到>300℃。加速储藏试验中,MS:MD:RP=2:2:2、1:4:1、4:1:1壁材型微胶囊POV随储藏天数呈指数型上升,而其它含米渣蛋白酶解物相对较多的壁材型微胶囊POV有明显下降趋势,储藏23天时芯材油脂的自动氧化反应仍处于诱导期。
     8.通过红外光谱分析研究了壁材蛋白质和芯材脂肪分子结构的变化。结果表明:喷雾干燥微囊化过程能使壁材中蛋白质分子的β-折叠结构解开向α-螺旋结构转变,同时伴随有无规卷曲结构的减少、β-转角结构的增加,壁材中较多量MD有利于减少酰胺I带无规卷曲结构的增加,而较多量MS有利于减少酰胺Ⅲ带无规卷曲结构的增加;加速储藏6个月后,壁材中RP较多时蛋白质分子结构较稳定,而壁材中碳水化合物较多时,蛋白质分子表现有向较不稳定二级结构转变的趋势,同时芯材分子不饱和双键断裂成C=O,不饱和酯含量有所减少。
     9.以大豆蛋白日粮为对照,对米渣蛋白(RD、RD-H)饲喂断奶后SD鼠生长的影响及其相关作用机制进行了研究。与对照组相比,米蛋白有利于促进断奶后小肠组织的恢复、生长,提高日粮转化效率,使动物生长性能提高,且RD-H日粮的饲喂效果稍优于RD日粮。血液指标分析表明:尽管机体对RD-H日粮有较长的适应阶段,但与RD、SB日粮相比,RD-H日粮有利于改善和提高机体的蛋白质代谢状况;各组血清IgG浓度相近。RD、SB、RD-H曰粮对脏器发育程度的影响相当。real-time RT-PCR分析表明:RD-H组肝GHR mRNA的表达7d明显高于SB组、略高于RD组,肝(28d除外)、肌肉IGF-1 mRNA表达略高于RD、SB组;全期各组间肌肉GHR mRNA的表达差异很小。这些结果显示,与RD、SB相比,日粮中添加RD-H有利于改善断奶后动物的生长状态。
     10.以21日龄SD鼠为动物模型,以常规断奶方式(28d断奶+大豆蛋白日粮)为对照,对米渣蛋白酶解物(RP)及其壁材型微胶囊脂肪(MF)的提前断奶效应及相关影响机制进行了研究。与对照组相比,断奶日粮中添加RD-H、MF能使断奶期提前,且生长性能不受影响。14d时MF日粮组血清UN水平明显低于RD-H、CK组(p<0.05),28d时各组间差异不明显;各处理组动物血清IL-2、Ig G浓度相当,血清Ins水平相近;14d时提前断奶组血清GH浓度明显高于常规断奶组(p<0.05),RD-H明显高于MF组(p<0.05);但14d时RD-H日粮组皮质醇浓度明显高于CK组、MF组(p<0.05)。各处理间脏器发育水平相当。14d时,CK组肠组织形态仍处于受损后的恢复阶段。real-time RT-PCR分析表明,14d时RD-H组肝、肌肉IGF-1mRNA的表达水平稍高于MF组(p>0.05)、明显高于CK组(p<0.05),28d时RD-H、MF组肝中FAS mRNA表达料CK组明显上调(p<0.05)。这些结果表明,日粮中添加MF、RD-H日粮有利于提前断奶。
     11.以大豆蛋白为对照,通过消化代谢试验对RD、RD-H、MF的营养效价进行了评定。结果表明:与大豆蛋白相比,米渣蛋白能显著提高SD鼠的体氮沉积、促进脂肪的消化(P<0.01);豆粕(SB)、米渣(RD)、米渣蛋白酶解物(RD-H)、壁材型米渣蛋白酶解物(MF)四种日粮的氮沉积指数分别为0.538g/d、0.590g/d、0.605g/d、0.625g/d;米渣蛋白的体外低度酶解、脂肪的体外预乳化不影响机体内对蛋白、脂肪的吸收利用(P>0.05)。
Rice dregs, a major by-product of rice syrup production, was used to prepare peptides compound by controllabe enzymatic proteolysis method, and the peptides compound was successfully developed as a main wall-material in forming a stable O/W emulsion of a soybean oil/coconut oil blends, and then preparing into microencapsules by spray-drying method. The nutritional effects of peptides compound and microencapsules on small intestinal morphology and somatotrophic axis in Sprague-Dawley(SD) rats were evaluated in this paper, for the purpose of providing technical guide and theory basis for the comprehensive development of rice dregs.
     1. The limited enzymatic proteolysis of RD was optimized by response surface method with rotatable central composite design and with the response value of degree of hydrolysis(DH) and the extracted yield of protein(YP), and the optimal condition for trypsin was:pH 7.61,52.83℃, trypsin to RD ratio 0.89:1000 (g/g), RD to water ratio 0.17:1(g/ml), and time 2.43h. Under the optimized condition,75.81% protein could be extracted and the hydrolysis degree of protein was 6.94%. The theoretically predictive models obtained by response surface analysis for DH and YP could be described as: Where Y1 and Y2 represent the degree of hydrolysis and protein extraction, x1 is the ratio of trypsin to RD(g/g), x2 is the ratio of RD to water ration(g/ml), x3, x4, and x5 represent pH, temperature(℃) and time(h), respectively.
     2. The kinetic mechanism of limited enzymatic proteolysis for RD with trypsin in pH7.6 at 53℃was investigated by pH-stat method. The results showed that the limited proteolysis could be inhibited by the addition of RD while the active sites of trysine were fully binded with substract and soluble peptides, otherwise the hydrolysis rate could be accelerate by the addition of RD. Based on the experimental data, the kinetic models obtained by mathematic deduction method for hydrolysis rate and degree of hydrolysis could be described as:
     3. The common chemical composition, amino acid compositon and peptides molecular weight distribution of the prepared RD hydrolysate were determined by chemical method and gel exclusion chromatography. The results showed that the hydrolysate was a mixture constituted by 52.2% oligopeptides and 18.7% free amino acids. Based on the reference proteins of egg and cow's milk(FAO/WHO/UNU, 1985), the calculated EAAIs for protein of RD hydrolysate were 0.93 and 0.96, respectively. The Glu and Arg contents in the protein of RD hydrolysate were 180.61、90.61 mg/g, respectively. These results demonstrated that the prepared RD hydrolysate could be a good protrein resource with high quality.
     4. The effects of spray-drying and freeze-drying processes on the physical and functional properties and protein secondary structure of prepared hydrolysates were investigated. The results showed the nitrogen solubility, emulsifying activities and emulsion stabilities have been remarkably improved after limited hydrolysis, and the surface hydrophobicities and thermal properties of hydrolysate could be significantly effected by drying process. The surface hydrophobicities (pH 7.0) for spray-dried and freeze-dried hydrolysates were 62.633 and 16.725, respectively. The denaturation temperatures and enthalpies of spray-dried and freeze-dried hydrolysates were 98.64 and 88.96℃,25.432 and 20.058 J/g, respectively. FTIR analysis showed that the secondary structure of Amide I band could be obviously influenced, while Amide III band was not significantly influenced by drying process. The main sencondary structure in Amide I band of spray-dried hydrolysate was random coils (47.66%, which was more than freeze-dried hydrolysate by 24.00%), while that of freeze-dried hydrolysate wasβ-sheets(40.06%, which was more than spray-dried hydrolysate by 16.38%). These results indicated that the protein molecule structure could be further stabilized during the freeze drying process and more protein subunits bared during the spray drying process for RD protein hydrolysate.
