挠性航天器姿态鲁棒非线性控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪50年代以来,随着航天技术的迅猛发展,挠性航天器姿态控制问题得到了密切的关注和广泛的研究。挠性航天器姿态控制系统是一个多输入多输出、耦合的不确定非线性系统,为了完成姿态控制任务,要求所设计的控制规律具有较高的鲁棒性以及参数自适应能力。本学位论文结合国家自然科学基金项目“一类挠性航天器主动振动鲁棒控制技术研究”(60774062)和高等学校博士学科点专项科研项目“挠性多体结构卫星主动振动控制技术研究”(20050213010),从理论和应用两个方面针对挠性航天器姿态鲁棒非线性控制算法进行了深入和细致的研究。主要完成以下几个方面的工作:
     针对存在惯量参数不确定、外干扰力矩的挠性航天器姿态控制问题,提出一种动态输出反馈鲁棒姿态控制方案。首先,基于挠性航天器动力学模型,给出状态反馈姿态控制器设计方法;在此基础上,提出动态输出反馈鲁棒控制器设计方法;进一步,为了降低设计的保守性,提出一种自适应参数设计方法,并基于Lyapunov方法给出了系统稳定性证明。理论分析表明,所构建的姿态控制器是模型参数独立的(即不依赖于航天器的转动惯量),并且不需要预知外干扰力矩的上界。仿真表明所提出的控制方案可以保证挠性航天器完成姿态控制任务,同时有效地抑制了挠性附件的振动,对于转动惯量的摄动及外干扰力矩具有很好的鲁棒性。
     针对带有非线性(饱和/死区特性)输入的挠性航天器姿态控制问题,提出一种自适应变结构输出反馈控制方案。首先,给出一类不确定系统的变结构输出反馈控制器的设计步骤;在此基础上,针对控制输入存在饱和/死区特性的非线性输入问题,给出滑模存在条件以及变结构输出反馈渐近稳定控制器和指数稳定控制器;为了降低设计的保守性,提出一种自适应参数设计方法,基于Lyapunov方法分析了滑动模态的存在性及稳定性;最后,将本章提出的控制方法应用于挠性航天器的姿态控制,仿真结果表明,尽管存在输入非线性,所提方案不但可以保证完成姿态控制任务,而且可以有效抑制挠性结构的振动,对参数不确定性具有很强的鲁棒性。
     针对存在模型不确定性因素的挠性航天器姿态机动问题,提出一种主动控制策略。首先,基于T-S模糊滑模控制技术设计了姿态机动控制器,为了抑制挠性结构的振动,设计了应变速率反馈补偿器(SRF)以增加挠性结构的阻尼,使振动能够很快地衰减;其次,提出一种基于模糊逻辑补偿思想的鲁棒主动控制策略,理论分析和仿真结果表明,该算法可以取得较好的控制效果;最后,针对采用推力器作为执行机构的挠性航天器提出一种自适应滑模控制姿态控制算法,结合脉冲调宽调频(PWPF)技术应用到喷气推力器的控制中,使其产生所需要的控制力矩脉冲序列。仿真结果表明所提出的控制策略对挠性航天器惯量参数具有自适应能力,对扰动具有良好的鲁棒性。
     针对带有执行机构动态特性的挠性航天器姿态跟踪问题,基于后步滑模及主动振动控制技术提出一种鲁棒主动控制策略。首先,采用自适应后步法结合主动振动控制技术设计了姿态跟踪鲁棒控制器,基于Lyapunov方法分析了系统的渐近稳定性;在此基础上,显性地考虑了执行机构动态特性问题,将整个设计过程分为两个步骤:第一步采用滑模控制技术设计了变结构虚拟控制器,给出自适应控制律的设计方法;第二步,将后步法与滑模控制技术相结合,设计了姿态跟踪鲁棒控制器,给出飞轮电压的输入算法及稳定性分析;最后,将提出的控制方法应用于挠性航天器的姿态跟踪控制,通过数值仿真对所提方法的可行性与有效性进行分析和验证。
With the development of aerospace technology, attitude control problem of flexible spacecraft has received considerable attention and comprehensive investigation ever since the fifties of the last century. Attitude control system of spacecraft is a coupling and uncertain nonlinear system with multi-input and multi-output. In order to accomplish the attitude control missions, the control law should have robust capability to attenuate disturbances and be able to adapt to parameters. Under this background, the robust control algorithms of flexible spacecraft are deeply studies on theory and application for the attitude control system of spacecraft in the dissertation, which is funded by the Research Fund for the Doctoral Program of Higher Education of China Item—“Large flexible multi-bodies structure spacecraft active vibration control technology”(20050213010) and National Natural Science Foundation of China—“Study on Active Vibration Control of Flexible Spacecraft”(60774062). The main contents of this dissertation are as follows:
     A robust control scheme based on dynamic output feedback control is proposed for the attitude control problem of a flexible spacecraft in the presence of parametric uncertainty, external disturbances. Firstly, the controller design of state feedback is proposed for the dynamic model of flexible spacecraft; Furthermore, the robust dynamic output feedback method is proposed. Moreover, an adaptive attitude controller is presented to decrease the conservativeness and the stability of the system is analyzed via Lyapunov method. The designed controller is independent with the model parameters, i.e., it is independent with the inertial parameters of flexible spacecraft, and it doesn’t have to know the upper bound of the out disturbance torque. Numerical simulations are performed to show that rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque and parametric uncertainty.
