两种表面改性TiO_2的制备及其可见光响应的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年来,研究者拓展了许多关于提高TiO_2可见光催化性能的研究,然而,由于TiO_2的可见光催化性能会受到多种因素的影响,因此关于不少改性TiO_2所体现的可见光催化活性的机理研究还不够成熟。本文在低温下通过简易的回流法制备了两种具有可见光响应性能的TiO_2,通过一系列对照实验探索了引起其可见光催化性能的主要活性物质,并进一步解释了两者在可见光作用下催化降解甲基橙的机理。
     1.以钛酸四丁酯为钛源,在酸性条件下回流制备了具有良好可见光催化性能的TiO_2纳米颗粒。其晶相主要为锐钛矿结构,颗粒粒径小且分布范围窄,约为4~5 nm。在该TiO_2的制备过程中,硝酸的参与不但能够促进TiO_2的胶化,抑制钛酸四丁酯的过度水解,还能够有助于TiO_2表面(尤其是锐钛矿(101)晶面)更多羟基的生成。在硝酸和正丁醇的协同作用下,TiO_2的晶粒表面容易在回流过程中形成烷氧基。一系列的对照实验和表征结果表明,表面烷氧基的形成是导致TiO_2具有可见光催化性能的主要原因。
     2.以钛酸四丁酯为钛源,采用简易的沉淀—氟化—回流晶化法在低温下制备了氟改性的TiO_2纳米颗粒(F-TiO_2)。颗粒形貌呈椭圆形,晶粒大小在5~8 nm。氟的引入不但有效抑制了板钛矿相TiO_2的生成,还从整体上提高了锐钛矿相TiO_2的晶化度;样品中的氟主要分布在TiO_2表面,以化学吸附态为主,并伴有少量的间隙氟。当以甲基橙作为降解底物时,实验制得的F-TiO_2在可见光下显示出了较强的催化性能。研究发现,F-TiO_2在可见光下对甲基橙的降解并不是由晶格氟离子或氧空位引起的,而是源于TiO_2表层吸附态氟离子和间隙氟离子的协同作用。
     3.两种形式的改性TiO_2对有机底物的可见光降解都是由其表面态引起的。经表面烷氧基改性的TiO_2能够通过LMCT过程被可见光激发,进而产生对其他有机底物的降解能力;而经氟离子改性的TiO_2对甲基橙的高效降解是源于由表面氟和间隙氟协同增强的染料自身敏化作用。因此,在研究拓展具有可见光响应能力的TiO_2时,必须充分考虑到在TiO_2制备过程中可能形成的表面态,并且有必要对不同结构有机物的光降解进行比较,以助于深入理解其可见光催化性能的本质。
In recent years, much effort has been made to development visible-light activated TiO_2-based materials. However, as the visible-light activity of titania could be affected by many factors, the mechanism study of some visible-light activated ion-modified TiO_2 catalysts are always in depute. In this study, we developed two kinds of surface-modified TiO_2 catalysts through a facile low-temperature refluxing method, both of which have obtained an effective visible-light activity in the degradation of methyl orange (MO). Through a serious of experiments, we investigated the substances which caused the visible light activity of titania, and tentatively discussed the degradation mechanism of MO under visible light on these two catalysts.
     1. A visible-light responsive anatase TiO_2 was synthesized through a peptizing-reflux method, using tetrabutyl titanate as the titanium precursor. The catalyst is mainly anatase, and composed of spherical-shaped nanoparticles (4~5 nm). We observed that in the synthetic process of TiO_2 catalysts, the nitric acid not only helps to peptize the titania, promote the formation of surface hydroxyl groups, but also inhibited the over-hydrolysis of tetrabutyl titanate; the presence of acid and hydrolysis products (n-butanol) cooperatively lead to the retention of more alkoxyl groups on the anatase surface, which is proved to be the main cause of the visible light activity.