     5. To develop the RD protein hydrolysate as a nutritional wall material, the spray-drying method was used in microencapsulating process of the blend oils rich in MCFA. The emulsion system and the spray-drying process parameters were determined through the single factor experiment and orthogonal test. The microencapsulated product was constituted by 25%blend oils as a core materials, whlie the protein hydrolysate and maltdextrin in a ratio of 5:5(w/w) as the wall material. The stable emulsion system was constituted by 3% emulsifers (Tween-80, glyceryl monostearate and sucrose ester being 16:81:3,w/w/w), plus 0.45%CMC and 1% xanthan gum. Afer emulsifying 20 min. at 45℃and double-homeginization with a pressure of 10 MPa, the emultion was spray-dried with inlet and outlet temperatures of 190 and 95℃, respectively. Under the optimumal conditions, the prepared emulsion possessed a good stability and an average granularity of 261 nm, and the final product has a high microencapsulated efficiency up to 83.6%.
     6. The droplet size distribution, rheological properties, emulsion stababilities and morphology of microcapsules were measured To investigate the influence of wall material compositon on emulsion properties. Results showed that all emulsions exhibited similar viscosities, but emulsions with shell composition of RP:MD=5:4 and 4:5(m/m) were found to be more stable (97.81% and 98.15%, respectively) after water bathing at 60℃for 30 min, and smaller in droplet mean diameter (152.4 and 132.1 nm, respectively) and weaker in surface tension(30.492 and 29.904 mN/m, respectively), and possesed smoother surface morphology and more intact shell, as compared to those with other wall material compositions.
     7. The glass transition properties of microencapsulates were characterized by differential scanning calorimetry(DSC) and their oxidative stabilites was evaluated basing on the peroxide values(POVs) by Schaal oven accelerated storage test. The wall material was based on RP and 16.7-77.8% MD and/or MS replacement of RP. Results showed that the glass transition temperature (Tg) of microencapsulate were lowered by the increase of RP but heightened by the addition of MD and/or MS, the glass transition enthalpies of microencapsulates could be generally decreased by increasing MS content but increased with increasing MD proportion, and the glass transition cooperativity of shell constituents could be enhanced by the addition of MS. TG-DTG analysis results showed that the degradation temperature of blend oils was retarded from 270℃to above 300℃. During the accelerated storage period, oxidative stabilites of the core oils were exponentially decreased for the encapsulates with the shell compositions of MS:MD:RP=2:2:2,1:4:1 and 4:1:1, while the oxidative stabilites of the encapsulates with a higher portions of RP hydrolysate as shell compositons were gradually improved. The POVs of the encapsulates were kept in the induction stage after 7 days'storage period.
     8. The secondary structure of the protein and molecule structure of oils in the core of encapsulates were characterized by optical information of fourier transform infrared spectroscopy(FTIR). Results showed that the secondary structure of protein exhibited a significant change tendency from P-sheets to a-helixes during the spray drying process, accompanied by a decrease of random coils and an increase inβ-turns. However, the conversion into random coils in amide I band could be attenuated by the increasing MD content in shell, and that in amide III band could be reduced by the increasing MS content in shell. After 6 months'storage period at 60℃, the molecule structure of protein was more stable in the shell with a relative higher portion of RP, the stable secondary struture of protein tended into less stable structures in the shell with a relative higher content of carbohydrate, meanwhile, the unsaturated double bonds of core oils have been broken down, and turned into C=O, which was contributed to the decreased proportion of unsaturated fatty acids in the core oils.
     9. Sixty Sprague-Dawley rats(3weeks old) in 3 groups were used to evaluate the effects of protein from RD(RD) or its hydrolate (RD-H) on growth performance, blood chemical compositions, serum hormone, small intestinal morphology, and somatotrophic axis, with one group on soybean protein(SB) diet as a control. Compared with the control, the recovery and growth of impaired villus in the small intestine could be ameliorated by rice proteins that from RD or RD-H diets, and the feed conversion efficiency and growth performance could also be improved by rice proteins that from RD or RD-H diets. Blood analysis indicated that the protein metabolim status of SD rat body could be improved by RD-H diet, athought the body was still in the adaptive phase to the RD-H diet, as compared to RD and SB diets. Serum IgG concentration has no significant difference among three groups. The growth levels of organs were not influenced by the diets with addition of RD or RD-H. Real-time RT-PCR analysis showed that, the hepatic expression level of GHR mRNA in SD rats fed with RD-H diet was higher than those fed with RD or SB diets for 7 d, the hepatic (except for 28 d) and muscular expression of IGF-1 mRNA in SD rats were enhanced by RD-H diet as compared to RD or SB diets for 7 d and 28 d, and the muscular expressiong of GHR mRNA was not different among the three groups throughout the experiment. These results suggested that diet with addition of RD-H could be helpful for the growth status improvement of post-weaned SD rats.
     10. Sixty Sprague-Dawley rats(3weeks old) in 3 groups were used to evaluate the effects of early-weaned diets with additon of RD-H or RD-H as microencapsulate shell materials on growth status, small intestinal morphology and somatotrophic axis, with one group weaned on SB diet on 28 d as a control. Results showed that the growth performances of rats early-weaned on RD-H or MF diets on 21 d were not lower than those in the control. The level of serum UN in rats fed on RD diet was lower than those both of RD-H group and the control for 14 d(p<0.05), and there were no significant difference among three groups for 28 d. The serum concentrations of IL-2, IgG and Insulin were similar to each other among three groups. The serum GH concentrations of rats in early-weaned groups were significantly higher than that of the control (p<0.05) for 14 d. Though their bodies still in the stress state, the serum GH concentration of rats fed on RD-H diet was remarkably higher than that in MF group (p<0.05). The growth levels of organs were also similar among three.groups. For the control, the small intestine morphosis was still in the recovery stage on 14 d. Real-time RT-PCR analysis showed that the hepatic and muscular expression of IGF-1 mRNA of SD rats fed with RD-H diet was slightly higher than that in MF group (p>0.05), but significantly higher than that in the control (p<0.05) for 14 d. The hepatic expression of FAS mRNA of SD rats fed with RD-H or MF diet was significantly higher than that in the control for 28 d (p<0.05). These results indicated that diets of MF or RD-H could put the weaning age of SD rats forward 7 days.
     11. A 28-day metabolic test was conducted with 4×4 Latin square design and tweenty Sprague-Dawley rats(28d old) were used to evaluate the nutrition values of proteins from RD, RD-H or MF, with a control of soybean protein. Compared with the control, the nitrogen retention in body and the digestion and absorption of dietary fat were significantly improved by rice proteins from RD, RD-H or MF diets(p<0.01), and the average daily nitrogen depositions for SB, RD, RD-H and MF diets were 0.538,0.590, 0.605 and 0.625g, respectively. The digestion and absorption of dietary protein and fat were not influenced by the limited proteolysis of RD or emulsifying process of oil in vitro(P>0.05).