     A robust control algorithm for stabilization of a flexible spacecraft is investigated in the presence of parametric uncertainty, external disturbances and control input saturation/dead-zone nonlinearity. Firstly, the design process of the variable structure output feedback controller for a class of uncertain system is presented. Furthermore, the existent condition of sliding and the asymptotically and exponentially stable design methods are proposed for constructing the controller to stabilize uncertain system. Moreover, the developed controller is achieved through adaptive variable structure output feedback control without the limitation of knowing the bounds of the uncertainties and perturbations in advance and the existence of the sliding surfaces is analyzed via Lyapunov method. The simulation results show that the precise attitude control and vibration suppression can be accomplished using the derived controller for both cases with and without adaptive control, and it is robust to the uncertainty of the parameters.
     For the large angle attitude maneuvering problem of flexible with inertia parameter uncertainty, disturbances, a hybrid robust active control scheme is presented combined with the active vibration suppression technique based on piezoelectric materials. Firstly, based on T-S fuzzy control technique, a robust fuzzy attitude control scheme is given, in which the asymptotic stability is shown using a Lyapunov analysis. For actively suppressing the induced vibration, strain rate feedback control methods are provided by using piezoelectric materials as additional sensors and actuators such that the vibration can be damping down quickly. Secondly, a hybrid robust control method based on fuzzy logic compensator is provided. Compared with the T-S fuzzy controller, it has less computation cost. Thirdly, another hybrid robust control method is proposed based on sliding and active vibration control technique. In addition, to avoid chattering, pulse-width pulse-frequency (PWPF) modulation is adopted for the thruster control, which makes the thrusters to be operated in a close to linear manner and also can suppress the relatively large amplitude vibrations excited by, for example, rapid maneuver. The simulation results demonstrate the feasibility and effectiveness of the proposed method.
     A robust active control approach is presented for the attitude tracking control and vibration damping of a spacecraft with actor dynamics. Firstly, based on the sliding mode control (SMC) and backstepping technique, a new attitude tracking controller is derived to control the attitude motion of spacecraft, the stability of the system is analyzed via Lyapunov method and the reaction wheel dynamics is also considered from the real applications point of view. The whole design process is divided into two steps: the first step is to use sliding control technique to design suppositional adaptive variable structure controller; and the second step is to design attitude tracking controller based on SMC and backstepping technique. Numerical simulations are performed to show that both tracking maneuver and vibration suppression can be accomplished effectively.
引文
1周军.航天器控制原理.西北工业大学出版社, 2001:6-14, 71-73
    2杨大明.空间飞行器姿态控制系统.哈尔滨工业大学出版社, 2000:1-5
    3刘暾,赵钧.空间飞行器动力学.哈尔滨工业大学出版社,2003: 240-252
    4程磊,王天舒,李俊峰.挠性多体卫星姿态动力学与控制,清华大学学报(自然科学版). 2005, 45(11): 1506-1509
    5 M. J. Sidi. Spacecraft Dynamics and Control. Cambridge University Press, 1997
    6屠善澄.卫星姿态动力学.宇航出版社, 1999: 9-12, 65-73
    7 H. K. Khalil著.非线性系统.朱义胜,董辉,李作洲等译.电子工业出版社, 2005
    8 J. J. E. Slotine, W. P. Li著.应用非线性控制.程代展等译.机械工业出版社, 2006
    9李殿璞.非线性控制系统理论基础.哈尔滨工程大学出版社, 2006
    10李东旭.大型挠性结构分散化振动—理论与方法.国防科技大学出版社,2002: 4-5
    11 J. T. Gravdahl. Magnetic Attitude Control for Satellites. 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, 2004. 2004: 261-266
