絮凝剂产生菌GA1及所产絮凝剂MBFGA1的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物絮凝剂是微生物在生长过程中所产生的代谢产物,其主要成分为多糖、糖蛋白、蛋白质、纤维素、核酸等。与其它絮凝剂相比,微生物絮凝剂具有种类多、来源广、培养条件粗放、絮凝性能好、无环境毒性等特点。由于传统的絮凝剂存在不同的缺陷,尤其是铝系絮凝剂和聚丙烯酰胺类絮凝剂具有环境毒性。因此,微生物絮凝剂自从问世以来便受到广泛的关注,具有重要的研究价值和应用前景。
     多粘类芽孢杆菌Paenibacillus polymyxa GA1为本实验室从土壤中筛选出来的一株高效产絮菌株,所产絮凝剂MBFGA1具有广泛的絮凝、脱色作用。本论文针对GA1培养特性以及所产絮凝剂MBFGA1产生情况、絮凝性能等方面展开了广泛深入的研究,主要工作有:(1)考察了MBFGA1理化性质、絮凝效果、影响因素;(2)考察了GA1发酵培养基以及各组分的对絮凝的影响,并深入研究影响机理;(3)研究磷酸盐对GA1培养过程参数、MBFGA1化学构成和产生情况的影响及机制;(4)研究了GA1菌株和MBFGA1对重金属铜离子的去除情况。
     研究表明,MBFGA1主要成分为多糖,热稳定性良好;GA1发酵液在CaCl_2存在条件下和偏碱时对高岭土、土壤废水、洗煤废水等絮凝效果达到95%以上,但对垃圾渗滤液处理效果相对较差,絮凝率为58%左右;
     培养基中磷酸盐在CaCl_2存在下,pH值中性偏碱时对各种废水均表现一定的絮凝性,在MBFGA1絮凝废水的过程中起重要作用,且作用离子为PO_4~(3-)和Ca2+;这两种离子在pH值中性偏碱时能有效降低高龄土悬液的ξ电位绝对值到接近零,使胶体脱稳;PO_4~(3-)和Ca~(2+)+形成絮状沉淀后,能网捕脱稳颗粒,进而在MBFGA1桥联作用下颗粒结团沉降完成絮凝;发酵培养基虽有一定絮凝性,但效果不佳,处理后上清液颗粒平均粒径远大于发酵液处理后,且絮体、泥饼性质差异大,不利于工业应用和后续处理;BaSO4亦有一定的助凝效果,但因沉淀本身性质差异,其效果劣于磷酸钙。
     磷酸盐对GA1的生长曲线阶段划分影响较小,但能有效促进对数生长速率和最终生物量;磷酸盐非MBFGA1合成的必要条件,但能促进产絮快速启动,缩短产品收获时间,提高最终单位产率,其他条件相同时,含有磷酸盐的培养基最终单位产率比不含磷酸盐的培养基高30%;磷酸盐对体系pH值变化具有缓冲作用,能维持pH值相对稳定,有利于GA1菌体的生长;含有磷酸盐的培养基和不含磷酸盐的培养基产生的MBFGA1均为多糖结构,区别在于前者结构中不含叁键和累积双键,而后者含有R-C≡CH。
     GA1菌体对重金属铜离子有一定的吸附去除效果,且吸附平衡时间较短,为8min。吸附作用为表面吸附,不参与能量和物质代谢;不同生长阶段的GA1对铜离子去除效果差异较大,静止期内,吸附效果微弱,之后吸附率快速上升,在对数尾期达最高值74%,高于用发酵液处理时的最高值;MBFGA1对铜离子有一定的去除作用,但效果较弱,最大负载为1 mg/ 3mg;pH值对发酵液吸附效果影响较大,pH为6时吸附效果最佳,为74%。
Bioflocculants, having good flocculating activity, are the metabolic products of the microorganism, which are safe, non-toxic , easily cultivated, and can be biodegraded. Its main components are amylose, glycoprotein, nucleic acid, protein etc. Since the advantages of using bioflocculants in both environmental safety and economic over some other inorganic flocculants and organic flocculants, great attention has been payed to explore the bioflocculants mechanism and to investigate their characteristics in use. As a result, it is of great value in the research of bioflocculant.