引文
1. Yoshinori Mine, Fereidoon Shahid. (Ed.). Nutraceutical proteins and peptides in health and disease[M],CRC Press,2006, pp.6
    2. Van Hooser B, Crawford L.V., Allergy diets for infants and children[J], Comprehensive therapy,1989,15(10):38-47
    3. Juliano B.O., Polysaccharide, proteins and lipids of rice grain composition. pp,59-174 in: Rice Chemistry and Technology[M],2nd Ed. AACC International:St.Paul, MN,1985
    4. Morita T., Kirivama S., Mass production method for rice protein isolate and nutritional evaluation[J], Journal of Food Science,1993,58:1393-1396
    5.陈正行,姚惠源,周素梅.米蛋白与米糠蛋白的开发利用[J],粮食与油脂,2002,(4):6-9
    6. Newey H., Smyth D.H., Intercellular hydrolysis of dipeptides during intestinal absoprition [J], Journal of Physiology,1960,152(2):367-380
    7. Wen T., Luthe D.S., Biochemical Characterization of Rice Glutelin[J]. Plant Physiology, 1985,78(1):172-177
    8. Kishimoto T., Watanabe M., Mitsui T., et al., Glutelin Basic Subunits Have a Mammalian Mucin-Type O-Linked Disaccharide Side Chain[J], Archives of Biochemistry and Biophysics,1999,370(2):271-277
    9.王章存,米渣蛋白的制备及其酶法改性研究[D],江南大学,无锡,2005
    10. Van der Borght, Vandeputte G.E., Derycke V., et al., Extractability and chromatographic separation of rice endosperm proteins[J]. Journal of Cereal Science,2006,44(1):68-74
    11. Takaiwa F., Oono K., Wing D., et al., Sequence of three members and expression of a new major subfamily of glutelin genes from rice[J]. Plant Molecular Biology,1991,17:875-885
    12. Katsube T., Kurisaka N., Ogawa M., et al.,Accumulation of Soybean Glycinin and Its Assembly with the Glutelins in Rice[J]. Plant Physiology,1999,120:1063-1074
    13. Mujoo R., Chandrashekar A., Zakiuddin Ali S., Rice Protein aggregation during the flaking Process[J]. Journal of Cereal Science.1998,28(2):187-195
    14.刘骥,邓依.高温液化工艺对大米蛋白溶解性的影响[J],河南工业大学学报(自然科学版),2008,29(6):18-21,25
    15. Ju Z.Y., Hettiarachchy N.S., Rath N., Extraction, denaturation and hydrophobic properties of rice proteins. Journal of food science,2001,66(2):229-232
    16.王章存,刘卫东,姚惠源,热变性大米蛋白的结构和性质研究I米蛋白加热前后的溶解特性和氨基酸变化[J].中国粮油学报,2007(a),22(2):5-7,11
    17. Ju Z.Y., Hettiarachchy N.S., Rath N., Extraction, denaturation and hydrophobic properties of rice proteins[J], Journal of food science,2001,66(2):229-232
    18. Anderson A., Hettiarachchy N., Ju Z.Y., Physicochemical properties of pronase treated rice glutelin[J], Journal of the American Oil Chemists'Society,2001,78(1):1-6
    19. Tecson E.M.S., Esmama B.V, Lontok L.P., et al., Studies on the extraction and composition of rice endosperm glutelin and prolamin[J], Cereal Chemistry,1971,48:168-181
    20. Paraman I., Hettiarachchy N.S., Schaefer C., Preparation of Rice Endosperm Protein Isolate by Alkali Extraction[J], Cereal Chemistry,2008,85(1):76-81
    21.刘骥,姚惠源,陈正行,利用米渣为原料制备大米浓缩蛋白[J].食品工业,2004(3):11-13
    22.魏安池,李喜红,代红丽,利用米糟制备食用大米浓缩蛋白[J].粮食与饲料工业,2004(5):13-14
    23. Shih F.F., Daigle K., Use of Enzymes for the Seperation of Protein from Rice Flour[J], Cereal Chemistry,1997,74(4):437-441
    24. Shih F.F., Champagne E.T., Daigle K., et al., Use of Enzymes in the Processing of Protein Products from Rice Bran and Rice Flour[J], Molecular Nutrition & Food Research,1999,43 (1):14-18
    25. Shih F.F., Daigle K., Preparationand characterization of rice protein isolates[J]. Journal of the American Oil Chemists'Society,2000,77(8):885-889
    26.郭荣荣,潘思轶,王可兴,碱法与酶法提取大米蛋白工艺及功能特性比较研究[J].食品科学,2005,26(3):173-177
    27.陈季旺,孙庆杰,夏文水,等.碱酶两步法制备大米蛋白的研究[J].农业工程学报,2006,22(5):169-172
    28. Chang H., Tsai C., Li C.,Changes of amino acid composition and lysinoalanine foration in alkali-pickled duck eggs [J].Journal of Agriculture and Food Chemistry,1999,47(4):1495-1500
    29.易翠平,姚惠源,谢定,碱处理对大米蛋白分子间作用力的影响[J].中国粮油学报,2007a.22(4):1-4
    30.易翠平,姚惠源,谢定,碱处理对大米蛋白一级和二级结构的影响[J].中国粮油学报,2007b,22(6):1-4
    31.玄国东,何国庆,熊皓平,等.大米蛋白酶法改性及酶解物功能特性研究[J].中国粮油学报,2005,20(3):1-4
    32.潘韵,何国庆,玄国东,等.酶法水解米糟提取蛋白质的研究[J].食品与发酵工业,2003,29(6):104-105
    33. Paraman I., Hettiarachchy N. S., Schaefer C., et al., Hydrophobicity, Solubility, and Emulsi-fying Properties of Enzyme-Modified Rice Endosperm Protein[J], Cereal Chemistry,2007, 84(4):343-349
    34.顿新鹏,陈正望.酶法水解米渣蛋白制备大米小分子肽[J],食品科学,2004,25(6):113-116
    35.孔青,何国庆,杨娟敏,等.米糟提取蛋白质[J],食品科技,2003(1):22,29
    36.王章存,姚惠源,大米蛋白质的酶法水解及其性质研究[J].中国粮油学报,2003,18(5):5-7,15
    37.王章存,刘卫东,申瑞玲,等.大米蛋白的酶水解机制研究—Ⅱ酶水解过程中蛋白质的组分变化[J].中国粮油学报,2007b,22(4):5-8,13
    38. He G., Xuan G., Ruan H., et al. Optimization of angiotensin I-converting enzyme (ACE) inhibition by rice dregs hydrolysates using response surface methodology[J]. Journal of Zhejiang University Science (Life Science),2005(6):508-513
    39.赵丰丽,麻维华,米糟蛋白酶解制备高F值寡肽的研究[J].中国酿造,2009(3):96-99
    40.卢时勇,钱俊青,邹小明,酶法提取米渣蛋白工艺的研究[J].中国粮油学报,2005,2(2):1-4
    41.潘敏尧,何国庆,付金衡,等.高效提取米糟分离蛋白的研究[J].食品与发酵工业,2006,32(4):58-60
    42. Paraman I., Hettiarachchy N.S., Schaefer C., et al., Physicochemical Properties of Rice Endosperm Proteins Extracted by Chemical and Enzymatic Methods[J],Cereal Chemistry, 2006,83(6):663-667
    43.黄河龙,杜风光,苏锋,米糟制备大米蛋白研究[J].粮食与油脂,2008(2):23-25
    44.王章存,姚惠源.大米蛋白乳化性质研究[J],食品科学,2005,26(2):43-46
    45.李积华,郑为完,苏冰霞,等Alcalase 2.4L FG酶解米渣蛋白动力学特性研究[J].食品科学,2007,28(5):190-194
    46. Morita T., Oh-hashi A., Kasaoka S., et al., Rice protein isolates producedby the two different methods lower serum cho-lesterol concentration in rats compared withcasein[J]. Journal of the Science of Food and Agriculture,1996,71(4):415-424
    47.杨林,陈家厚,张兰威,等.大米蛋白调控生长期幼鼠及成熟期大鼠肝脏脂类水平的研究[J].中华疾病控制杂志,2008,12(5):459-461
    48.杨林,陈家厚,张兰威,等.大米蛋白对幼鼠血清胆固醇水平的调控效果及作用机制的研究[J],现代预防医学,2009,36(6):1051-1052,1054