    12 J. Kulkarni, M. Camphell. An Approach to Magnetic Torque Attitude Control of Satellites via‘H∞’Control for LTV Systems. 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas. 2004: 273-277
    13 M. Lovera, A. Astolfi. Spacecraft Attitude Control Using Magnetic Actuators. Automatica. 2004, 40(8): 1405-1414
    14 J. S. Liang, R. Fullmer, Y. Q. Chen. Time-Optimal Magnetic Control for Small Spacecraft. 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas. 2004: 255-260
    15 M. Lovera, A. Astolfi. Global Magnetic Attitude Control of Inertially Pointing Spacecraft. Journal of Guidance, Control and Dynamics. 2005, 28(5): 1065-1067
    16 E. Silani, M. Lovera. Magnetic Spacecraft Attitude Control: a Survey and Some New Results. Control Engineering Practice. 2005, 13(3): 357-371
    17 K. L. Lebsock. Magnetic Desaturation of a Momentum Bias System. Journal of Guidance. 1983, 6(6): 477-483
    18 P. S. Camillo, F. L. Markley. Orbit-Averaged Behavior of Magnetic Control Laws for Momentum Unloading. Journal of Guidance and Control. 1980, 3(6): 563-568
    19 Y. W. Jan, J. C. Chiou. Unloading Law for a LEO Spacecraft with Two-Gimbals Solar Array. Acta Astronautica. 2002, 51(12): 843-854
    20 J. T. Wen, K. K. Delgado. The Attitude Control Problem. IEEE Transactions on Automatic Control. 1991,36 (10): 1148-1162
    21 O. Egeland, J. M. Godhavn. Passivity Based Adaptive Attitude Control of a Rigid Spacecraft. IEEE Transactions on Automatic Control. 1994, 39(4): 842-845
    22 R. Banirazi Motlagh, M. R. Jahed Motlagh. Adaptive Robust Attitude Tracking Control of Spacecraft. Proceedings of the IEEE Conference on Control Applications. 2005, 913-918
    23 A. T. Zaremba. An Adaptive Scheme with Parameter Identification for Spacecraft Attitude Control. Proceedings of the American Control Conference. 1997, 552-556
    24 J. Ahmed, V. T. Coppola, D.S. Bernstein. Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification. Journal of Guidance, Control and Dynamics. 1998, 21(5): 684-691
    25 B. T. Costic, D. M. Dawson, M.S. deQueiroz, V. Kapila. Quaternion-based Adaptive Attitude Tracking Controller without Velocity Measurements. Journal of Guidance, Contol and Dynamics. 2001, 24(6): 1214-1222
    26 H. Wong, M.S. de Queiroz, V. Kapila Adaptive Tracking Control Using Synthesized Velocity from Attitude Measurements. Automatica. 2001, 37(6): 947-953
    27 H. Miwa, M. R. Akella. Global Adaptive Stabilization using Output Feedback for Spacecraft Attitude Tracking. Advances in the Astronautical Sciences. 2002, 112(I): 345-357
    28 M. Shahravi, M. Kabganian. Attitude Tracking and Vibration Suppression ofFlexible Spacecraft using Implicit Adaptive Control Law. American Control Conference. 2005, 913-918
    29 D. Gennaro. Attitude Tracking for Flexible Spacecraft from Quaternion Measurements. Decision and Control. Proceedings of the 41st IEEE Conference, Les Vgas USA, Dec 2002: 4090-4091
    30 P. A. Blelloch and D. L. Mingroi. Robust Linear Quadratic Gaussian Control for Flexible Structures Journal of Guidance, Control and Dynamics. 1990, 13(1):66-72
    31 M. Seetharama, Sreenatha. Robust Low Order Dyanamic Controller for Flexible Spacecraft. IEEE Proceding-D. 1991, 138(5):460-486
    32 J. L. Junkings, H. Bang. Near-Minimum- Time Maneuvers of Flexible Vehicles: A Lyapunov Control Law Design Method. Mechanics and Control of Large Flexible Structure. Progress in Astronautics and Aeronautics, AIAA. Washington, DC. 1990: 129: 565-590
    33 L. L. Show, J. C. Juang, Y.-W. Jan, C. T. Lin. Quaternion Feedback Attitude Control Design: A Nonlinear H∞Approach. Asian Journal of Control. 2003, 5(3): 406-411
    34 P. TRsiotras. Stabilization and Optimality Results for the Attitude Control Problem. Journal of Guidance, Control and Dynamics, 1996, 19(4): 772-779
