光学Goos-H(?)nchen位移的测量和空间偏振变化矢量光束强聚焦性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有限光束由光密介质入射到光疏介质界面处发生全反射时,实际的反射光束相对于几何光学的反射光束存在一段侧向位移,该位移被称作Goos-H(a|¨)nchen (GH)位移。近年来,有限光束被不同的光学微结构反射的规律得到了人们的重视和大量的理论研究。在实验上对于GH位移的测量也进行了大量的研究,主要有:多次反射来增大位移,位置灵敏探测器,微波法测量GH位移等。本文利用液晶光阀和光束分析仪实现了棱镜全反射GH位移的简单而精确的测量,并与用稳态相位法进行的理论计算进行了分析对比。为基于GH效应设计新型光学开关等光学器件提供诸多可能。
     矢量光束由于其特殊的偏振分布,当与物质相互作用时会产生一些特殊的效应。尤其经过高数值孔径聚焦后可以得到一些独特的聚焦场性质,例如可以产生很强的纵向场、很小的焦斑尺寸、光学囚笼等。这对我们认识和了解物质的属性和光束(光子)的本质提供了新的途径,具有丰富的研究内容。
     围绕古斯-汉欣位移和空间偏振变化矢量光束,本文主要作了两部分工作:一是提出了基于液晶光阀和光束分析仪测量GH位移的简单方法;二是空间偏振变化矢量光束的生成和强聚焦性质的研究。对于这两部分工作,主要分三部分来讨论:
     1.设计和改造了GH光学微小位移的实验系统。新的实验方法是一种基于液晶光阀和光束分析仪的简单测量,该方法将测试精度提高到了纳米量级。实验中研究了液晶光阀对光偏振态调制的特性,结果表明当外接电压发生变化时,光的偏振态也随之变化。利用液晶光阀对光偏振态的调制和光束分析仪记录光斑重心位置的变化,我们能直接测量出TE和TM两种偏振态入射时棱镜单界面反射光束的GH位移差。结果表明,实验结果与理论结果很吻合。
     2.空间变化偏振矢量光束的生成。首先调节偏振转换器,将入射的线偏振光束转换为角向或者径向偏振矢量光束并实现二者的转换;然后将径向偏振或者角向偏振光束经过液晶可调相位延迟器就可以得到空间偏振变化矢量光束。由于液晶相位延迟器由外部电压直接控制,使其相位延迟角度δ能在0到π之间连续取值,因此能通过实时控制液晶相位延迟器的相位延迟角度在0到π之间连续变化实现对空间偏振分布矢量光束的实时改变。
     3.空间偏振变化矢量光束强聚焦性质的研究。数值孔径角α和光瞳半径与光束束腰半径比β决定了光束的聚焦能力,但聚焦强度并不与α和β成简单的正比关系。本文数值模拟分析了α与β变化时对纵向场强的影响,得到了最大纵向聚焦场对应的α与β的取值。用最佳值α与β数值模拟了空间偏振变化矢量光束强聚焦时在焦平面上的场分布。结果表明聚焦场强烈依赖于相位延迟角度δ。当液晶相位延迟器的δ在0到π之间变化时横向场强分布基本不变,但纵向场强分布有很明显的变化。因此调节液晶相位延迟器的驱动电压可以实现对焦平面上的纵向场强的实时调控。
Bounded beam totally reflected from an interface between two different dielectric media may undergoes a lateral shift from the position predicted by geometrical optics. This phenomenon was referred to the Goos-H(a|¨)nchen (GH) effect. In recent years, people has attached great importance and done a great deal of research to the rule of limited light beam reflected by different optical microstructures. People also offer a lot of studies on experimental measurement of GH shift, such as: multiple reflections to increase displacement, position sensitive detectors (PSD), microwave method for measuring the GH displacement etc. This paper has simply and precise measured the GH shift of total reflection in prism by the light crystal light valve (LCLV) and the light beam profiler (LBP), compared and analyzed with the theoretical calculation. For the potential applications in new optical devices such as optical switches.
     As the vector beams has special polarization distribution, some innovative properties may happened when it has interaction with matters. Especially when it is tightly focused, we can gain some particular properties, such as can form a strong longitudinal field, can form a smaller spot size, optical cage and so on. This has great research significance and provide us new path to know and understand the properties of matters and the essence of the light beam.