    49. Yang L., Kumagayi T., Kawamura H., et al., Effects of rice proteins from two cultivars, Koshihikari and Shunyo, on cholesterol and triglyceride metabolism in growing and adult rats[J]. Bioscience, biotechnology, and biochemistry,2007,71(3):694-703
    50.王嘉榕,滕达,田子罡,等.功能性抗氧化肽制备与机制研究进展[J].天然产物研究与开发,2008(2):371-375
    51.玄国东,米糟蛋白提取及酶法制备抗氧化活性肽及降血压活性肽的研究[D].浙江大学,杭州,2006
    52. Okita M.,Watanabe A., Nagashima H., Nutritional treatment of liver cirrhosis by branched-chain amino acidsenriched nutrient mixture[J], Journal of Nutrition Science and Vitaminology,1985,31:291-303
    53. Fuchs M., Turchiuli C., Bohin M., et al., Encapsulation of oil in powder using spray drying and fluidised bed agglomeration[J], Journal of Food Engineering,2006,75(1):27-35
    54.刘永霞,于才渊.微胶囊技术的应用及其发展[J].中国粉体技术,2003,9(3):36-40
    55. Shahidi F., Han X.Q., Encapsulation of food ingredients[J].Critical Review in Food Science and Nutrition,1993,33:501-547
    56. Dewettink K., Huyghebaet A., Fluidized bed coating food technology[J],Trends in Food Science & Technology,1999.10:163-168
    57.吴克刚,余纲哲等,油脂喷雾干燥微胶囊化的研究[J],食品科学,1998,19(1):34-38
    58.熊华,郑为完.粉末油脂的特点与在食品工业中的应用[J],食品科学,2002,23(5):154-157
    59.熊华,郑为完.饲用乳化油脂粉工业化生产研究[J],粮食与饲料工业,2003(7):21-22
    60. Jenny Kartika R.; Sanguansri L., Augustin M.A.,Stabilization of oils by microencapsulation with heated protein-glucose syrup mixtures[J], Journal of the American Oil Chemists'Society, 2006,83(11):965-972
    61. Lombardo Y.B., Chicco A.G., Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A review[J],The Journal of Nutritional Biochemistry,2006,17(1):1-13
    62. Dziezak J.D., Microencapsulation and encapsulated food ingredients[J]. Food Technology, 1988,42:136-151
    63. Gibbs F.B., Kermasha S., Alli I., et al., Encapsulation in the food industry:a review[J], International Journal of Food Science and Nutrition,1999,50:213-224
    64.梁治齐.微胶囊技术及其应用[M].北京:中国轻工业出版社,1999
    65.刘晓庚,徐明生,鞠兴荣.高新技术在粮油食品中的应用[J].食品科学,2002,23(8):335-342
    66. Gharsallaoui A., Roudaut G., Chambin O., et al., Applications of spray-drying in microencap-sulation of food ingredients:An overview[J], Food Research International,2007, 40(9):1107-1121
    67.刘晓庚,谢亚桐.微胶囊制备方法的比较[J],粮食与食品工业,2005,12(1):28-31
    68. Morita T., Production method for rice protein isolate and nutrional evaluation[J],Journal of Food Science,1993,58:1393-1396
    69. Helm R.M., Burks A.W., Hypoallerginicity of rice protein[J], Cereal Foods World,1996, 41(11):839-843
    70. Jiamyangyuen S., Srijesdaruk V., Harper W.J., Extraction of rice bran protein concentrate and its application in bread[J], Songklanakarin Journal of Science and Technology,2005, 27(1):55-64
    71. Haard N.F., Enzymatic modification of protein in food system[M]. In:Z.E. Sikorky, Editor, Chemical and functional properties of food proteins, Technomic Publishing Co. Inc, New York,2001,pp.155-190
    72. Clemente A., Enzymatic protein hydrolysates in human nutrition[J]. Trends in Food Science & Technology,2000,11(7):254-262
    73. Watchararuji K., Goto M., Sasaki M., et al., Value-added subcritical water hydrolysate from rice bran and soybean meal[J], Bioresource Technology,2008,99(14):6207-6213
    74. Sereewatthanawut I., Prapintip S., Watchiraruji K., et al., Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis[J], Bioresource Technology, 2008,99(3):555-561
    75. Tang S.H, Hettiarachchy N.S, Eswaranandam S., Protein extraction from heat-stabilized defatted rice bran:Ⅱ The role of amylase, cellulase, and viscozyme[J].Journal of Food Science,2003,68(2):471-475
    76. Ovissipour M., Abedian A., Motamedzadegan A., et al., The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera[J]. Food Chemistry,2009,115(1):238-242
    77. Liaset, B., Lied, E., Espe, M.,2000. Enzymatic hydrolysis of by-products from the fish-filleting industry; chemical characterization and nutritional evaluation. Journal of the Science of Food and Agriculture,2000,80:581-589
    78. Viera G.H.F., Martin A.M., Sampaiao S.S., et al., Studies on the enzymatic hydrolysis of Brazilian lobster (Panulirus spp.) processing wastes[J], Journal of the Science of Food and Agriculture,1995,69:61-65
    79. Liu Q., Kong B., Xiong Y., et al., Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis[J]. Food Chemistry, 2010,118(2):403-410
    80. Tang C.H.,Wang X.S.,Yang X.Q., Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates[J]. Food Chemistry,2009,114(4):1484-1490
    81. Mullaly M.M., O'Callaghan D.M., Fitzgerald R.J., et al., Zymogen activation in pancreatic endoproteolytic preparations and influence on some whey protein characteristics[J]. Journal of Food Science,1995,60(2):227-233
    82. Bhaskar N., Mahendrakar N.S., Protein hydrolysate from visceral waste proteins of Catla (Catla catla):Optimization of hydrolysis conditions for a commercial neutral protease[J}. Bioresource Technology,2008,99(10):4105-4111
    83. Cheison S.C.,Wang Z., Xu S.Y., Use of response surface methodology to optimise the hydrolysis of whey protein isolate in a tangential flow filter membrane reactor[J]. Journal of Food Engineering,2007,80:1134-1145
    84. Surowka K., Zmudzinski D., Fik M., et al., New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates[J]. Innovative Food Science & Emerging Technologies,2004,5(2):225-234
    85. Adler-Nissen J., Enzymic hydrolysis of food proteins[M]. Elsevier Applied Science Publishers Ltd.London, New York:1986, pp.132-142
    86.王章存,姚惠源.大米蛋白测定中蛋白系数的确定[J],食品工业科技,2004,25(1):66-67
    87. Matoba T., Hata T., Relationship between bitterness of peptides and their 523chemical structures[J]. Agricultural and Biological Chemistry,1972.36:1423-1431
    88. Ishibashi N., Kubo T., Chino M., et al., Taste of proline-containing peptides[J]. Agricultural and Biological Chemistry,1988.52:95-98
    89.熊善柏,赵思明,刘友明,等.大米蛋白的酶水解动力学研究[J].农业工程学报,2003,19:211-214