     Paenibacillus polymyxa GA1 was a bacteria with high bioflocculant producing rate which was screened from soil by our lab. It could produce bioflocculant MBFGA1 with superordinary flocculability and decolourising property.This study focused on flocculability of MBFGA1and the situation of GA1’s growth. The works remained: (1) research into the characteristic ,flocculability and influencing factors of MBFGA1; (2) study on the influence and mechanism of culture medium and its ingredients to flocculability; (3) study on the influence of phosphate to the parameter in culturing, chemical structure and producing situation; (4) study on the adsorption of Cu2+.
     The study showed, MBFGA1’s main component was polysaccharide, and its thermal stability was superordinary. With CaCl_2, when pH>7,the flocculating rate of kaolin, soil waste water and coal waste water were above 95%,but only about 58% of landfill leachate.
     Different wastewater samples could be flocculated by phosphate in the culture medium with CaCl2 when pH >7.0. K_2HPO_4 and KH_2PO_4 were the key factors when the wastewater was treated by the microbial flocculant produced by GA1(MBFGA1).The contributing ions were PO_4~(3-) and Ca~(2+). The absolute value of kaolin’s zeta potential could be brought down by these two ions to about 0, hence the stabilization of the colloid was broken. The unstable grains could be captured by the floccule of calcium phosphate, then the grains coagulated with MBFGA1 and settled. Although the wastewater could be flocculated by the culture medium alone, the effect was poor. The average granularity of kaolin was much bigger than that treated by fermentation and the floc properties are inappropriate for industrial conditions. Kaolin could also be flocculated with the help of BaSO4, but because of the difference of deposition, the effect was not as good as Ca3(PO4)2.
     The growth velocity in logarithm-time and the final productivity could be increased because of Phosphate,but there was no difference in division of cell growth curve with or without Phosphate. Phosphate was not necessary when MBFGA1 was produced,but the start-point of producing could be earlier with it. The final unit productivity with phosphate was 30% higher then without phosphate when the other factors were the same; The phosphate was some kind of buffering agent which made the pH steady.Steady pH was good for the cell growth. Both the MBFGA1with phosphate or without phosphate were polysaccharide, the only difference in structure was that there was R-C≡CH in the former but not in the latter.
     Paenibacillus polymyxa GA1 could adsorbed Cu~(2+), and the equilibration time was 8 min. This adsorption effect was surface adsorption, Cu~(2+) did not participate the energy and principle metabolism. The adsorption effect of GA1 in different phase was different, the effect of GA1 in stationary phase was poor, and than the effect was rising faster,the best adsorption effect occurred in the phase of last logarithm-time,the adsorption rate was 74%.
引文
[1] 郑怀礼.生物絮凝剂与絮凝技术[M].北京:化学工业出版社,2004:91-194
    [2] 常青.水处理絮凝学[M].北京:化学工业出版社,2003:50-160
    [3] 王建龙,文湘华.现代环境生物技术[M].北京:清华大学出版社,2001:287-302
    [4] 常青.絮凝科学的研究与进展[J].环境科学,1993,15(1):69-72
    [5] 周风山,王世虎,李继勇,等. 含硅多核无机高分子絮凝剂研究进展[J].油田化学,2002,19(4):391-394.
    [6] 杜冬云,周珊,王代之,等. 硅铁复合型絮凝剂的实验研究[J].湖北化工,2002 (5):7-9.
    [7] 邱俊明,邱祖民.聚硅酸类絮凝剂的研究进展[J].江西科学,2003,21(1): 38- 41.
    [8] 刘立华,郑雅杰,龚竹青. 聚合铁盐絮凝剂的研究进展与发展趋势[J].现代化工, 2002,22(10):18-21.
    [9] 汤鸿霄. 无机高分子絮凝剂的科学与技术进展[J].水处理信息报导,1997, (4):36-43.
    [10] 张育新,康勇. 絮凝剂的研究现状及发展趋势[J].化工进展,2002,21(11): 799-804
    [11] 张国杰,王栋,程时远. 有机高分子絮凝剂的研究进展[J].化学与生物工程, 2004(1):10-13.
    [12] 秦丽娟,陈夫山. 有机高分子絮凝剂的研究进展及发展趋势[J].上海造纸, 2004,35(1):41-43.
    [13] Mohamed I Khalil ,Amal A Aly , et al. Evaluation of some starch derivatives containing amide groups as flocculants[J].Starch/Strike, 2001,53:323-329.