     2. A fluorine-modified nanosized TiO_2 (F-TiO_2) was prepared through a precipitation -fluorination-reflux method. The results showed the small particle size (5~8 nm) of ellipsoidal shaped F-TiO_2 samples. The presence of fluorine not only suppressed the formation of brookite phase, but also improved the crystallinity of anatase phase. The fluorine atoms mainly distributed on the surface of TiO_2, and existed in both forms of chemical- adsorption and interstitial-doping. Compared to the pure titania, the fluorine-modified TiO_2 powder showed much higher degradation efficiency of methyl orange (MO) under visible light. Further investigation showed that the increased degradation rate of MO under visible light caused by the synergistic effect of chemical-adsorption and interstitial-doping fluorine atoms.
     3.The visible-light degradation of MO on the two kinds of modified TiO_2 catalysts was actually caused by surface states. On the alkoxyl-derived surface states, excited electrons could be generated and transfered easily through a ligand-to-metal charge transfer (LMCT) process under visible light irradiation. However, the degradation of MO on F-TiO_2 samples was actually caused by the enhanced self-degradation of dye on the surface states formed by fluorine atoms. Therefore, in the research of visible-light activited TiO_2 catalysts, the surface states of titania formed in the synthetic process should not be neglected; besides, the investigation on the degradation efficiency of different substrates is also essential to fully understand the intrinsic property of surface-modified TiO_2 catalysts.
引文
[1] Fox, M. A., Dulay, M. T., Heterogeneous Photocatalysis, Chemical Reviews[J], 1993, 93, 341-351.
    [2] Litter, M. I., Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems, Applied Catalysis B: Environmental[J], 1999, 23, 89-114.
    [3] Hoffmann, M. R., Martin, S. T., Choi, W., et al., Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews[J], 1995, 95, 69-96.
    [4]刘守新,刘鸿,光催化及光电催化基础与应用[M],北京:化学工业出版社, 2006.
    [5]杨树人,王宗昌,王兢,半导体材料[M],北京:科学出版社, 2004.
    [6] Mills, A., Lehunte, S., An overview of semiconductor photocatalysis[J], Journal of Photochemistry and Photobiology A-Chemistry, 1997, 108(1), 1-35.
    [7] Hoffmann, M. R. Martin, S. T., Choi, W., et al., Environmental applications of semiconductor photocatalysis[J], Chemical Reviews, 1995, 95(1),69-96.
    [8] Fujishima, A., Zhang, X. T., Tryk, D. A., TiO_2 photocatalysis and related surface phenomena[J], Surface Science Reports, 2008, 63(12), 515-582.
    [9] Gaya, U. I., Abdullah, A. H., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J], Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2008, 9(1),1-12.
    [10]刘畅,暴宁钟,杨祝等,过渡金属离子掺杂改性TiO_2的光催化性能研究进展[J],催化学报, 2001, 22, 215-218.
    [11] Choi W., Termin A, Hoffmann M. R. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination Dynamics[J], Journal of Physical Chemistry[J], 1994, 98, 13669-13679
    [12] Choi, J. Park, H., Hoffman, M. R., Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO_2, Journal of Physical Chemistry C[J], 2010, 114(2), 783-792.
    [13] Li, D., Haneda, H., Labhsetwar, N. K., et al., Visible-light-driven photocatalysis on fluorine-doped TiO_2 powders by the creation of surface oxygen vacancies, Chemical Physics Letters[J], 2005, 401, 579-584.
    [14] Luo, H., Takata, T., Lee, Y., et al. Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine, Chemistry of Materials[J], 2004, 16, 846-849.
    [15] Umebayashi, T., Yamaki, T., Tanaka, S., et al., Visible-light induced degradation of methylene blue on S-doped TiO_2[J], Chemistry Letters, 2003, 32(4), 330-331.
    [16] Asahi, R., Morikawa, T., Ohwaki, T., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides[J], Science, 2001, 293(5528), 269-271.
    [17] Yu, A. M., Wu, G. J., Zhang, F. X., et al., Synthesis and characterization of N-doped TiO_2 nanowires with visible light response[J], Catalysis Letters, 2009, 129(3-4), 507-512.