    90.李积华,郑为完,吴娇.酶法有限水解对米渣蛋白乳化性的影响及控制[J].食品工业科技,2007(4):90-92
    91. Darby N.J., Smyth D.G., Endopeptidases and prohormone processing[J]. Bioscience Reports, 1990,7:907-917
    92. Volkert M.A., Klein B.P., Protein dispersibility and emulsion characteristics of flour soy products[J]. Food Science,1979,44:93-96
    93. Balti R., Barkia A., Bougatef A., et al. A heat-stable trypsin from the hepatopancreas of the cuttlefish (Sepia officinalis):Purification and characterisation[J].Food Chemistry,2009,113 (1):146-154
    94.彭志英,食品科学导论(第一版)[M].北京:中国轻工业出版社,2002:15
    95. Zhang J., Zhang H., Wang L., et al., Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS[J], Food Chemistry,2009,119(1):226-234
    96. Wu G., Knabe D.A., Free and Protein-Bound Amino Acids in Sow's Colostrum and Milk[J]. Journal of Nutrition,1994,124(3):415-424
    97. Damodaran S., Food Chemistry(3rd ed.), Fennema OR(Ed.), New York:Marcel Dekker, Inc. 1996, pp.400
    98. Ponnampalam R., Goulet G., Amiot J., et al., Some functional and nutritional properties of oat flours as affected by proteolysis[J]. Journal of Agriculture and Food Chemistry,1987,35: 279-285
    99. Sinha Rhicha, Radha C., Prakash Jamuna, et al., Whey protein hydrolysate:Functional properties, nutritional quality and utilization in beverage formulation[J]. Food Chemistry, 2007,101(4):1484-1491
    100. Wang J.S., Zhao M.M., Zhao Q.Z., et al., Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems[J]. Food Chemistry,2007(101):1658-1663
    101.史苏佳,张永刚.FTIR光学信息研究PLD蛋白分子冻干胁迫下的二级结构变化[J],光谱实验室,2010,27(1):102-106
    102.吴黎明,周群,周骁,等.蜂王浆不同贮存条件下蛋白质二级结构的Fourier变换红外光谱研究[J],光谱学与光谱分析,2009,29(1):82-87
    103. Gorne-Tschelnokow U., Naumann D., Weise C., et al., Secondary structure and temperature behaviour of acetylcholinesterase. Studies by Fourier-transform infrared spectroscopy[J], European Journal of Biochemistry,1993,213(3):1235-1242
    104. Zhang Xuan, Huang Lixin, Nie Songqing, et al., FTIR Characteristic of the secondary structure of insulin encapsulated within liposome[J]. Journal of Chinese Pharmaceutical Science,2003,12(1):11-14
    105.谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J],高等学校化学学报,2003,24(2):226-231
    106. Boatright W.L., Hettiarachchy N.S., Effect of Lipids on Soy Protein Isolate Solubility[J], Journal of the American Oil Chemists'Society,1995a,72(12):1439-1444
    107. Boatright W.L.,Hettiarachchy N.S.,Lipid Components That Reduce Protein Solubility of Soy Protein Isolates [J] Journal of the American Oil Chemists'Society,1995b,72(12):1445-1451
    108.Nilsang S.,Lertsiri S.,Suphantharika M.,et al.,Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases[J]. Journal of Food Engineering,2005,70: 571-578
    109. Boza J.J., Moennoz D., Vuichoud J., et al., Protein hydrolysate vs free amino acid-based diets on the nutritional recovery of the starved rat[J].European Journal of Clinical Nutrition, 2000,39(6):237-243
    110. Walton M.J., Cowey C.B., Coloso R.M., et al., Dietary requirements of rainbow trout for tryptophan,lysine and arginine determined by growth and biochemical measurements[J]. Fish Physiology and Biochemistry,1986,2:161-169
    111. Bhagya S., Srinivasan K.S., Effect of different methods of drying on functional properties of enzyme treated ground flour [J]. Journal of Food Science and Technology,1989,22:329
    112. FAO/WHO/UNU, Energy and Protein Requirements, Report of a Joint FAO/WHO/UNU Expert Consultation. Series No.724. World Health Organization Technical Rep. Geneva, 1985, pp.121
    113.NRC, Nutrient Requirements of Swine:10th Revised Edition, Subcommittee on Swine Nutrition[M], Committee on Animal Nutrition, Board on Agriculture (BOA),1998,pp.18
    114. Wu G., Intestinal Mucosal Amino Acid Catabolism[J]. Journal of Nutrition,1998,128(8): 1249-1252
    115. Reeds P.J.,Burrin D.G.,The gut and amino acid homeostasis[J].Nutrition,2000,16(7-8):666-668
    116. Reeds P.J., Burrin D.G., Stoll B., et al., Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets[J]. American Journal of Physiology,1997,273: E408-E415
    117. Kinsella J.E., Functional properties of proteins of proteolytic enzyme modified soy protein isolates[J]. JAgric Food Chem,1976,38:651-656
    118. Chi E.S., Krishnan T.R., Carpenter J., Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation[J]. Pharmaceutical Research, 2003,20(9):1325-1336
    119. Tang S.H., Hettiarachchy N.S., Horax R., et al., Physicochemical properties and functionality of rice bran protein hydrolyzate prepared from heat-stabilized defatted rice bran with the aid of enzymes[J], Journal of Food Science,2003,68(1):471-475
    120. Ponnuswamy P.K., Muthusamy R., Manavalan P., Amino acid composition and thermal stability of proteins[J], International Journal of Biological Macromolecules,1982,4:186-190
    121. Haris P.I., The conformational analysis of a synthetic S4peptide corresponding to a voltage-gated possium ion channel protein[J]. FEBS Letters,1994,349:371-374
    122. Lasekan J.B., Rivera J., Hirvonen M.D., et al., Energy expenditure in rats maintained with intravenous or intragastric infusion of total parenteral nutrition solutions containing medium-or long-chain triglyceride emulsions[J]. Journal of Nutrition,1992,122(7):1483-1492
    123. Tsuiji H., Takeuchi H., Nakamura M., et al., Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind,controlled trial in healthy men and women[J]. Journal of Nutrition,2001,131(11):2853-2859
    124. Nosaka N., Maki H., Tsuji H., et al., Effects of dietary MLCT (medium-and long-chain triacylglycerols) on body fat, serum lipids, liver function, and renal function in healthy subjects[J].The Journal of Japanese Society for Parenteral and Enteral Nutrition,2002,17: 99-105