     Base on research of GH shift and spatial-variant states of polarization vector beams, this paper has mainly completed two parts works: firstly, a novel approach to directly observe the small optical beam shift(GH shift)based on LCLV and the LBP; secondly, research of the generation and tight focusing properties of spatial-variant states of polarized vector beams. For the two parts job are mainly divided into three parts to discuss:
     1. Design and modify the experimental system of small optical shift GH. The novel experimental approach is a simple measurement based on LCLV and the LBP, which can be raised the accuracy of experiment result to nanometer scale. We studied the optical modulation characteristics of LCLV in experiment, and the results show that the polarization states of light changed when external voltage changes. The difference between the TM and TE polarized longitudinal GH shift at the condition of total internal reflection on a prism-air interface can be modulated the polarization state of the beam by the LCLV and detected by LBP registered the barry center of the beam. This method doesn’t need complex external processing circuit, and the experimental result shows good agreement with theoretical calculation.
     2. The generation of spatial-variant states of polarized vector beams. Firstly, adjust the polarization converter, convert the linearly incident polarized beam into radially or azimuthally polarized beam and changed between them. Then the spatial-variant states of polarized vector beams can be obtained when radially or azimuthally polarized beam after the Liquid Crystal Variable Retarder (LCVR). As the LCVR are controlled by external voltage, we can obtain the continuous retardation angleδfrom 0 toπ, therefore the polarized distribution can be continuously changed by varying retardation angleδfrom 0 toπin real-time.
     3. Research of tightly focusing properties of spatial-variant states of polarization vector beam. The magnitude of the intensities strongly depends on the focusing angleαand the ratio of the pupil radius and the beam waistβ. However, the focusing intensity is not proportional toαorβ. In this article, we simulated and analyzed the impact to longitudinal electric field intensity whenαandβchanges, got the maximum longitudinal focus field and the corresponding optimum value ofαandβ. Then, we numerically simulated the transverse and longitudinal electric field intensity of spatial-variant states of polarized vector beams in the focal plane with the optimum value ofαandβ. The numerical results indicate a strong dependence of the field near the focus on the phase retardation angleδ. The evolution of the transverse focal pattern has little changes when the phase retardation angle changes from 0 toπ, while the longitudinal focal pattern is varied remarkably. Therefore,the longitudinal focal pattern can be continuous changed by varying retardation angleδfrom 0 toπin real-time.
引文
【1】. F.Goos and H. H(a|¨)nchen, Ein neuer und funamentaler versuch zur total reflexion[J]. Ann. Phys. (Leipzig) 1, 333-346(1947).
    【2】. R. P. Riesz and R. Simon, Reflection of a Gaussian beam from a dielectric slab[J]. J. Opt. Soc. Am. A 2, 1809-1817(1985).
    【3】. T. Tamir, Nonspecular phenomena in beam fields reflected by multilayered media[J]. J. Opt. Soc. Am. A 3,558-565(1986).
    【4】. T. Tamir and H. L. Bertoni, Lateral displacement of optical beams at multilayered and periodic structures [J]. J.Opt.Soc.Am.61, 1397-1413(1971).
    【5】. C. W. Hsue and T. Tamir, Lateral displacement and distortion of beams incident upon a transmitting layer configuration [J]. J. Opt. Soc. Am. A 2,978-987(1985).
    【6】. C. W. Hsue and T. Tamir, Lateral beam displacements in transmitting layered structures [J]. Opt.Commun.49, 383-387(1984).
    【7】. J. Broe and O. Keller, Quantum-well enhancement of the Goos-H(a|¨)nchen shift for p-polarized beams in a two-prism configuration [J]. J. Opt. Soc. Am. A 19, 1212-1221(2002).
    【8】. J. Birman, D. N. Pattanayak, and A. Puri, Prediction of a resonance-enhanced laser-beam displacement at total internal reflection in semiconductors [J]. Phys. Rev.Lett.50,1664-1667(1983).
    【9】. E. Pfleghaar, A. Mareseille, and A. Weis, Quantitative investigation of the effect of resonant absorbers on the Goos-H(a|¨)nchen shift [J]. Phys.Rev.Lett.70, 2281-2284 (1993).
    【10】. V. Shah and T. Tamir, Absorption and lateral shift of beams incident upon lossy multilayered media [J]. J.Opt.Soc.Am.73, 37-42(1983).
    【11】. A. Haibel, G. Nimtz, and A. A. Stahlhofen, Frustrated total reflection: The double prism revisited [J]. Phys. Rev. E 63, 047601(2001).