    [18] Chen, X. B., Lou, Y. B., Samia, A. C. S., et al., Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder[J], Advanced Functional Materials, 2005, 15(1), 41-49.
    [19] Khan, S.U.M., Al-Shahry, M., William, J., Ingler, B., Science[J], 2002, 297, 2243-2245.
    [20] Huang, Y., Ho, W., Lee, S., et al., Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NOx, Langmuir[J], 2008, 24, 3510-3516.
    [21] Xiao, Q., Zhang, J., Xiao, C., et al., Solar photocatalytic degradation of methylene blue in carbon-doped TiO_2 nanoparticles suspension, Solar Energy[J], 2008, 82: 706-713.
    [22] Ren, W., Ai, Z., Jia, F., et al., Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO_2, Applied Catalysis B: Environmental[J], 2007, 69, 138-144.
    [23] Wu, Y., Xing, M., Zhang, J., et al., Effective visible light-active boron and carbon modified TiO_2 photocatalyst for degradation of organic pollutant, Applied Catalysis B: Environmental[J], 2010, 97, 182-189.
    [24] Park, Y., Kim, W., Park, H., et al., Carbon-doped TiO_2 photocatalyst synthesized without using an external carbon precursor and the visible light activity, Applied Catalysis B: Environmental[J], 2009, 91, 355-361.
    [25] Chen, C., Long, M., Zeng, H., et al., Preparation, characterization and visible-light activity of carbon modified TiO_2 with two kinds of carbonaceous species[J], Journal of Molecular Catalysis A: Chemical[J], 2009, 314, 35-41.
    [26] Toyoda, M. Yano, T., Tryba, B., et al., Preparation of carbon-coated Magneli phases TinO2n?1 and their photocatalytic activity under visible light, Applied Catalysis B: Environmental[J], 2009, 88, 160-164.
    [27] Yu, J. C., Ho, W. K., Yu, J. G., et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania[J], Environmental Science and Technology, 2005, 39(4), 1175-1179.
    [28] Toji, S., Tachikawa, T., Fujitsuka, M., et al., Iodine-doped TiO_2 photocatalysts: Correlation between band structure and mechanism[J], Journal of Physical Chemistry C, 2008, 112(38), 14948-14954.
    [29] Hong, X. T., Wang, Z. P., Cai, W. M., et al., Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide[J], Chemistry of Materials, 2005, 17(6), 1548-1552.
    [30] Martra G., Lewis acid and base sites at the surface of microcrys-talline TiO_2 anatase: relationships between surface Morphology and Chemical behaviour[J], Applied Catalysis A, 2000, 200(2), 275-283.
    [31] Serpone N., Texier I., Emeline A. V., et al., Post-Irradation effect and reductive dechlorination of chlorophenols at oxygen-free TiO_2/water interfaces in the presence of prominent hol scavengers[J], Journal of Photochemistry and Photobiology A, 2000, 136(3), 145-152.
    [32]王朋,表面等离子体增强AgX (X=Cl, Br, I)及其复合材料的制备、表征和光催化性能研究[D],山东,山东大学, 2010.
    [33] Kumar, A., Jain, A. K., Photophysics and photochemistry of CdS-TiO_2 coupled semiconductors-photocatalytic oxidation of indole[J], Journal of Molecular Catalysis A-Chemical, 2001, 165(1-2), 265-273.
    [34] Brahimi, R., Bessekhouad, Y., Bouguelia, A., et al., Improvement of eosin visible light degradation using PbS-sensititized TiO_2 [J], Journal of Photochemistry and Photobiology A-Chemistry, 2008, 194(2-3), 173-180.
    [35] Ratanatawanate, C., Tao, Y., Balkus, K. J., Photocatalytic activity of PbS quantum dot/TiO_2 nanotube composites[J], Journal of Physical Chemistry C, 2009, 113(24), 10755-10760.