    125. Kawase S., Matsumura Y., Murakami H., Comparison of antioxidative activity among three types of prolamin subunits[J]. Journal of Cereal Science,1998,28(1):33-41
    126.中国居民膳食营养素参考摄入量(Chinese DRIs),中国营养学会编著,中国达能营养中心协编,中国轻工业出版社,北京,2002
    127. Krstonosic V, Dokic L., Dokic P., et al., Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate[J]. Food Hydrocolloids,2009,23(8):2212-2218
    128. Paraskevopoulou A., Boskou D., Kiosseoglou V., Stabilization of olive oil-lemon juice emulsion with polysaccharides[J]. Food Chemistry,2005,90:627-634
    129.孙哲浩,蛋白质与多糖类在水相介质中交互作用机理的研究[D].华南理工大学,广州,2006
    130.焦学瞬,天然食品乳化剂和乳状液[M],科学出版社,北京,1999,p:31
    131. Sun C., Gunasekaran S., Richards M.P., Effects of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions[J]. Food Hydrocolloids, 2007,21(4-6):555-564
    132. Ye A., Hemar Y., Singh H., Enhancement of coalescence by xanthan addition to oil-in-water emulsions formed with extensively hydrolysed whey proteins[J]. Food Hydrocolloids,2004, 18(5):737-746
    133. Hemar Y., Tamehana M., Munro P.A., et al., Influence of xanthan gum on the formation and stability of sodium caseinate oil-in-water emulsions[J].Food Hydrocolloids,2001,15:575-581
    134.焦学瞬,天然食品乳化剂和乳状液[M],科学出版社,北京,1999,p:156
    135.石强,吾满江,艾力.共轭亚油酸微胶囊化的乳化工艺研究[J].食品科学,2006,27(11):310-315
    136. Benita S., Microencapsulation:methods and industrial applications[M].Washingron:Acs Book & Journals Division,1996
    137. Matsuno R., Adachi S., Lipid encapsulation technology-Techniques and applications to food[J]. Trends in Food Science and Technology,1993,4:256-261
    138.齐金峰,熊华,陈振林,等.不同微胶囊化方法对叶黄素微胶囊性能的影响[J],食品工业科技,2009,30(1):65-71
    139.朱卫红,许时婴,江波.微胶囊壁材辛烯基琥珀酸酯化淀粉的界面性质和乳化稳定性[J],食品科学,2006,27(12):79-84
    140.马云标,周惠明,朱科学.VE微胶囊的制备及性质研究[J].食品科学,2010,31(2):1-5
    141.Sheu T.Y., Rosenberg M., Microencapsulation by spray drying ethyl caprylate in whey protein and carbohydrate wall systems[J].Journal of Food Science,1995,60:98-103
    142.薛峰.喷雾干燥微胶囊化中的玻璃体形成[J],食品科学,1994,4:4-6
    143. Carpenter J.F., Crove J.H., An infrared spectroscopic study of the interaction of carbohydrates with proteins[J], Biochemistry,1989,28:3916-3922
    144. Leslie S.B., Israeli E., Lighthart B., et al., Trehalose and surcose protect both membranes and proteins in intact bacteria during drying[J], Applied and Enviromental Microbiology,1995, 61(10):3592-3597
    145.石燕.微胶囊化西藏酥油的制备、微结构及其性质研究[D],南昌大学,南昌,2008
    146.朱选,黄慧敏,许时婴.O/W体系微胶囊壁结构形成中蛋白质与碳水化合物的相互作用[J],中国食品学报,2003,3(1):32-36
    147.刘羽鹏,郑艳春.食用大豆油储藏期间酸价过氧化值羰基价变化的分析[J],黑龙江粮食,1996(1):45-46
    148.余辉,陈洁,代衍峰.大豆油乳状液体系氧化稳定性影响因素的研究[J],食品与机械,2007,23(2):43-46
    149.金融.大米蛋白酶解物抗氧化作用研究[D],南京农业大学,南京,2008
    150.彭地纬,熊华,赵强,等.米渣抗氧化肽制备工艺的研究[J],食品科技,2009,34(7):55-59
    151.吴克刚,曹建华.海藻油的氧化稳定性及其微胶囊化研究[J],中国海洋药物,2004,4:35-38,58
    152. Laakso S., Inhibition of lipid peroxidation by casein.Evidence of molecular encapsulation of 4,4-pentadiene fatty acids[J].Biochimica et Biophysica Acta,1984,792:11-15
    153. Dong S., Zeng M., Wang D., et al. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix)[J]. Food Chemistry, 2008,107(4):1485-1493
    154.张昊,任发政.天然抗氧化肽的研究进展[J].2008,29(4):443-447
    155.陈升军,熊华,周侃;等,米蛋白短肽抗氧化活性研究[J],食品科技,2008,33(12):177-180
    156.玄国东.米糟蛋白提取及酶法制备抗氧化活性肽及降血压活性肽的研究[D],浙江大学,杭州,2005
    157. Rival S.G., Fomaroli S., Boeriu C.G., et al. Caseins and casein hydrolysates.1. Lipoxygenase inhibitory properties [J].Journal of Agricultural and Food Chemistry,2001,49:287-294
    158.贾薇.大米肽体外抗氧化活性及应用研究[D],东北农业大学,哈尔滨,2008
    159.李兆杰,薛长湖,林洪,等.鱼油在不同体系中的氧化稳定性[J],水产学报,2000,24(3):271-274
    160.李红艳,邓泽元,李静,等.不同脂肪酸组成的植物油氧化稳定性的研究[J].食品工业科技,2010,31(1):173-175,182
    161.陈代文,杨凤,陈可荣.补料及开食科中不同种类蛋白质对仔猪过敏反应和腹泻程度的影响[J],畜牧兽医学报,1995,26(3):200-206
    162.陈代文,杨凤,陈可容,等.仔猪补饲及不同类型的饲粮蛋白质对仔猪小肠粘膜形态结构的影响[J],动物营养学报,1996,8(2):18-24
    163.Dunsford B.R., Knabe D.A., Haensly W.E., Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pigs[J], Journal of Animal Science,1989,67:1855-1863
    164. Gilbert E.R., Wong E.A., Webb K.E. Jr, Peptide absorption and utilization:Implications for animal nutrition and health[J], Journal of Anim Science,2008,86:2135-2155
    165. Webb K.E., Dirienzo Jr. D.B., Matthews J.C., Recent Developments in Gastrointestinal Absorption and Tissue Utilization of Peptides:A Review[J],Journal of Dairy Science,1993, 76(1):351-361
    166. Fu W.J., Hu J.,Spencer T.,et al.,Statistical models in assessing fold change of gene expression in real-time RT-PCR experiments[J],Computation Biology and Chemistry,2006,30:21-26
    167. Stephen C. Woods, David A.D'Alessio, Central Control of Body Weight and Appetite[J], J Clin Endocrinol Metab,2008,93:S37-S50
    168. Karhunen L.J., Juvonen K.R., Huotari A., et al., Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans[J], Regulatory Peptides,2008,149:70-78
    169. Shi G., Leray V.,Scarpignato C.,Bentouimou N., et al., Specific adaptation of gastric emptying to diets with differing protein content in the rat:is endogenous CCK implicated?[J], Gut,1997,41:612-618
    170. Hall W.L., Millward D.J., Long S.J., et al., Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite[J].British Journal of Nutrition,2003,89:239-248
    171. Herzig K.H., Cholecystokinin-and secretin-releasing peptides in the intestine—a new regulatory interendocrine mechanism in the gastrointestinal tract[J], Regulatory Peptide, 1998,73:89-94
    172. Cudennec B., Rozenn R.-P., Elisa C., et al., Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells[J], Food Chemistry,2008,111: 970-975
    173. Veldhuis J.D., Roemmich J.N., Richmond E.J., et al., Endocrine control of body composition in infancy, childhood, and puberty[J]. Endocrine Reviews,2005,26:114-146
    174.吴金节,张德群,章孝荣,等.早期断奶应激对仔猪某些血清激素水平及细胞免疫功能的影响[J],中国兽医学报,2001,21(2):170-173