    35 J. T. Wen, K. K. Delgado. The Attitude Control Problem. IEEE Transactions on Automatic Control. 1991, 36(10): 1148-1162
    36 S. M. Joshi, A.G. Kelkar, J.T. Wen. Robust Attitude Stabilization of Spacecraft using Nonlinear Quaternion Feedback. IEEE Transactions on Automatic Control. 1995, 40(10): 1800-1803
    37 K. Subbarao. The Attitude Control Problem, Re-visited. Advances in the Astronautical Sciences. 2003, 115: 86-101
    38 S. Di Gennaro. Passive Attitude Control of Flexible Spacecraft from Quaternion Measurements. Journal of Optimization Theory and Application. 2003, 116(1): 41-60
    39 T. Shen, Z. Qu. Lyapujnov Recursive Design of Robust Adaptive Tracking Control with L2 -gain Performance for Electrically-driven Robot Manipulators. International Journal of Control. 2001, 74(8): 811-828
    40 R. Burkan. Design of an Adaptive Control Law Using TrigonometricFunctions for Robot Manipulators. Robotica. 2005, 23(1): 93-99
    41 C. Canudas de Wit, N. Fixot. Adaptive Control of Robot Manipulators via Velocity Estimated Feedback. IEEE Transactions on Automatic Control. 1992, 37(8)1234-1237
    42 M. Krstic, I. Kanellakopoulos, P. Kokotovic. Nonlinear and Adaptive Control Design and Automatic Control. 1991, 36(10): 1148-1162
    43 S. H. Ding, S. H. Li. Sliding Mode Control of Spacecraft Attitude with Finite-Time Convergence. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006. 2006: 830-834
    44 S. R. Vadali. Variable-structure Control of Spacecraft Large-angle Maneuvers. Journal of Guidance, Control and Dynamics. 1986, 9(2): 235-239
    45 B. Q. Wang, K. Gong, D. Yang, J. F. Li. Fine Attitude Control by Reaction Wheels using Variable-Structure Controller. Acta Astronautica. 2003, 52: 613-618
    46 C. S. Wu, B. S. Chen. Adaptive Attitude Control of Spacecraft: Mixed H2/H∞Approach. Journal of Guidance, Control and Dynamics. 2001, 24(4): 755-766
    47 Y. Park. Robust and Optimal Attitude Stabilization of Spacecraft with External Disturbances. Aerospace Science and Technology. 2005, 9(3): 253-259
    48 S. Di Gennaro. Stabilization of Rigid Spacecraft with Uncertainties and Input Saturation in a Central Gravitational Field. Proceedings of 36th Conference on Decision and Control. 1997, 4204-4209
    49 T. Yamashita, N. Ogura, T. Kurii, T. Hashimoto. Improved Satellite Attitude Control using a Disturbance Compensator. Acta Astronautica. 2004, 55(1): 15-25
    50 S. Di Gennaro. Adaptive Robust Tracking for Flexible Spacecraft in Presence of Disturbances. Journal of Optimization Theory and Applications. 1998, 98(3):545-568
    51 K. Subbarao, M. R. Akella. Differentiator-free Nonlinear Proportional-Integral Controllers for Rigid-Body Attitude Stabilization. Journal of Guidance, Control and Dynamics. 2004, 27(6): 1092-1096
    52 J. D. Bo?kovi?, S.-M. Li, R. K. Mehra. Robust Tracking Control Design forSpacecraft under Control Input Saturation. Journal of Guidance, Control and Dynamics. 2004, 27(4): 627-633
    53胡庆雷.挠性航天器姿态机动的主动振动控制.哈尔滨工业大学博士学位论文. 2006: 92-122
    54陕晋军.挠性空间飞行器的分力合成主动振动抑制方法研究.哈尔滨工业大学博士学位论文,哈尔滨,2002: 20-31
    55 E. E. Ungar. Vibration Isolation in Noise and Vibration Control Engineering: Principles and Applications, Edited by Leo L Beranek and Istvant L Ver John Wiley&Sons, Inc. 1992: 429-450
    56 E. E. Ungar. Vibration Isolation in Noise and Vibration Control Engineering: Principles and Applications, Edited by Leo L Beranek and Istvant L Ver John Wiley&Sons, Inc. 1992:451-480
    57 A. A. Ferri and B.S. Heck. Analytical Investigation of Damping Enhancement using Active and Passive Structural Joints. Journal of Guidance, Control and Dynamics, 1992, 15(5):1258-1264
    58 R. N. Clack and G.F. Franklin. Limit Cycle Oscillations in Pulse-Modulated Systems. J. Spacecraft, 1969, 6(7): 799-804
    59 J. M. Mendel. On-Off Limit Cycle Control for Reaction Jet Controlled Systems. IEEE Transactions on Automatic Control. 1970, 15(3): 285-299.