    [14] Song B K,Cho M S , Yoon K J ,et al. Dispersion polymerizetion of acrylamide with quaternary ammonium cationic comonomer in aqueous solution[J].Journal of Applied Polymer Science,2003,87(7):1101-1108.
    [15] Inchausti Irune ,Hernuez Estibaliz,Pedro M Sasia. Synthesis and characterization of polyacrylamides in inverse emulsions with an isoparaffinic solvent[J]. Macromolecular Chemistry and Physics, 2001, 202(9):1837-1843.
    [16] Cho M S, Yoon K J,Song B K. Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate: Synthesis andcharacterization[J].Journal of Applied Polymer Science,2002,83(7):1397-1405.
    [17] Zhang Weihua ,Hou Xiaohuai. Plasma initiated aqueous solution polymerization of acrylamide [J] . Polymer Advanced Technology , 1999 , 10 (7) :465 - 467.
    [18] 王强林,李旭祥,吕飞. 有机高分子絮凝剂的研究现状(一、二) [J].精细与专用化学品,2003(20):16-17 ;精细与专用化学品,2003,(21):21-23.
    [19] 黎载波,王国庆,邹龙生. 有机高分子絮凝剂在印染废水处理中的应用[J].工业水处理,2003,23(4):14-17.
    [20] 岳钦艳,赵华章,高宝玉. 有机高分子絮凝剂P (DMDAAC- VTMS) 和P(DM DAAC - AM - VTMS) 的合成及絮凝性能研究[J] .工业水处理, 2001 , 21(3): 16-20.
    [21] 马希晨,邰玉蕾. S - DMDAAC - AM 强阳离子型天然高分子絮凝剂的合成[J] . 精细石油化工, 2002(2):13-16.
    [22] 宋辉,马希晨. SAH 阴离子天然高分子改性絮凝剂的合成及应用[J].皮革化工,2003 ,20(3):17-21.
    [23] 张世军,李思健. 芋艿淀粉/ 丙烯酰胺接枝共聚物的合成及其对酒糟废水的处理[J] .环境保护,2000(5):45-46.
    [24] 相 波,李义久,倪亚明. 氨基淀粉絮凝剂合成工艺[J].化工环保, 2003 , 23 (5): 300-303.
    [25] 林正欢,李绵贵. 天然高分子絮凝剂的研究和应用进展[J] .水处理技术, 2003 ,29(6):315-317.
    [26] 王春梅,胡啸林,章忠秀. 有机高分子絮凝剂的合成及其应用[J] . 工业用水与废水,2002,33(1):33-35.
    [27] 陈启杰,陈夫山. 可生物降解的改性淀粉絮凝剂的开发和应用[J]. 西南造纸, 2003,32(4):29-31.
    [28] 刘千钓,詹怀宇,刘明华. 木质素类絮凝剂的研究进展[J] .造纸科学与技术, 2002 ,21(3):24-26.
    [29] 蔡清海,张光林. 淀粉改性阳离子型絮凝剂的合成[J]. 化学工程师,2002 (6):3-4.
    [30] 林丰. 双氰胺甲醛缩聚物类絮凝剂的发展与展望[J].工业水处理,2004 ,24 (1):1-4.
    [31] 具本植,张淑芬,杨锦宗. 交联阳离子淀粉的制备及其脱色性能[J].应用化学, 2001 ,18(6):477-480.
    [32] 周国平,罗士平,孙英. 接枝羧基淀粉的制备与应用[J].江苏石油化工学院学报,2002,14(1):13-15.
    [33] 王欣. 聚丙烯酰胺/ 淀粉接枝共聚物的合成与应用[J].辽宁化工,2001,30 (4):164-165.
    [34] 尹华,刘惠璇,等. 淀粉改性阳离子絮凝剂的制备及其絮凝性能的研究[J] . 环境科学与技术,2000,(1):13-15.
    [35] 王杰,肖锦,詹怀宇. 两性高分子絮凝剂的制备及其应用研究[J] ,环境化学, 2001 ,20 (2) :185-90.
    [36] A Ndabigengesere , KS Narasiah ,BG Talbot . Active agentsand mechanism of coagulation of turbid waters using Moringa oleifera[J]. Wat. Res. 2000 ,29 (2) : 703 – 710.
    [37] 陈津端,罗道成,刘能铸,等. 用改性壳聚糖对城市未达标排放污水进行再处理[J].湖南工程学院学报,2002 ,12 (2) :61-64.