    175. Parrott R.F., Mission B.H., Changes in pig salivary cortisol in response to transport stimulation, food and water deprivation and mixing [J]. British Veterinary Journal,1989, 145(6):501-505
    176. Becker B.A., Nienaber J.A., Christenson R.K., et al., Peripheral concentrations of cortisol as an indicator of stress in the pig [J].American journal of veterinary research,1985,46(5):1034-1038
    177. Maechler P.,Wang H.,Wollheim C.B.,Continuous monitoring of ATP levels in living insulin secreting cells expressing cytosolic firely luciferase[J].FEBS Lerters,1998,422:328-332
    178. Detimary P., Dejonghe S., Ling Z., et al., The changes in adenine nucleotides mesured in glueose-stimulated rodent islets oeeur in B-cells but not in a cells and are also observed in humans islets[J], The Journal of Biological Chemistry,1998,273:33905-33908
    179. Michaael C., BoAhlman K., Sreekumaran N., The effectof insulin on human small intestinal mucosal protein synthesis [J]. Gastroenterology,2000,118(2):299-306
    180. Shulman R.J., Oral insulin increases small intestinal and disaccharidase activity in the newborn pig[J]. Pediatric Research,1990,28:171-175
    181.邹仕庚,王恬,郑春田,等.胰岛素和酶解配方乳对初生仔猪胃肠道生长发育影响的研究[J].动物营养学报,2001,13(1):19-24
    182. Dantzer R., Mormede. P., Stress in farm animals:A need for reevaluation[J], Journal of Animal Science,1983,57:6-18
    183. Yeh K.Y., Yeh M., Holt P.R., Thyroxine and cortisone cooperate to modulate postnatal intestinal enzyme differentiation in the rat [J]. Am J Physiol Gastrointest Liver Physiol,1991, 260:G371-G378
    184.邹仕庚,王恬,陆治年.乳源性生长因子和初生动物胃肠道生长发育的关系[J].畜牧与兽医,2000,32(1):36-38
    185. Van der Meulen J.G., Bakke B., Smiths B., et al., Eeffcts of source of srarch on net portal flux of glucose, lactate, volatile fatty acids in pig[J], European Journal of Clinical Nutrition, 1997,78:533-544
    186.黄瑞林,印遇龙,戴求仲,等.采食不同来源淀粉对生长猪门静脉养分吸收和增重的影响[J],畜牧兽医学报,2006,37(3):262-269
    187.宾石玉,印遇龙,黄瑞林,等.日粮淀粉来源对断奶仔猪内脏器官蛋白质合成率的影响[J],核农学报,2006,20(6):535-538
    188. John M., Brameld R., Stewart Gilmour A.P.J.B., Glucose and Amino Acids Interact with Hormones to Control Expression of Insulin-Like Growth Factor-Ⅰ and Growth Hormone Receptor mRNA in Cultured Pig Hepatocytes[J]. Journal of Nutrition,1999,129:1298-1306
    189.高杰英.粘膜免疫向免疫学提出了新问题[J].上海免疫学杂志,2000,20(5):257-259
    190.顾宪红(译),断奶仔猪小肠结构和功能的变化及其影响因素[J],中国饲料,1999,1:27-29
    191. Hampson D.J., Kidder D.E., Influence of creep feeding and weaning on brush border enzyme activities in the piglet small intestine[J], Research in Veterinary Science,1986,40:24-31
    192. Stoll B., Burrin D.G., Yu H., et al., Utilization of eternal and arterial phenylalanine for mucosal and hepatice constitutive protein synthesis in pigs[J], American Journal of Physiology,1999a,276:G49-G57
    193. Stoll B., Burrin D.G., Henry J., et al., Substrate oxidation by the portal drained viscera of fed piglets[J], American Journal of Physiology,1999b,277:E168-E175
    194.王恬,傅永明,吕俊龙,等,小肽营养素对断奶仔猪生产性能及小肠发育的影响[J],畜牧兽医,2003,35(6):4-8
    195. Vente-Spreeuwenberg M.A., Verdonk J.M., Bakker G.C., et al., Effect of dietary protein source on feed intake and small intestinal morphology in newly weaned piglets[J], Livestock Production Science,2004,86(1-3):169-177
    196.张晶,单安山,李牧,等.蛋白酶解物对早期断奶仔猪肠黏膜形态和生长性能的影响[J].动物营养学报,2006,18(2):122-125
    197.潘翠玲,陈伟华,邹思湘,等.大豆蛋白酶解物对21日龄早期断乳仔猪消化道发育的影响[J],西北农林科技大学学报(自然科学版),2006,34(7):27-31,36
    198. Glasscock G.F., Nicoll C.S., Hormonal control of growth in the infant rat[J]. Endocrinology, 1981,109:176-184
    199. Scanes C.G., Daughaday W.H., Growth hormone action:growth.In:Growth Hormone[M], edited by Harvey S, Scanes CG, Daughaday WH.Boca Raton, FL:CRC,1995,p.351-369
    200.胥传来,乐国伟,姚惠源,猪生长激素(PST)脂质体代谢动力学的研究[J],动物营养学报,2002,14(3):41-44
    201. Lewis A.J., Wester T.J., Burrin D.G, et al., Exogenous growth hormone induces somatotrophic gene expression in neonatal liver and skeletal muscle[J], Am J Physiol Regulatory Integrative Comp Physiol,2000,278:R838-R844
    202. Weller P.A., dauncey M.J., Bates P.C., et al., Regulation of porcine insulin-like growth factor-I and growth hormone receptor mRNA expression by energy status[J], American Journal of Physiology,1994,266:E776-E785
    203. Bornfeldt K.E., Arnqvist H.J., Enberg B., et al., Regulation of insulin-like growth factor-I and growth hormone receptor gene expression by diabetes and nutritional state in rat tissues[J], Journal of Endocrinology,1989,122:651-656
    204. Straus D.S., Takemoto,C.D., Effect of dietary protein deprivation on insulin-like growth factor(IGF)-I and-II, IGF-binding protein-2;and serum albumin gene expression in rat[J], Endocrinology,1990.127:1849-1860
    205. Ketelslegers J.M., Maiter D., Maes M., et al., Nutritional regulation of insulin-like growth factor-I[J], Metabolism,1995,44(10 Suppl 4):50-57
    206. Thissen J-P, Pucilowska JB, Underwood LE, Differential regulation of insulin-like growth factor I(IGF-I) and IGF binding protein-1 messenger ribonucleic acids by amino acid availability and growth hormone in rat hepatocyte primary culture[J]. Endocrinology,1994, 134:1570-1576
    207. Aziz A.A., Kenney L.S., Goulet B., et al., Dietary Starch Type Affects Body Weight and Glycemic Control in Freely Fed but Not Energy-Restricted Obese Rats[J], Journal of Nutrition,2009,139(10):1881-1889
    208. Pierce K.M., Callan J.J., McCarthy P., et al.,The interaction between lactose level and crude protein concentration on piglet post-weaning performance, nitrogen metabolism, selected faecal microbial populations and faecal volatile fatty acid concentrations[J], Animal Feed Science and Technology,2007,132 (3-4):267-282