    60 R. A. Millar. Vigneron. Attitude Stability of a Pseudo Rate Jet Controlled Flexible Spacecraft. Journal of Guidance and Control, Mar-Apr 1979, 2(2): 111-118
    61耿云海,崔祜涛,杨涤.柔性飞行器的脉冲调制控制.宇航学报,1997. 18(4):37-43
    62 G. Song, N. Buck, and B. Agrawal, Spacecraft Vibration Reduction Using Pulse-Width Pulse-Frequency Modulated Input Shaper. Journal of Guidance, Control, and Dynamics,1999, 22(3): 433-440
    63 A. Flatau, D.L.Hall, J.Schlesselm. Magnet Strictive Active Vibration Control Systems. AIAA-92-0490
    64 A. Baz, S.Poh, Gillheany. A Multi-mode Distributed Sensor for VibratingBeam. ASME DSC_Control for Aerospace System, 1991, 35:1-6
    65 C. Liang, C.A. Rogers. Design of Shape Memory Alloy Springs with Applications in Vibration Control. ASME Transaction Journal of Vibrationand Ascoustics, 1993, 115(1):129-135
    66 A. Baz, and S. Poh, Performance of An Active Control System with Piezoelectric actuators. Journal of Sound and Vibration, 1988, 126(2): 327-343
    67 H. S. Tzou, Piezpelectric Shells-Distributed Sensing and Control of Continua. Kluwer Academic, London, 1993
    68 T. Bailey, J.E. Hubbard, Distributed Piezoelectric-Polymer Active Vibration Control of A Cantilever Beam. Journal of Guidance Control, 1985, 8(5):605-611
    69 A. Baz, and S. Poh, Independent Modal Space Control with Positive Position Feedback. Transaction of the ASME. 1992: 114-123
    70 L. Meirovitch and H. Baruh. The Implementation of Modal Filters for Control of Structures. J. Guidance, 1985, 8(9):707-716
    71 M. Papadopoulos, E. Garcia. Closed-loop pole Design for Vibration Suppression. Journal of Guidance, Control and Dynamics, 1997, 20 (2):333-337
    72 R. M. Abdel. Structural Control by Pole-Assignment Method. Transaction of the ASME. 1982, 104:69-72
    73 G. Song and B. Kotejoshyer, Vibration reduction of flexible structures during slew operations. International Journal of Acoustics and Vibration, 2002, 7(2): 105-109
    74 J. L. Fanson and T.K. Caughey, Positive position feedback control for large space structures. AIAA Journal, 1990, 28(4): 717-724
    75刘暾,陕晋军.应用分力合成主动振动抑制方法的挠性结构的大角度机动.计算力学学报,2000(增刊):118-122
    76王凤鸣,陕晋军,高桦等.应用分力合成方法的步进电机驱动方案研究.上海航天,2001,18(3):8-14
    77 J. J. Shan, D. Liu, New Optimal Large Angle Maneuver Strategy for Single Link. Chinese Journal of Mechanical Engineering, 2001, 14(3):224-230
    78 L. Y. Pao and W. E. Singhose. Unity-magnitude Input Shapers and Their Relation to Time-optimal Control. IFAC World Congress, San Franciso, CA, 1996:385-390
    79 K. Rogers and W. P. Seeing. Input Shaping for Limiting Loads and Vibrationin Systems with On-off Actuators. AIAA Guidance, Navigation, and Control Conference, San Diego, CA, 1996:1-9
    80 W. Singhose, B. Mills and W. Seering. Closed-Form Methods for Generating On-offf Commands for Undamped Flexible Structures. Journal of Guidance, Control and Dynamics, 1999, 22(2):378-382
    81 K. C. Hsu. Sliding Mode Controllers for Uncertain Systems with Input Nonlinearities. Journal of Guidance, Control and Dynamics, 1995, 21(3):666-669
    82 J. R. Werta. Spacecraft Attitude Determination and Control, D. Reidel publishing company, Dordrecht: Holland, 1978, Chap.7: 270-272
    83 K. C. Hsu. Variable Structure Control Design for Uncertain Dynamic System with Sector Nonlinearities, Automatica, 1998, 34(4):505-508
    84 K. C. Hsu. Adaptive Variable Structure Control Design for Uncertain Time-delayed Systems with Nonlinear Input. Dynamics and Control, 1998,8: 341-354
    85 K. C., Hsu, W. Y. Wang, and P. Z. Lin. Sliding mode control for uncertain nonlinear systems with multiple inputs containing sector nonlinearities and dead-zone, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(1):374-380
    86 K. C. Hsu. Decentralized Variable Structure Control Design for Uncertain Large Scale Systems with Series Nonlinearities. Int. J. Contr., 1997, 68(6):1231–1240
    87 K. K. Shyu, W. J. Liu and K. C. Hsu, Decentralized Variable Structure Control of Uncertain Llarge-Scale Systems Containing A Dead-Zone, IEE Proc. Control Theorey Appl., 2003,150(5):467-475
    88 K. K., Shyu, W. J. Liu and K. C. Hsu, Design of Large-Scale Time-Delayed Systems with Dead-Zone Input via Variable Structure Control, Automatica, 2005(41): 1239-1246