    [38] 袁毅桦,赖兴华,陈纯馨,等. 壳聚糖对印染废水的絮凝作用和脱色效果[J] . 应用化学,2000 ,17 (2) :217 - 218.
    [39] Salehizadeh H,Shojaosadati S A.Extracellular biopolymeric flocculants Recent trends and biotechnological importance[J].Biotechnology Advances,2001,19:371-385.
    [40] Takeda M,Kurane R,Koizumi J,et al.A protein bioflocculant produced by Rhodococcus erythropolis[J].Agric. Biol. Chem.,1991,55:2663-2664.
    [41] Kurane R,Hatamochi K,Kakuno T,et al.Purification and characterization of liquid bioflocculant produced by Rhodococcus erythropolis[J].Biosci. Biotechnol. Biochem,1994,58:1977-1982.
    [42] Nakamura J,Miyashiro S,Hirose Y,et al.Modes of flocculation of yeast cellflocculant produced by Aspergillus sojae AJ-7002[J].Agric. Biol. Chem.,1976a,40:1565-1571.
    [43] Nakamura J,Miyashiro S,Hirose Y,et al.Conditions of production of microbial cell flocculant produced by Aspergillus sojae AJ-7002[J].Agric. Biol. Chem.,1976b,40:1341-1347.
    [44] Nakamura J,Miyashiro S,Hirose Y,et al.Purification and chemical analysis of microbial cell flocculant produced by Aspergillus sojae AJ-7002[J].Agric. Biol. Chem.,1976c,40:619-624
    [45] Oh H M,Lee S J,Park M H,et al.Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49[J].Biotecnnology Letters,2001,23:1229-1234.
    [46] BJ Eikmanns, N Thum-Schmitz, L Eggeling, et al.Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase[J].microbiology,1994,140:1817-1828.
    [47] Annette Arndt ,Bernhard J. Eikmanns. The Alcohol Dehydrogenase Gene adhA in Corynebacterium glutamicum Is Subject to Carbon Catabolite Repression [J].Journal of Bacteriology, 2007, 189(20) 7408-7416.
    [48] Shen X H, Liu S J. Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum [J] .Science in china ,2005 ,48 (3):241-249
    [49] 江锋,黄晓武,胡勇有.胞外生物高聚物絮凝剂的研究进展(上) [J].给水排水,2002,28(8):83-89.
    [50] 江锋,黄晓武,胡勇有.胞外生物高聚物絮凝剂的研究进展(下) [J].给水排水 2002,28(9):88-91.
    [51] Salehizadeh H,Shojaosadati S A.Extracellular biopolymeric flocculants Recent trends and biotechnological importance[J].Biotechnology Advances,2001,19:371-385
    [52] Takeda M,Kurane R,Koizumi J,et al.A protein bioflocculant produced by Rhodococcus erythropolis[J].Agric. Biol. Chem.,1991,55:2663-2664.
    [53] He N,Li Y,Chen J,et al.Identification of a novel bioflocculant from a newly isolated Corynebacterium glutamicum[J].Biochemical Engineering Journal,2002,11:137-148
    [54] He N,Li Y,Chen J.Production of a novel polygalacturonic acid bioflocculant REA-11 by Corynebacterium glutamicum[J].Bioresource Technology,2004,94:99-105.
    [55]何宁,吴海军,邓旭, 等.生物絮凝剂高产菌株的选育[J].工业微生物, 2004, 34(3):8-11.
    [56] Kurane R,Matsuyama H.Production of a bioflocculant by mixed culture [J].Biosic. Biotechnol. Biochem,1994,58:235-238.
    [57] 张彤,朱怀兰,林哲.微生物絮凝剂的研究与应用进展[J].应用与环境生物学报,1996,2(1):95-105.
    [58] Kurane R,Takeda K,Suzuki Y.Screening for and characteristics of microbial flocculants[J].Agric. Biol. Chem.,1986,50(9):2301-2307.
    [59] Fujii I K.Breeding of flocculant industrial alcohol yeast strains by self-cloning of the flocculation gene FLO1 and repeated batch fermentation by transfor- mants[J].Journal of General and Applied Microbiology,1998,44(5): 347-353.
    [60] 邓述波,余刚,蒋展鹏,等.微生物絮凝剂 MBFA9 的絮凝机理研究[J].水处理技术,2001,27(1):22-25.