    【12】. A. Lakhttakia and J. B. Geddes, Nanotechnology for optics is a phase-length-time sandwich [J]. Opt. Eng.43, 2410-2417(2004).
    【13】. F. Wang and A. Lakhtakia, Lateral shift of optical beams on reflection by slanted chiral sculptured thin films [J]. Opt.Comm.235, 107-132(2004).
    【14】. J. A. Kong, Bae-lan Wu, and Y. Zhang, Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability [J]. Appl.Phys.Lett.80, 2084-2086(2002).
    【15】. J. A. Kong, Bae-lan Wu, and Y. Zhang, A unique lateral displacement of a Gaussianbeam transmitted through a slab with negative permittivity and permeability [J]. Microwave Opt.Technol.Lett.33, 136-139(2002).
    【16】. D. Felbacq, A. Moreau, and R. Smaali, Goos-H?nchen effect in the gaps of photonic crystals [J]. Opt.Lett.28, 1633-1635(2003).
    【17】. D. Felbacq and R. Smaali, Bloch modes dressed by evanescent waves and the generalized Goos-H?nchen effect in photonic crystals [J]. Phys. Rev. Lett. 92, 193902(2004).
    【18】. M. C. Simon and L. I. Perez, Goos-H?nchen effect of an ordinary refracted beam [J]. J.Mod.Opt.52, 515-528(2005).
    【19】. C.-F. Li and Q. Wang, Prediction of simultaneously large and opposite generalized Goos-H?nchen shifts for TE and TM light beams in an asymmetric double-prism configuration [J]. Phys. Rev. E 69, 055601(2004).
    【20】.朱绮彪,李春芳,陈玺,双棱镜结构中透射光束的古斯—汉欣位移[J].光学学报25,673-677(2005)
    【21】. C.-F. Li and X.-Y. Yang, Thin-film enhanced Goos-H?nchen shift in total internal reflection [J]. Chin. Phys. Lett. 21, 485-488(2004).
    【22】. Liu, X.B., et al., Simultaneously large and opposite lateral beam shifts for TE and TM models on a double metal-cladding slab [J]. Chinese Physics Letters, 23(8): p. 2077-2079(2006)
    【23】. Chen, L., et al., Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides [J]. Opt. Lett. 32(11): p. 1432-1434 (2007)
    【24】. F. Goos and H. H?nchen, Neumessung des Strahlversetzungseffektes bei Total reflexion [J]. Ann. Phys., 5, 251(1949)
    【25】. J. J. Crown and B. Anicin, Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection [J]. J. Opt. Soc. Am., 67, 1307(1977)
    【26】. W. J. Wild and C. L. Giles, Goos-H?nchen shifts from absorbing media [J]. Phys. Rev. A 25, 2099-2101(1982).
    【27】. B. M. Jost, A. A.R. Al-Rashed, and B. E. A. Salch, Observation of the Goos-H?nchen effect in a phase-conjugate mirror [J]. Phys. Rev. Lett. 81, 2233-2235(1998)
    【28】. X. Yin, L. Hesselink, Z. Liu, et al. Large positive and negative lateral optical beam displacements due to surface plasmon resonance [J]. Appl. Phys. Lett. 85, 372(2004)
    【29】. R Kaiser, Y. Levy, J Fleming, S. Muniz, and V. S. Bagnato, Resonances in a single thin dielectric layer: Enhancement of the Goos-H?nchen shift [J]. Pure Appl Opt. 5,891-898(1996)
    【30】. H. Gilles, S. Girard and J. Hamel, Simple technique for measuring the Goos-H?nchen effect with polarization modulation and a position-sensitive detector [J]. Opt. Lett.27, 1421(2002)
    【31】. F. Pillon, H. Gilles, S. Girard, and M. Laroche, Goos–H?nchen and Imbert-Fedorov shifts for leaky guided modes [J]. J. Opt. Soc. Am. B, 22, 1290(2005)
    【32】. J. Broe and O. Keller, Quantum-well enhancement of the Goos-H?nchen shift for p-polarized beams in a two-prism configuration [J]. J. Opt. Soc. Am. A 19, 1212-1221(2002)
    【33】. H. Gilles, S. Girard, and J. Hamel, Simple technique for measuring the Goos-H?nchen effect with polarization modulation and a position-sensitive detector [J]. Opt.Lett.27,1421-1423(2002)
    【34】. X.-B. Liu, Cao Z.-Q. Zhu P.-F, Shen Q.-S., and Liu X.-M., Large positive and negative lateral optical beam shift in prism-waveguide coupling system [J]. Phys. Rev. E. 73, 056617(2006).