    [36] Kwon Y. T., Song K. Y., Lee W. I., Choi G. J., Photocatalytic behavior of WO3-loaded TiO_2 in an oxidation reaction[J]. Journal of Catalysis, 2000, 191, 19 2-199.
    [37] O’Regan B,Gratzel M. A, A low-cost, high-efficiency solar cell based on dye sensitized colloid TiO_2 film, Nature[J], 1991, 353, 737-739.
    [38] Deng H. H., Lu Z. H., Heteroaggregation and photoelectric conversion of porphyrins on a nanostructured TiO_2 electrode, Supramolecular Science[J], 1998, 5, 669-674
    [39] Deng H. H., Lu Z. H., Shen Y. C, et al., Improvement in photoelectric conversion of a phthalocyanine sensitized TiO_2 electrode by doping with porphyrin, Chemical Physics[J], 1998, 23l, 95-103.
    [40] Amao, Y., Yamada, Y., Aoki, K., Preparation and properties of dye-sensitized solar cell using chlorophyll derivative immobilized TiO_2 film electrode[J], Journal of Photochemistry and Photobiology A-Chemistry[J], 2004, 164(1-3), 47-51.
    [41]崔强,形貌与结构对TiO_2纳米管光催化性能和抗菌性能的影响[D],四川,西南交通大学, 2010.
    [42]苏俊霞,不同形貌的纳米TiO_2光催化氧化降解水中TNT及RDX的小试研究[D],山西,中北大学, 2005.
    [43]龙明策,新型光催化剂的制备、表征及其光催化活性的调控机制[D],上海,上海交通大学, 2007.
    [44] Hu C., Wang Y. Z., Tang H. X., Preparation and Charaction of surface bond-conjugated TiO_2/SiO2 and photocatalysis for Azo dyes, Applied Catalysis B: Environmental[J], 200l, 30(3/4), 277-285.
    [45] Chen J, Ollis D. F., Rulkens W. H., et al., Photocatalytic oxidation of alcohols and organochorides in the presence of native TiO_2 and metallized TiO_2 suspensions. Part(1): photocatalytic activity and pH influence, Water Research[J], 1999, 33(3), 661-668.
    [46] Bischoff, B. L., Anderson, M. A., Chemistry of Materials[J], 1995, 7, 1772-1778.
    [47] Morrison, S. R. Electrochemistry at semiconductor and oxidized metal electrodes[M]. Plenum Press, 1980, 154-155.
    [48]张音波, TiO_2光催化降解甲基橙的试验及机理研究[D].广东,广东工业大学, 2002.
    [49]刘媛媛,潘纲,吸附模式对有机物光催化降解的影响1. H-酸在TiO_2表面的吸附模式,环境化学[J], 2006(1), 2-5.
    [50]刘媛媛潘纲,吸附模式对有机物光催化降解的影响2. H-酸在TiO_2表面的光催化降解途径,环境化学[J], 2006(1), 6-10.
    [51]吴清辉,表面化学与多相催化[M],北京:化学工业出版社, 1988, 130-154.
    [52]张兴堂,王玉梅,张春梅等,钛酸纳米管的化学修饰及发光性能的稳定化,中国科学B辑:化学[J], 2005, 35(5), 372-377.
    [53]孙奉玉,吴鸣,李文钊等,二氧化钛表面光学特性与光催化活性的关系,催化学报[J], 1998(19), 121-124.
    [54]曹亚安,谢腾峰,张昕彤, TiO_2纳米粒子膜表面性质的研究,物理化学学报[J], 1999, 15(8), 680-683.
    [55] Wang, Q., Chen, C., Zhao, D., Ma, W., Zhao, J., Change of Adsorption Modes of Dyes on Fluorinated TiO_2 and Its Effect on Photocatalytic Degradation of Dyes under Visible Irradiation, Langmuir[J], 2008, 24, 7338-7345
    [56] Cho, Y., Kyung, H., Choi, W., Visible light activity of TiO_2 for the photoreduction of CCl4 and Cr(VI) in the presence of nonionic surfactant (Brij), Applied Catalysis B[J], 2004, 52, 23-32.