    [61] 柴晓利,陈洁,王猛,等.微生物絮凝剂的提纯及应用研究[J].工业水处理,2000,20(6): 23-25.
    [62] 董延茂,赵丹,沈耀良.微生物絮凝剂的应用[J].污染防治技术,2002,15(2):21-23
    [63] 邓述波,余刚,蒋展鹏,等.微生物絮凝剂在给水处理中的应用研究[J].中国给水排水,2001,17(2):5-7.
    [64] 朱晓江,尹双凤,桑军强.微生物絮凝剂的研究和应用[J].中国给水排水,2001,17(6):19-22.
    [65] 马放,冯昊,李淑更,等.复合型微生物絮凝剂的絮凝作用[J].黑龙江科技学院学报,2004,14(3):140-144.
    [66] 马放,刘俊良,李淑更,等.复合型微生物絮凝剂的开发[J].中国给水排水,2003,9(4):1-4.
    [67] Kurane R,Hatamochi K,Kakuno T,et al.Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols[J].Biosci. Biotech. Biochem.,1994,58(2):426-429.
    [68] 高宝玉,岳钦艳,于慧,等.利用透射电镜研究 PACS 的形态及絮凝机理[J].环境科学学报,1998,18(4):392-395.
    [69] 郭玲香,胡明星.高聚物絮凝作用机理的定量化研究[J].煤炭学报,2002,27(5):539-543.
    [70] 郭玲香.基于数学形态学的高聚物絮凝作用机理的定量化研究[J].环境科学学报,2002,22(6):716-720.
    [71] 郭雅妮,李硕文,同帜.聚硅酸硫酸铝絮凝剂铝硅间的相互作用及其絮凝机理[J].纺织高校基础科学学报,2001,14(4):323-326.
    [72] 栾兆坤.混凝基础理论研究进展与发展趋势[J].环境科学学报,2001,21(增):1-9
    [73] 马伟,郭丽燕,萧锦.改性天然高分子絮凝剂和聚合氯化铝复合沉降与絮体分形环境科学,2001,22(1):114-116.
    [74] 冉千平,黄荣华,马俊涛.低电荷密度的两性高分子絮凝剂絮凝机理初步探讨[J].高分子材料科学与工程,2003,19(2):146-149.
    [75] 邵青.高效脱色絮凝剂脱色絮凝机理浅探及其应用[J].工业水处理,2000,20(2):5-8.
    [76] 汤鸿霄.羟基聚合氯化铝的絮凝形态学[J].环境科学学报,1998,18(1):1-10.
    [77] 王东升,汤鸿霄.聚铁硅型复合无机高分子絮凝剂的形态分布特征[J].环境科学,2001,22(1):94-97.
    [78] 王晓昌,丹保宪仁.絮凝体形态学和密度的探讨-从絮凝体分形构造谈起[J].环境科学学报,2000,20(3):257-262.
    [79] 武道吉,谭凤川,王新文,等.絮凝动力学机理与控制指标研究[J].环境工程, 2000,18(5):22-25.
    [80] 徐继润,黄静,詹世平,等.联合絮凝的物理模型[J].中国有色金属学报,1998,8(增 2):554-556.
    [81] 马放,张金凤,远立江,等.复合型生物絮凝剂成分分析及其絮凝机理的研究[J].环境科学学报,2005,25(11):1491-1496.
    [82] 秦培勇,张通,张晨鼎,等.微生物絮凝剂及其絮凝机理的研究进展[J].内蒙古工业大学学报,2001,20(3):166-170.
    [83] 秦培勇,张通,陈翠仙.微生物絮凝剂 MBFTRJ21 的絮凝机理[J].环境科学,2004,25(3):69-72.
    [84] 张永波,杨开,周毅.微生物絮凝剂普鲁兰絮凝机理初探[J].上海环境科学,2001,20(9):448-450.
    [85] 张博润,任健,刘玉芳.酵母菌絮凝机理研究进展及应用前景[J].微生物学通报,1996,23(5):307-311.
    [86] 张志强,林波,胡九成,等.高活性絮凝剂产生菌群的构建、培养及应用研究[J].环境科学学报,2005,25(11):1497-1501.
    [87] 朱艳彬,冯文,杨基先,等.复合型生物絮凝剂产生菌筛选及絮凝机理研究[J].哈尔滨工业大学学报,2004,36(6):759-762.