    【35】. L.-G. Wang, H. Chen, and S.-Y. Zhu, Large negative Goos–H?nchen shift from a weakly absorbing diclectric slab [J]. Opt. Lett. 30, 2936-2938(2005).
    【36】. L.-G. Wang, and S.-Y. Zhu, Gaint lateral shift of a light beam at the defect mode in one-dimensional photonic crystals [J]. Opt. Lett. 31,101-103(2006)
    【37】. D. Pohl, Operation of a Ruby Laser in the Purely Transverse Electric Mode TE01 [J]. Applied Physics Letters 20, 266 (1972).
    【38】. Y. Mushiake, K. Matzumurra, and N. Nakajima, Generation of radially polarized optical beam mode by laser oscillation [J]. Proceedings of the IEEE 60, 1107-1109 (1972).
    【39】. D. G. Hall, Vector-beam solutions of Maxwell's wave equation [J]. Optics Letters 21, 9-11 (1996).
    【40】. P. L. Greene and D. G. Hall, Focal shift in vector beams [J]. Optics Express 4, 411-419 (1999).
    【41】. T. Grosjean, M. Suarez, and A. Sabac, Generation of polychromatic radially and azimuthally polarized beams [J]. Applied Physics Letters 93, 3 (2008).
    【42】. T. Grosjean, D. Courjon, and M. Spajer, An all-fiber device for generating radially and other polarized light beams [J]. Optics Communications 203, 1-5 (2002).
    【43】. Y. Kozawa, K. Yonezawa, and S. Sato, Radially polarized laser beam from a Nd: YAG laser cavity with a c-cut YVO4 crystal [J]. Applied Physics B-Lasers and Optics 88, 43-46 (2007).
    【44】. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson, Birefringence-induced bi focusing for selection of radially or azimuthally polarizedlaser modes [J]. Applied Optics 46, 3304-3310 (2007).
    【45】. R. Dorn, S. Quabis, and G. Leuchs, Sharper Focus for a Radially Polarized Light Beam [J]. Physical Review Letters 91, 233901 (2003).
    【46】. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, Focusing light to a tighter spot [J]. Optics Communications 179, 1-7 (2000).
    【47】. K. S. Youngworth and T. G. Brown, Focusing of high numerical aperture cylindrical-vector beams [J]. Optics Express 7, 77-87 (2000).
    【48】. D. P. Biss, K. S. Youngworth, and T. G. Brown, Dark-field imaging with cylindrical-vector beams [J]. Applied Optics 45, 470-479 (2006).
    【49】. Q. W. Zhan and J. R. Leger, Focus shaping using cylindrical vector beams [J]. Optics Express 10, 324-331 (2002).
    【50】. Q. Zhan, Cylindrical vector beams: from mathematical concepts to applications [J]. Adv. Opt. Photon. 1, 1-57 (2009).
    【51】. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Longitudinal field modes probed by single molecules [J]. Physical Review Letters 86, 5251-5254 (2001).
    【52】. T. Grosjean and D. Courjon, Smallest focal spots [J]. Optics Communications 272, 314-319 (2007).
    【53】. L. E. Helseth, Radiationless electromagnetic interference shaping of evanescent cylindrical vector waves [J]. Physical Review A 78, 4 (2008).
    【54】. Y. Kozawa and S. Sato, Focusing property of a double-ring-shaped radially polarized beam [J]. Opt. Lett. 31, 820-822 (2006).
    【55】. G. M. Lerman and U. Levy, Radial polarization interferometer [J]. Optics Express 17, 23234-23246(2009).
    【56】.庄杰佳,赵润乔,叶桂木,戴立胜,径向偏振分布激光场的理论分析和实验验证[J].物理学报34 (1985).
    【57】. X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement [J]. Optics Letters 32, 3549-3551(2007).
    【58】. J. L. Li, K. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber [J]. Optics Letters 32, 1360-1362 (2007).
    【59】. S. H. Yan and B. L. Yao, Radiation forces of a highly focused radially polarized beam on spherical particles [J]. Physical Review A 76, 6 (2007).