    [57] Kim, S., Choi, W., Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated path, Journal of Physical Chemistry B[J], 2005, 109, 5143-5149.
    [58] Alvaro, M., Carbonell, E., Fornes, V. et al., Enhanced photocatalytic activity of zeolite-encapsulated TiO_2 clusters by complexation with organic additives and N-doping, ChemPhysChem[J], 2006, 7, 200-205.
    [59] Chen, F., Zou, W., Qu, W., et al., Photocatalytic performance of a visible light TiO_2 photocatalyst prepared by a surface chemical modification process, Catalysis Communications[J], 2009, 10, 1510-1513.
    [60] Weng, Y. X., Wang, Y. Q., Asbury, J. B., et al., Back electron transfer from TiO_2 nanoparticles to FeIII(CN)63-: origin of non-single-exponential and particle size independent dynamics, Journal of Physical Chemistry B[J], 2000,104, 93.
    [61] Khoudiakov, M. A., Parise, R., Brunschwig, B.S., Interfacial electron transfer in FeII(CN)64--sensitized TiO_2 nanoparticles: a study of direct charge injection by electroabsorption spectroscopy, Journal of the American Chemical Society[J], 2003, 125, 4637-4642.
    [62] Ghosh, H. N., Asbury, J. B., Weng, Y., et al., Interfacial electron transfer between FeII(CN)64- and TiO_2 nanoparticles: direct electron injection and nonexponential recombination, The Journal of Physical Chemistry B[J], 1998, 102, 10208-10215.
    [63] Wu, D. Long, M. Cai, W., et al., Low temperature hydrothermal synthesis of N-doped TiO_2 photocatalyst with high visible-light activity, Journal of Alloys and Compounds[J], 2010,502, 289-294.
    [64] Li, H., Zhao, G., Chen, Z., et al., Low temperature synthesis of visible light-driven vanadium doped titania photocatalyst. Journal of Colloid and Interface Science[J], 2010, 344, 247-250.
    [65] Xu, J., Ao, Y., Fu, D., Yuan, C., A simple route to synthesize highly crystalline N-doped TiO_2 particles under low temperature, Journal of Crystal Growth[J], 2008, 310, 4319-4324.
    [66] Xu, J., Ao, Y., Chen, M., et al., Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity, Journal of Alloys and Compounds[J], 2009, 484, 73-79.
    [67] Xu, J., Ao, Y., Fu, D., Yuan, C., Low-temperature preparation of F-doped TiO_2 film and its photocatalytic activity under solar light, Applied Surface Science[J], 2008, 254, 3033-3038.
    [68] Hao, H.-Y., He, C.-X., Tian, B.-Z., Zhang, J.-L., Study of photocatalytic activity of Cd-doped mesoporous nanocrystalline TiO_2 prepared at low temperature, Research on Chemical Intermediates[J], 2009, 35, 705-715.
    [69] Stafford, U., Gray, K. A., Kamat, P. V., Varma, A., Chemical Physics Letters[J], 1993, 205, 55-61.
    [70]黄剑锋,溶胶—凝胶原理与技术[M],北京:化学工业出版社, 2005, 64.
    [71]周武艺,唐绍裘,万隆等.制备条件对纳米TiO_2晶型及其晶相含量影响的研究,稀有金属[J], 2004, 28(4), 631-634.
    [72] Bezrodna, T., Puchkovska, G., Shimanovska, V., et al., Pyridine-TiO_2 surface interaction as a probe for surface active centers analysis, Applied Surface Science[J], 2003, 214, 222-231.
    [73] Hung, W.-C., Fu, S.-H., Tseng, J.-J., et al., Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO_2 prepared by the sol–gel method, Chemosphere[J], 2007, 66, 2142–2151.
    [74] Zhang, D., Shen, Y. R., Somorjai, G. A., Studies of surface structures and compositions of polyethylene and polypropylene by IR+ visible sum frequency vibrational spectroscopy, Chemical Physics Letters[J], 1997, 281, 394-400.