    89 J. J. Yan, K. K. Shyu, and J. S. Lin. Adaptive Variable Structure Control for Uncertain Chaotic Systems Containing Dead-zone Nonlinearity, Chaos, Solitons and Fractals, 2005(25): 247-355
    90 Y. J. Sun, J. G. Hsieh. Global Exponential Stabilization for a Class of Uncertain Nonlinear Systems with Time-varying Delay Arguments and InputDead-zone Nonlinearities, J. Franklin Inst., 1995, 322(5): 619-631
    91 Y. Shen, C. Liu, and H. Hu. Output Feedback Variable Structure Control for Uncertain Systems with Input Nonlinearities, Journal of Guidance, Control and Dynamics, 2000, 23(4):762-764
    92李传江.基于Lyapunov方法的航天器非线性姿态控制问题研究.哈尔滨工业大学博士学位论文. 2006
    93 S. Eppinger, W. Seering. Introduction to Dynamic Models for Robot Force Control. IEEE Control Systems Magazine. 1987, 7(2):48-52
    94 J. Yuan. Adaptive Control of Robotic Manipulators Including Motor Dynamics. IEEE Transactions on Robotics and Automation. 1995, 11(4): 612-617
    95 C. Y. Su, Y. Stepanenko. Hybrid Adaptive/Robust Motion Control of Rigid-link Electrically-Driven Robot Manipulators. IEEE Transactions on Robotics and Automation. 1995, 11(3): 426-432
    96 C. Y. Su, Y. Stepanenko. Backstepping-based Hybrid Adaptive Control of Robot Manipulators Incorporating Actuator Dyamics. International Journal of Adaptive Control and Signal Proceeding. 1997, 11(2): 141-153
    97 T. Yamashitaa, N. Ogurab. Improved Satellite Attitude Control Using a Disturbance Compensator. Acta Astronautica. 2004, 55(1): 1375-1383
    98 G. T. Tsing and R. H. Mahn. Flexible Spacecraft Control Design Using Pole Allocation Technique. AAS 77-1097. 1977: 1-6
    99 L. Meirovitch, M. K. Kwak. Control of Flexible Spacecraft with Time-Varying Configuration. Journal of Guidance, Control and Dynamics. 1992, 15(2): 314-324
    100 P. H. Mak, M. M. Tong and A. B. Jenkin. Dynamics and Control analysis of a Satellite with a Large Flexible Spinning Antenna. AAS 87-482. 1987: 935-951
    101 M. E. Stiebert. Robust Beam-Pointing and Attitude Control of a Flexible Spacecraft. Journal of Guidance. 1995, 9(2): 228-234
    102 B. N. Agrawal, R. J. Watkins. Experimental Verification of Attitude Control Techniques for Flexible Spacecraft. International Astronautical Federation. Montreal, Canada, 1991
    103 M. S. Siva, N. Venkateswaran, etc. Distrubance Compensator using InverseDynamics for Attitude Control of Flexible Spacecraft. International Astronautical Congress. Melbourne, Australia, 1998
    104 N. E. Goodzeit and M. Q. Phan. System and Periodic Disturbance Identification for Feedforward-Feedback Control of Flexible Spacecraft. AIAA. 1997: 1-15
    105 M. Sato and M. Suzuki. Vibration Control of Flexible Structures Using a Combined H∞Filter Approach. Journal of Guidance, Control and Dynamics, 1996, 19 (5):1000-1006
    106 J. L. Donald and J. I. Daniel. Pointing Control and Vibration Suppression of a Slewing Flexible Frame. Journal of Guidance, Control and Dynamics, 1994, 17 (3):529-536
    107 B. Wie and K. W. Warren. New Approach to Attitude Momentum Control for the Space Station. Journal of Guidance, Control and Dynamics, 1989, 12 (5):714-722
    108 Y. Chida, H. Soga, Y.Yamaguchi. On orbit Attitude Control Experiments Using ETS-VI by H∞Control and Two-Degree-of-freedom H∞Control. Journal of Guidance, Control and Dynamics, 1998, 21 (6):1109-1116
    109 B.S. Chen, C.S. Wu and Y.W. Jan. Adaptive Fuzzy Mixed H2/H∞Attitude Control of Spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1343-1359
    110 I. Utkin. Variable Structure Systems with Sliding Modes. IEEE Trans Autom Control, 1977,Vol.22, (2): 212-222
    111 Y. Tnag. Terminal Sliding Control of Robot Manipulators. Automatica, 1998, 34:51-56
    112 F. P. Yao, B. Observer Based Coordinated Adaptive Robust Control of Robot Manipulators Driven by Single-rod Hydraulic Actuators. IEEE International Conference on Robotics and Automation, 2000, 3:3034-3039
    113 F. J. Lin, S. L.Chiu, Adaptive Fuzzy Sliding Mode Control for PM Synchoronous Servo motor Drives. IEE Proc. Control Theory Appl., 1998, 145(1):63-72
    114 H. Yanada, H. Ohnishi, Frequency-shaped Sliding Mode Control of An Electrohydrautic Servo-motor. Proc. Instn. Mech. Engrs., Part I, Journal of Systems and Control and Dynamics, 1999, 213(1):441-448