    【60】. F. Peng, B. L. Yao, S. H. Yan, W. Zhao, and M. Lei, Trapping of low-refractive-index particles with azimuthally polarized beam [J]. Journal of the Optical Society of AmericaB-Optical Physics 26, 2242-2247 (2009).
    【61】. C. F. Li, Integral transformation solution of free-space cylindrical vector beams and prediction of modified Bessel-Gaussian vector beams [J]. Optics Letters 32, 3543-3545 (2007).
    【62】. C. F. Li, Unified theory for Goos-Hanchen and Imbert-Fedorov effects [J]. Physical Review A 76 (2007).
    【63】. J. J. Cowan, B. Anicin, Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection. [J]. J. Opt. Soc. Am. B, 67: p. 1307 (1977)
    【64】. A. Haibel, G. Nimtz, A. A. Stahofen, Frustrated total reflection: The double-prism revisited [J]. Phys. Rev. E. 63(4), 047601, 2001.
    【65】. K.V.Artmann,Berechung der seitenversetzung des reflektieren strahles [J]. Ann. Phys.(Leipzig) 2, 87-102(1948)
    【66】. Chigrinov V G. Liquid crystal devices: physics and applications [M]. Boston: Artech House,1~287(1999)
    【67】.任常愚,孙秀冬,向列相液晶动态全息存储特性的研究[J].光子学报, 34: 785~788 (2005)
    【68】. Gilman S E, Baur T G, Gallagher D J, et al. Properties of tunable nematic liquid-crystal retarders [J]. SPIE, 1166: 461~470(1990)
    【69】.肖勇,余学才,基于CCD的激光光束分析软件系统的研究[D].电子科技大学(2009)
    【70】. S. T. Yang, R. C. Eckhardt, and R. L. Byer, Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser [J]. Opt. Lett. vol. 18:971–973(1993)
    【71】. Scholl M. Herziger, G. Kurtosis as a tool parameter for laser welding [J]. Proc. Spine, 2375, pp.130-141(1995)
    【72】. Gilles, H., S. Girard, and J. Hamel, Simple technique for measuring the Goos-Hanchen effect with polarization modulation and a position-sensitive detector [J]. Opt. Lett. 27(16): p. 1421-1423(2002)
    【73】. Muller D, Tharanga D, Stahlhofen AA, Nimtz G., Nonspecular shifts of microwaves in partial reflection [J]. Euro Physics Letters, 73(4), 526-532(2006)
    【74】. J. M. Senior, Optical fiber communications: principles and practice, 2nd ed., Prentice-Hall international series in optoelectronics [M]. (Prentice-Hall, New York; London, pp. 922 (1992)
    【75】. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Generating radially polarized beams interferometrically [J]. Appl. Opt. 29, 2234-2239 (1990).
    【76】. M. Stalder and M. Schadt, Polarization converters based on liquid crystal devices [J].Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals 282, 343-353 (1996).
    【77】. V. G. Niziev, R. S. Chang, and A. V. Nesterov, Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer [J]. Applied Optics 45, 8393-8399 (2006).
    【78】. S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas [J]. Optics Express 17, 1571-1576 (2009).
    【79】. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, Focusing light to a tighter spot [J]. Opt. Commun. 179, 1-7 (2000).
    【80】. D. P. Biss and T. G. Brown, Cylindrical vector beam focusing through a dielectric interface [J]. Optics Express 9, 490-497 (2001).
    【81】. Q. W. Zhan, Trapping metallic Rayleigh particles with radial polarization [J]. Optics Express 12, 3377-3382 (2004).
    【82】. Y. L. Zhang, Y. Q. Zhao, Q. W. Zhan, and Y. P. Li, Study of 3D optical chain with highly focused vector beam [J]. Acta Physica Sinica 55, 1253-1258 (2006).
    【83】. W. B. Chen and Q. W. Zhan, Three-dimensional focus shaping with cylindrical vector beams [J]. Optics Communications 265, 411-417 (2006).
    【84】. N. Bokor and N. Davidson, Generation of a hollow dark spherical spot by 4 pi focusing of a radially polarized Laguerre-Gaussian beam [J]. Optics Letters 31, 149-151 (2006).
    【85】. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics [J]. Nature Photonics 2, 501-505 (2008).
    【86】. K. Lindfors, A. Priimagi, T. Setala, A. Shevchenko, A. T. Friberg, and M. Kaivola, Local polarization of tightly focused unpolarized light [J]. Nature Photonics 1, 228-231 (2007).