    [75] Patino, P., Sanchez, N., Suhr, H., et al., Reactions of Nonequilibrium Oxygen Plasmas with Liquid Olefins, Plasma Chemistry and Plasma Processing[J], 1999, 19(2), 241-254.
    [76] Mamedov, M. K., Nabieva, E. K., Rasulova, R. A., Synthesis of Esters from Cage-Like Unsaturated Hydrocarbons, Carboxylic Acid Anhydrides, and Water, Russian Journal of Organic Chemistry[J], 2005, 41, 974-977.
    [77] Stuart, A. V., Sutherland, G. B. B. M., Effect of Hydrogen Bonding on the Deformation Frequencies of the Hydroxyl Group in Alcohols, Journal of Chemical Physics[J], 1956, 24, 559-570.
    [78] Matsuura, H., Yoshida, H., Hieda, M., et al., Experimental Evidence for Intramolecular Blue-Shifting C-H···O Hydrogen Bonding by Matrix-Isolation Infrared Spectroscopy, Journal of American Chemical Society[J], 2003, 125, 13910-13911.
    [79] Kar, T., Scheiner, S., Comparison of Cooperativity in CH···O and OH···O Hydrogen Bonds, Journal of Physical Chemistry A[J], 2004, 108, 9161-9168.
    [80] Masunov, A., Dannenberg, J. J., C-H Bond-Shortening upon Hydrogen Bond Formation: Influence of an Electric Field, Journal of Physical Chemistry A[J], 2001, 105, 4737-4740.
    [81] Lettmann, C., Hildenbrand, K., Kisch, H., et al., Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst, Applied Catalysis B: Environmental[J], 2001, 32, 215-227.
    [82] Sakthivel, S., Kisch, H., Daylight Photocatalysis by Carbon-Modified Titanium Dioxide, Angewandte Chemie International Edition[J], 2003, 42, 4908-4911.
    [83] Kumar, P. M., Badrinarayanan, S., Sastry, M., Nanocrystalline TiO_2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states, Thin Solid Films[J], 2000, 358, 122-130.
    [84] U. Diebold, The surface science of titanium dioxide, Surface Science Reports[J], 2003, 48, 53-229.
    [85] Selloni, A., Vittadini, A., Gratzel, M., The adsorption of small molecules on the TiO_2 anatase (101) surface by first-principles molecular dynamics, Surface Science[J], 1998(402-404), 219-222.
    [86] Xu, J., Ao, Y., Fu, D., Yuan, C., Low-temperature preparation of F-doped TiO_2 film and its photocatalytic activity under solar light, Applied Surface Science[J], 2008, 254, 3033-3038.
    [87] Tang, J., Quan, H., Ye, J., Photocatalytic Properties and Photoinduced Hydro- philicity of Surface-Fluorinated TiO_2, Chemistry of Materials[J], 2007, 19, 116-122.
    [88] Li, D., Ohashi, N., Hishita, S., et al., Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO_2 powders by means of experimental characterizations and theoretical calculations, Journal of Solid State Chemistry[J], 2005, 178, 3293-3302
    [89] Ho, W., Yu, J. C., Lee, S., Synthesis of hierarchical nanoporous F-doped TiO_2 spheres with visible light photocatalytic activity, Chemical Communications[J], 2006, 1115-1117
    [90] Ren, G., Gao, Y., Liu, X., Synthesis of high-activity F-doped TiO_2 photocatalyst via a simple one-step hydrothermal process, Reaction Kinetics and Catalysis Letters[J], 2010, 100, 487-497.
    [91]黄冬根,廖世军,党志,氟掺杂锐钛矿型TiO_2溶胶的制备、表征及催化性能,化学学报[J], 2006, 64, 1805-1811.
    [92]任达森,崔晓莉,张群等,常温下纳米TiO_2薄膜的制备及其超亲水性研究,真空科学与技术[J], 2002, 22, 421-424.