    115 S. R. Vadali, Variable Structure Control of Spacecraft Large Attitude Maneuvers, Journal of Guidance, Control and Dynamics, 1986, 9(3): 235-239
    116 T. A. W. Dwyer, III and H. Sira-Ramirez, Variable Structure Control of Spacecraft Attitude Maneuver, Journal of Guidance, Control and Dynamics, 1988, 11(3):262-270
    117 S. C. Lo, and Y. P. Chen, Smooth Sliding Mode Control for Spacecraft Attitude Tracking Maneuvers, Journal of Guidance, Control and Dynamics, 1995, 18(6): 1345-1349
    118 J. L. Crassidis, and F. L. Markley, Sliding Mode Control Using Modified Rodrigues Parameters, Journal of Guidance, Control and Dynamics, 1996, 19(6): 1381-1383
    119 W. Tohru, K. Kennichi and T. Katsuhiro. A Sliding Mode intelligent Servo System to Improve the Path Accuracy and Power Consumption of Robot Manipulator. Japan/USA. Symposium on Flexible Automation. 1990:195-206
    120 K. S.Yeung, and Y. P. Chen , Regulation of a One-Link Flexible Robot Arms: New using Sliding Mode Control Technique, Int. J. Control, 1989, 49(6):1965-1978
    121 M. K. Sundareshan, C. Askew. Neural Network-assisted Variable Structure Control Scheme for Control of a Flexible Manipulator Arm. Automatic, 1997, 33(9):1699-1710
    122 D. Jovan, Bo?kovi?, S. M. Li, and K. Raman, Robust Adaptive Variable Structure Control of Spacecraft under Control Input Saturation, Journal of Guidance, Control and Dynamics, 2001, 24(1): 14-22
    123 T. Singh, M. F. Golnaraghi, and Dubly, R. N., Sliding Mode/Shaped Input Control of Flexible /Rigid Link Robots, J. Sound Vib, 1994, 171(2): 185-200
    124 Y. Zeng, A. D. Araujo, S. N. Singh, Output Feedback Variable Structure Adaptive Control of a Flexible Spacecraft, Acta, Astronautica, 1999, 44(1): 11-22
    125 A. Matthew, B. Z. Franco and S. Riccardo. Sliding Mode Control of a Large Flexible Space Structure. Control Engineering and Practice. 2000, 8(8): 861-871
    126 A. Sinha and D. W. Miller. Optimal Sliding Mode Control of a Flexible Spacecraft under Stochastic Disturbances. Journal of Guidance, Control and Dynamics, 1995, 18 (3): 486-492
    127 P. Guan, X.J. Liu and J.Z. Liu. Adaptive Fuzzy Sliding Mode Control for Flexible Satellite. Engineering Application of Artificial Intelligence, 2005, 18:451-459
    128 N. Jalili, N. Olgac. Time-Optimal/Sliding Mode Control Implementation for Robust Tracking of Uncertain Flexible Structures. Mechstronics, 1998, 8(1):121-142
    129 L. Behera, M. Gopal, and S. Chaudhury. On Adaptive Trajectory Tracking of a Robot Manippulator Using Inversion of Its Neural Rmulator. IEEE Trans. On Neural Networks. 1996, 7(6): 1401-1404
    130 D. Jovan, Boskovic, Sai-Ming Li and Raman K. Mehra. Robust Adaptive Variable Structure Control of Spacecraft under Control Input Saturation. Journal of Guidance, Control and Dynamics. 2001, 24(1):14-22
    131 S. N. Singh, D. De Araujo. Adaptive Control and Stabilization of Elastic Spacecraft. IEEE Transactions on Aerospace and Electronic Systems. 2002, 38(1): 334-341
    132 S. N. Singh, N. Zhang Rong, Adaptive Output Feedback Control of Spacecraft with Flexible Appendages by Modeling Error Compensation. Acta Astronautica, 2004, 54(4): 229-243
    133 R. G. Knapp. Fuzzy Based Attitude Controller for Flexible Spacecraft with on-off Thruter. 1993, N93-32228, NASA-CR-188250, Master of Science Thesis, MIT. 1993: 1-20
    134 A. K. Nam, R. W. Zhang. Fuzzy Multi-Variable Control for Attitude Stabilization of Flexible Spacecraft. IEEE International Conference Processing Systems. ZBeijing, 1997: 257-261
    135 T. Takagi, M. Sugeno. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systmes, Man, and Cybernetics. 1985, 15: 116-132
    136 T. Yu, V. D. Daniel, Robust Fuzzy Control of Mechanical Systmes, IEEE ransactions on Fuzzy Systems, 2003, 11(3): 411-415
    137 L. K. Wang, F.H.F.Leung, P.K.S. Tam, fuzzy model-based design of fuzzylogic controllers and its application on combining controllers, IEEE Trans. Ind.Elect. 45(3), 1998:502-509
    138 H. J. Lee, J. B. Park, G. Chen. Robust fuzzy control of nonlinear systems with parametric uncertainties, IEEE Trans. Fuzzy Syst. 9(2), 2001:369-379
    139 Y. Park, M. J. Tahk, Optimal stabilization of Takagi-Sugeno fuzzy systems with application to spacecraft control, J. Guidance, Control, and Dynamics, 2001, 24(4): 767-777