    209. Gilani G.S., Ratnayake W.M., Brooks S.P., et al., Effects of dietary protein and fat on cholesterol and fat metabolism in rats[J], Nutrition Research,2002,22(3):297-311
    210. Mahan D.C., Fastinger N.D., Peters J.C., Effects of diet complexity and dietary lactose levels during three starter phases on postweaning pig performance[J], Journal of Animal Science, 2004,82:2790-2797
    211. Cromwell G.L.; Allee G.L., Mahan D.C., Assessment of lactose level in the mid-to late-nursery phase on performance of weanling pigs[J], Journal of Animal Science,2008,86(1): 127-133
    212.高欣,马秋刚,计成.肠膜蛋白粉对早期断奶仔猪生产性能及消化道发育的影响[J].中国饲 料,2000,19:28-29
    213.曹银娣,米蛋白肽亚铁螯合物生产工艺及产品稳态化研究[D],南昌大学,南昌,2008
    214.张源淑,邓艳,宋晓丹,等.酪啡肽及其酪蛋白水解肽对早期断奶仔猪分泌型免疫球蛋白A和细胞因子水平的影响[J],动物营养学报,2008,20(2):196-199
    215.潘翠玲,陈伟华,邹思湘,等.大豆蛋白酶解物对21日龄早期断乳仔猪生长性能及内分泌水平的影响[J],南京农业大学学报,2006,29(3):69-72
    216.侯水生,黄苇,赵玲,等.日粮蛋白质来源对早期断奶仔猪胃内消化酶活性的影响[J],动物营养学报,2004,16(4):47-50
    217.于旭华,汪儆,冯定远.断奶仔猪消化酶的发育规律及其影响因素[J],动物营养学报,2002,14(1):8-12
    218.施学仕.仔猪的早期断奶、饲料、营养和饲养管理[C].美国大豆协会,1999,SW1-97:16-35
    219. Grundy S.M., Denke M.A., Dietary influences on serum lipids and Lipoproteins[J], Journal of Lipid Research,1990.31:1149-1172
    220. Assmann G., Nofer J., Atheroprotective effects of high-density lipoproteins[J], the Annual Review of Medicine,2003,54:321-341
    221. Spreeuwenberg M.A.M., Verdonk J.M.A.J., Gaskins H.R., et al., Small intestine epithelial barrier func-tion is compromised in pigs with low feed intake at weaning[J]. Journal of Nutrition.,2001,131:1520-1527
    222. Mao X.F., Piao X.S., Lai C.H., et al., Effects of β-glucan obtained from the Chinese herb Astra-galus membranaceus and lipopolysaccharide challenge on performance, immun-ological, adrenal, and somatotropic responsesof weaned pigs[J], Journal of Animal Science, 2005,83:2775-2782
    223. Hedemann M.S., Jensen B.B., Variations in enzyme activity in stomach and pancreatic tissue and digesta in pigletsa round weaning[J], Archives of Animal Nutrition,2004,58:47-59
    224. Yuan S.L., Piao X.S., Li D.F., et al., Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs[J], Journal of Animal Science,2006,82: 501-507
    225. Rodas de B.Z., Sohn K.S., Maxwell C.V., et al., Plasma protein for pigs weaned at 19 to 24 days of age:effect on performance and plasma insulin-like growth factor Ⅰ, growth hormone, insulin, and glucose concentrations[J], Journal of Animal Science,1995,73:3657-3665
    226. Sohn K.S., Maxwell C.V., Buchanan D.S., et al., Improved soybean protein sources for early-weaned pigs:Ⅰ. Effects on performance and total tract amino acid digestibility[J], Journal of Animal Science,1994,72:622-63
    227. Julio J.B., Jimenez J.,Martinez O.,et al.,Nutritional value and antigenicity of two milk protein hydrolysates in rats and guinea pigs[J],Journal of Nutrition,1994,124:1978-1986
    228. Hou Z.P., Yin Y.L., Huang R.L., et al., Rice protein concentrate partially replaces dried whey in the diet for early-weaned piglets and improves their growth performance[J], Journal of the Science of Food and Agriculture,2008,88:1187-1193
    229. Woods K.A., Camacho-Hubner C., Savage M.O., et al., Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene[J], The New Engand Journal of Medicine,1996,335:1363-1367
    230. Mellor S., The future of protein nutrition is peptide[J], Pig Progress,2000,16(8):14-16
    231. Danilson D.A., Webb K.E. Jr, Herbein J.H., Transport and Hindlimb Exchange of Peptide and Serum Protein Amino Acids in Calves Fed Soy-or Urea-Based Purified Diets[J], Journal of Animal Science,1987,64:1852-1857
    232. Deglaire A., Fromentin C., Fouillet H., et al., Hydrolyzed dietary casein as compared with the intact protein reduces postprandial peripheral, but not whole-body, uptake of nitrogen in humans[J], American Journal of Clinical Nutrition,2009,90(4):1011-1022
    233.陈宝江,蔡辉益,刘国华,等.寡肽对肉仔鸡蛋白质、能量沉积及相关生理指标的影响[J],动物营养学报,2007,19(5):574-580
    234.李丽立,陈宇光,谭支良,等.小肽对山羊氮平衡和营养物质消化率的影响[J].草业学报,2004,13(2):73-78
    235. Moughan J., Ravindran V., Proteins are not just a dietary source of amino acids, when given in the form of enzymes or when they appear as peptides, they can play more important functional roles[J], Pig Progress,2001,17(4):11-14
    236. Mabjeesh S.J.,Kyle C.E.,MacRae J.C.,et al.,Vascular sources of amino acids for milk protein synthesis in goats at two stages of lactation[J].Journal of Dairy Science,2002,85(4):919-929
    237. Tagari H., Webb K.E. Jr, Theurer B., et al., Mammary uptake, portal-drained visceral flux, and hepatic metabolism of free and peptide-bound amino acids in cows fed steam-flaked or dry-rolled sorghum grain diets[J]. Journal of Dairy Science,2008,91:679-697
    238. Zambonino Infante J.L., Cahu C.L., Peres A., Partials ubstitution of di-and tripeptides for native proteins in sea bass diet improves Dicentrarchus labrax larval development[J]. Journal of Nutrition,1997,127(4):608-614
    239. Pan Y., Wong E.A., Bloomquist J.R., et al., Expression of a cloned ovine gastrointestinal peptide transporter (oPepTl) in Xenopus oocytes induces uptake of oligopeptides in vitro[J], Journal of Nutrition,2001,131:1264-1270
    240. Shiraga T., Miyamoto K.I., Tanaka H., et al.,Cellular and molecular mechanisms of dietary regulation on rat intestinal H+/peptide transporter PepT1[J],Gastroenterology,1999,116(2): 354-362
    241.Addison J.M., Matthews D.M., Burston D., Competition between carnosine and other peptides for transport by hamsterjejunum in vitro[J]. Clin Sci Mol Med,1974,46(6):707-714
    242. Zhao X.T., McCamish M.A., Miller R.H., et al., Intestinal transit and absorption of soy protein indogs depend on load and degree of protein hydrolysis[J]. Journal of Nutrition,1997, 127(12):2350-2356

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700