    [88] Levy N Y,Magdassi V S.Flocculation of bentonite particles by a cyanobacterial bioflocculant[J].Colloids and Surfaces,1990,48:337-349.
    [89] 王 镇,王孔星.微生物絮凝剂的研究概况[J].微生物通报,1993,20(6) :362-367
    [90] Serge S.Computer Simulation of Flocculation Process: The Roles of Chain Conformation and Chain/Colloid Concentration Ratio in the Aggregate Structures [J].Journal of Colloid and Interface Science,1998,205(2):290-304.
    [91]Kurane R. Development and utilization of microbial flocculant. Bio Ind,1988,5(10):741-749.
    [92] 成文,黄晓武,胡勇有 等. 微生物絮凝剂的研究与应用. [J]华南师范大学学报(自然科学版),2003,4(4):127-134.
    [93] 张旭,徐恒,邓宇 等.微生物絮凝剂产生茵的絮凝性能. [J]化工环保,2005,25(2):152-155.
    [94] Yokel H,Natsuda O,Hirose J,et al. Characteristics of a biopolymer flocculantproduced by Bacillus sp.PY-90. Journal of Fermentation and Bioengineering, 1995,79(4):378-380.
    [95] Shimofuruya H.,Koide A,Shirota K,et al. The production of flocculating substances by Streptomyces griseus. Bioscience Biotechnology and Biochemi -stry,1996,60:498-500.
    [96] Endo T,Nakamura K,Takahashi H. Pronase-susceptiple floc-forming bacteria: relationship between flocculation and calciumion. Agri Biol Chem,1991,40(5):2289-2295.
    [97] 张香美,马同锁,张红兵. 一株新型絮凝剂产生菌的筛选及其特性研究. [J]工业用水与废水,2006,37(4):64-66.
    [98] 姚俊,徐虹. 生物絮凝剂 γ—聚谷氨酸絮凝性能研究. [J]生物加工过程, 2004,2(1):35-39.
    [99] 尹华. 微生物絮凝剂产生菌的筛选及其絮凝除浊性能. [J] 城市环境与城市生态,2000,13(1):9-10.
    [100] Levy N Y,Magdassi V S.Flocculation of bentonite particles by a cyanobacterial bioflocculant[J].Colloids and Surfaces,1990,48:337-349
    [101] 李智良,张本兰,裴健.微生物絮凝剂产生菌的筛选及相关废水絮凝效果试验[J].应用与环境生物学报,1997,3(1):67-70
    [102] 王镇,王孔星,谢裕敏,等.几株絮凝剂产生菌的特性研究[J].微生物学报,1994,35(2):121-129.
    [103] 陶涛,詹德昊,芦秀青,等.普鲁兰预处理高浓度味精废水试验研究[J].给水排水,2001,27(1):39-42.
    [104] 何秀萍,郭文洁,张博润 等. 絮凝基因(FLO1G)的序列测定及分析. [J] 微生物学报,2002,42(2):242-245.
    [105] 康建雄,孟少魁,吴磊. 生物絮凝剂普鲁兰的发酵动力学模型研究. [J]哈尔滨工业大学学报,2005,37(10):1370-1372.
    [106] 尹华,彭辉,刘慧璇. 淀粉改性阳离子絮凝剂的制备及其絮凝性能研究. [J]环境科学与技术,2001,(1):13-15.
    [107] 任南琪,李建政. 环境污染防治中的生物技术. 北京:化学工业出版社,2004,228-229.
    [108] 李文鹏,刘士清,廖昌珑 . 胨冻样芽孢杆菌 (Bacillus mucilaginosus YNUCC0001)絮凝剂生产、絮凝特性及其系统发育学分析. [J]土壤通报,2005,36(4):583-587.
    [109] Kaewchai S , Prasertsan P . Screening and application of thermotolerant microorganisms and their flocculant for treatment of palm oil mill effluent [J].Songklanakarin J. Sci. Technol,2002,24(3):413-420.
    [110] Kim S G,Choi A,Ahn C Y,et al.Harvesting of Spirulina platensis by cellular flotation and growth stage determination[J].Letters in Applied Microbiology,2005,40:190-194.
    [111] Lee S J,Kim S B, Kim J E,et al.Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus Braunii[J].Letters in Applied Microbiology,1998,27:14-18.
    [112] Raichur A M,Misra M,Bukka K,et al.Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei[J].Colloids and Surfaces B: Biointerfaces,1996,8:13-24.