    140 G. Ping, Liu Xiang-Jie, Liu Ji-Zhen, Adaptive fuzzy sliding Mode Control for Flexible Satellite, Engineering Application of Artificial Intelligence, 2005(18): 451-459
    141 L. Meirovitch, et al. Dynamics and Control of Spacecraft with Retargeting Flexible Antennas. Journal or Guidance, Control and Dynamics. 1990, 13(2): 241-248
    142 S. Tafazoli. On Attitude Recovery of Spacecraft Using Nonlinear Control. Dissertation for the Doctoral Degree of Philosophy at Concordia University Montreal. 2005: 122-133
    143宋斌.航天器姿态鲁棒控制研究.哈尔滨工业大学博士学位论文. 2007
    144 B. Wie, C. M. Roithmayr. Attitude and Orbit Control of a Very Large Geostationary Solar Power Satellite. Journal of Guidance, Control and Dynamics. 2005, 28(3): 439-451
    145 P. Tsiotras. Stabilization and Optimality Results for the Attitude Control Problem. Journal of Guidance, Control and Dynamics. 1996, 19(4): 772-779
    146 G. Q. Xing, S. A. Parvez. Alternate Forms of Relative Attitude Kinematics and Dynamics Equations. Proceedings of a Conference Sponsored and Held at NASA Coddard Space Flight Center, Greenbelt, Maryland, 2001. 2001: 83-97
    147梅生伟,申铁农,刘康志.现代鲁棒控制理论与应用.清华大学出版社, 2003:14-18
    148 H. K. Khalil著.非线性系统.朱义胜,董辉,李作洲等译.电子工业出版社, 2005
    149 T. Anthony, B. Wei, and S. Carroll. Pulse Modulated Control Synthesis for a Spacecraft. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 1014-1015
    150 N. V. Buck. Minimum Vibration Maneuvers Using Input Shaping and Pulse-width pulse-frequency Modulated Thruster Control. Master Thesis, US Naval Postgraduate School, December, 1996
    151 G. Song, N. Buck and B. Agrawal, Spacecraft Vibration Reduction Using Pulse-Width Pulse-Frequency Modulated Input Shaper. Journal of Guidance, Control, and Dynamics, 1999,22(3): 433-440
    152 N. V. Buck. Minimum Vibration Maneuvers Using Input Shaping and Pulse-width pulse-frequency Modulated Thruster Control. Master Thesis, US Naval Postgraduate School, December, 1996
    153 G. Song and B. N. Agrawal, Vibration Suppression of the Flexible Spacecraft during Attitude Control. Acta Astronautica, 2001, 49(2):73-83
    154 S. Di Gennaro, Output stabilization of flexible spacecraft with active vibration suppression. IEEE Transactions on Aerospace and Electronic systems, 2003, 39(3):747-759
    155 C. Edwards and S. K. Spurgeon. Sliding Mode Stabilization of Uncertain Systems Using only Output Information. Int. J. Control. 1995, 62(5):1129-1144
    156 Q. L. Hu, G. F. Ma. Maneuvering and Vibration Suppression Using Variable Structure Output Feedback Control and Smart Materials. ASME Journal of Vibration and Acoustics, 2006, 128(2):221-230
    157 R. Zhang, and S. N. Singh, Adaptive Output Feedback Control of Spacecraft with Flexible Appendages, Proceedings of the American Control Conference, 2001: 3103-3107
    158 Q. L. Hu, G. F. Ma, Variable Structure Control for Flexible Spacecraft with Input Nonlinearities during Attitude Maneuver, Journal of Astronautics, 2006, 27(4): 630-634
    159 A. R. Benaskeur, A. Desbiens. Backstepping-Based Adaptive PID. IEE Proceedings - Control Theory and Applications. 2002, 149(1): 54-59
    160 K. Kim, Y. Kim. Robust Backstepping Control for Slew Maneuver using Nonlinear Tracking Functions. IEEE Transactions on Control Systems Technology. 2003, 11(6):822-829
    161 R. Wisniewski, P. kulczycki. Slew Maneuver Control for Spacecraft Equipped with Star Camera and Reaction Wheels. Control EngineeringPractice, 2005, 13: 349-356
    162 E. Abdulhamitbilal, E. M. Jafarov. Performances Comparison of Linear and Sliding Mode Attitude Controllers for Flexible Spacecraft with Reaction Wheels. Proceedings of the 2006 International Workshop on Variable Structure Control Systems, Alghero, Italy, 2006: 351-358
    163李士勇.模糊控制·神经控制和智能控制论.第2版.哈尔滨工业大学出版社, 1998:271-275
    164 B. Song, G. F. Ma, Chuanjiang Li, Jianting Lv. Quaternion-Based Fuzzy Attitude Regulation of a Rigid Spacecraft. The 6th World Congress on Intelligent Control and Automation. Dalian, China, June 21-23, 2006: 8434-8438
    165 G. F. Ma, B. Song, C. J. Li. Fuzzy Sliding Mode Control for a Spacecraft Attitude Tracking System. The 2nd IEEE Conference on Industrial Electronics and Applications. Harbin, China, May 23-25, 2007: 1696-1700

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700