    【87】. V. G. Niziev and A. V. Nesterov, Influence of beam polarization on laser cutting efficiency [J]. Journal of Physics D-Applied Physics 32, 1455-1461(1999).
    【88】. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, The formation of laser beams with pure azimuthal or radial polarization [J]. Appl. Phys. Lett. 77, 3322-3324(2000).
    【89】. W. B. Chen and Q. W. Zhan, Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination [J]. Optics Express 15, 4106-4111 (2007).
    【90】. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, Calculation of optical trappingforces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam [J]. Optics Letters 32, 1839-1841 (2007).
    【91】. Y. Q. Zhao, Q. W. Zhan, Y. L. Zhang, and Y. P. Li, Creation of a three-dimensional optical chain for controllable particle delivery[J]. Optics Letters 30, 848-850 (2005).
    【92】. W. B. Chen and Q. W. Zhan, Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam [J]. Optics Letters 34, 722-724 (2009).
    【93】. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams [J]. Opt. Commun. 281, 732-738 (2008).
    【94】. M. R. Beversluis, L. Novotny, and S. J. Stranick, Programmable vector point-spread function engineering [J]. Optics Express 14, 2650-2656 (2006).
    【95】. R. Yamaguchi, T. Nose, and S. Sato, Liquid Crystal Polarizers with Axially Symmetrical Properties [J]. Japanese Journal of Applied Physics 28, 1730 (1989).
    【96】. M. Stalder and M. Schadt, Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters [J]. Opt. Lett. 21, 1948-1950 (1996).
    【97】. K. J. Moh, X. C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams [J]. Appl. Opt. 46, 7544-7551 (2007).
    【98】. Xi-Lin Wang, Yongnan Li, and Hui-Tian Wang, A new type of vector fields with hybrid states of polarization [J]. Optics Express. 18. 10786- 10795(2010)
    【99】. D. H. Goldstein and E. Collett, Polarized light, 2nd ed. [M]. pp. 653 (2003)
    【100】. Kai Xu, Yanfang Yang, Ying He, Xiaohong Han, and Chunfang Li, Liquid crystal retarder modulation for generating real time non-uniformly polarized beams [J]. J. Opt. Soc. Am. A. Vol. 27(2010)
    【101】. F. T. S. Yu, S. Jutamulia, and S. Z. Yin, Introduction to information optics (光信息技术及应用) [M], 404 (2006).
    【102】. C. H. Gooch and H. A. Tarry, The optical properties of twisted nematic liquid crystal structures with twist angles≤90 degrees [J]. Journal of Physics D: Applied Physics 8, 1575 (1975).
    【103】. Z. Bomzon, M. Gu, and J. Shamir, Angular momentum and geometrical phases in tight-focused circularly polarized plane waves [J]. Appl. Phys. Lett. 89(2006).
    【104】. H. Chen, Q. W. Zhan, Y. L. Zhang, and Y. P. Li, The Gouy phase shift of the highly focused radially polarized beam [J]. Physics Letters A 371, 259-261(2007).
    【105】. L. E. Helseth, Roles of polarization, phase and amplitude in solid immersion lenssystems [J]. Optics Communications 191, 161-172 (2001).
    【106】. T. D. Visser and J. T. Foley, On the wavefront spacing of focused radially polarized beams [J]. Journal of the Optical Society of America a-Optics Image Science and Vision 22, 2527-2531 (2005).
    【107】. S. Y. Yang and Q. W. Zhan, Third-harmonic generation microscopy with tightly focused radial polarization [J]. Journal of Optics a-Pure and Applied Optics 10, 6(2008).
    【108】. J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, Tighter focusing with a parabolic mirror [J]. Optics Letters 33, 681-683 (2008).
    【109】. P. Torok and P. R. T. Munro, The use of Gauss-Laguerre vector beams in STED microscopy [J]. Optics Express 12, 3605-3617 (2004).
    【110】. N. Bokor and N. Davidson, Toward a spherical spot distribution with 4 pi focusing of radially polarized light, Optics Letters 29, 1968-1970 (2004).
    【111】. E. Wolf, Electromagnetic diffraction in optical systems. I. An integral representation of the image field [M]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 253, 349-357 (1959).
    【112】. B. Richards and E. Wolf, Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system [M]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 253, 358-379 (1959).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700