    [113] Vijayalakshmi S P,Raichur A M.The utility of Bacillus subtilis as a bioflocculant for fine coal[J].Colloids and Surfaces B: Biointerfaces,2003,29:265-275.
    [114] Wang J S,Hu Y Y,Wu C D.Comparing the effect of bioflocculant with synthetic polymers on the enhancing granulation in UASB reactors for low-strength wastewater treatment[J].Water SA,2005,31(2):177-182.
    [115] Zouboulis A I,Chai X L,Katsoyiannis I A.The application of bioflocculant for the removal of humic acids from stabilized landfillleachtes[J].Journal of Environmental Management,2004,70:35-41.
    [116] 张晓辉,龚文琪.微生物絮凝剂的制备及在建材加工废水处理中的应用研究[J].安全与环境工程,2003,10(3):27-30.
    [117] 宋莉晖,金文标,谢萍.用微生物絮凝剂治理钻井污水的探讨[J].钻采工艺,1996,19(5):79-80.
    [118] Kurane R,Nohata Y.Microbial Flocculant of Waste Liquids and Oil Emulsion bya bioflocculant from Alcaligenes Latus[J].Agric. Biol. Chem.,1991,55 (4): 1127-1129.
    [119] 牛志卿,时红,李晋.微生物絮凝剂对多种废水的净化实验研究[J].太原理工大学学报,2003,34(3):295-296.
    [120] 沈荣辉,应惠芳,黄民生.微生物絮凝剂研制条件优化和废水净化研究[J].化工装备技术, 2000 , 21(6):31-35.
    [121] 谭天伟,沈忠耀.细胞絮凝技术及在生物产品分离中的应用[J].生物工程进展,1995, 15(5):53-56.
    [122] 唐晓萍.微生物絮凝剂应用于污水处理过程中的优化分析[J].重庆大学学报,2002,25(7):118-121.
    [123] 唐琼,张新申,李正山.油田含油废水处理絮凝剂的研究与应用[J].化学研究与应用,2002,14(6):641-644.
    [124] 邢丽贞,孔进,陈文兵.微生物絮凝剂及其在废水处理中的应用[J].工业水处理,2003, 23(4):10-13.
    [125] 徐斌,周集体,王竟,等.以假单胞菌利用鱼粉废水产生的絮凝剂净化废水的研究[J].水处理技术,2002,28(6):354-356.
    [126] 严三强,邓正栋.微生物絮凝剂及其在污水处理中的应用[J].四川环境,2003,22(2):31-34.
    [127] 朱雪强,韩宝平. 重金属生物吸附研究进展. 中国环保产业,2004,5:20-21.
    [128] Bender J,Archibold E R, Ibeanusi V, et al. Lead removal from contaminated water by a mixed microbial ecosystem. Water Science and Technology,1989, 21:1661-1665.
    [129] Bender J,Gould J P,Vatcharapijarn Y,et al. Uptake,transformation and fixation of Se (VI) by a mixed,selenium tolerant ecosystem. Water Air Soil Pollution,1991,59:359-367.
    [130] Bender J,Rodriguez-Eatun S,Ekanemesang U,et al. Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Applied and Environmental Microbiology,1994,60: 2311-2315.
    [131] 王竞,陶颖,周集体 等. 细菌胞外高聚物对水中六价铬的生物吸附特性. 水处理技术,2001,27(3):145-147 .
    [132] 陶颖,王竞,周集体. 新型生物吸附剂去除水中六价铬的研究. 上海环境科学,2000,19(12):572-574.
    [133] 李志东,宋旭鹭,梁伟 等. 啤酒酵母吸附重金属离子镉的研究. 酿酒技术,2006,(6):85-88.
    [134] Zang J,Liu Z,Wang S,et al.Characteristics of a bioflocculant produced by the marine myxobacterium Nannocystis sp. NU-2[J].Appl. Microbiol. Biotechnol, 2002,59:517-522.
    [135] Jang J-H,Ike M,Kim S M,et al.Production of a novel bioflocculant by fed-batch culture of Citrobacter sp. [J].Biotechnology Letters,2001,23:593-597.
    [136] Yokoi H,Aratake T,Hirose J,et al.Simultaneous production of hydrogen and bioflocculant by Enterobacter sp. BY-29[J].World Journal of Microbiology& Biotechnology,2001,17:609-613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700