    [93] Park, H., Choi, W., Effects of TiO_2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors, Journal of Physical Chemistry B[J], 2004, 108, 4086-4093.
    [94]朱遂一,霍明昕,张蕾蕾等,氟掺杂纳米二氧化钛制备及其光催化性能研究进展,科技导报[J], 2010, 28(6), 112-115.
    [95]苏会东,二氧化钛光催化剂的制备及其性能研究[D].辽宁:东北大学, 2005.
    [96] Czoska, A. M., Livraghi, S., Chiesa, M., et al., The Nature of Defects in Fluorine-Doped TiO_2, The Journal of Physical Chemistry C, 2008, 112, 8951-8956.
    [97]陈艳敏,钟晶,陈锋等,氟掺杂纳米TiO_2薄膜的低温制备及其光催化性能催化学报[J], 2010, 31(1), 120-125.
    [98] Christine, M.-D., Joseph, R., Jacques, J. V., Electronic Structure X-ray Photoelectron of Titanium(III) and Titanium(IV) Halides Studied by Solid-Phase Spectroscopy, Inorganic Chemistry[J], 1987, 26, 1212-1217.
    [99] Arichi, J., Louis, B., Toward Microscopic Design of Zeolite Crystals: Advantages of the Fluoride-Mediated Synthesis, Crystal Growth & Design[J], 2008, 8(11): 3999-4005.
    [100] Louis, B., Lioubov K.-M, Synthesis of ZSM-5 zeolite in fluoride media: an innovative approach to tailor both crystal size and acidity, Microporous and Meso- porous Materials[J], 2004, 74, 171-178.
    [101] Minero, C., Mariella, G., Maurino, V., et al., Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxide-Fluoride System, Langmuir[J], 2000, 16, 2632-2641.
    [102] Vohra, M., Kim, S., Choi, W., Effects of surface fluorination of TiO_2 on the photocatalytic degradation of tetramethylammonium, Journal of Photochemistry and Photobiology A[J], 2003, 160(1-2), 55-60.
    [103] Liu, G., Wu, T., Zhao, J., et al., Photoassisted Degradation of Dye Pollutants. 8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air- Equilibrated Aqueous TiO_2 Dispersions, Environmental Science and Technology[J], 1999, 33, 2081-2087.
    [104] Chen, C., Zhao, W., Li, J., et al., Formation and Identification of Intermediates in the Visible-light-Assisted Photodegradation of Sulforhodamine-B Dye in Aqueous TiO_2 dispersion, Environmental Science and Technology[J], 2002, 36, 3604-3611
    [105] Neumann, B., Bogdanoff, P., Tributsch, H., et al., Electrochemical Mass Spectroscopic and Surface Photovoltage Studies of Catalytic Water Photooxidation by Undoped and Carbon-Doped Titania, Journal of Physical Chemistry B[J], 2005, 109, 16579-16586.
    [106] Emeline, A. V., Vladimir, K. R., Serpone, N., Spectral Dependencies of the Quantum Yield of Photochemical Processes on the Surface of Nano-/Micro- particulates of Wide-Band-Gap Metal Oxides. 1. Theoretical Approach, Journal of Physical Chemistry B[J], 1999, 103, 1316-1324.
    [107] Emeline, A. V., Kataeva, G. V., Ryabchuk, V. K., et al., Photostimulated Generation of Defects and Surface Reactions on a Series of Wide Band Gap Metal-Oxide Solids, Journal of Physical Chemistry B[J], 1999, 103, 9190-9199.
    [108] Volodin, A. M., Photoinduced phenomena on the surface of wide-band-gap oxide catalysts, Catalysis Today[J], 2000, 58, 103-114.
    [109]尤先锋,陈锋,张金龙等,银促进的TiO_2光催化降解甲基橙,催化学报[J], 2006, 27(3), 270-274.
    [110]朱明华,仪器分析(第三版),北京:高等教育出版社, 2000, 275-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700