地下水中四氯乙烯迁移归宿与修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受氯代烃类有机物污染的地下水环境修复,是环境领域的前沿科学问题之一。了解四氯乙烯(PCE)在含水层中的迁移和转化如对流、弥散、吸附、生物化学降解等环境行为,是研究地下水污染控制的前提,对掌握有机物污染机理及确定控制修复技术具有重要意义。本文采用室内批量试验、砂柱模拟试验及数值模拟方法,在实验室试验研究PCE在地下水环境中的各种行为特点。
     等温非平衡吸附研究显示:PCE在砂质含水层介质(孔径9 nm左右)中的吸附特性与有机碳含量(f_(oc))有关。(1)f_(oc)为0.080~0.090%的固相介质对PCE的等温吸附能在2小时内达到吸附体系的表观平衡状态;影响吸附过程快慢及表观平衡时的单位介质吸附量的主要因素是孔内充填及毛细凝结作用。(2)f_(oc)在0.220~0.540%的砂质介质,影响其吸附过程及单位介质吸附量的主要因素是固相有机质的吸收作用。
     等温平衡吸附研究显示:(1)PCE在f_(oc)为0.080~0.090%的固相介质上的等温平衡吸附特性用由线性吸附模型和Langmuir吸附模型组合并经修正后的双模式模型描述的效果最好。(2)f_(oc)为0.220~0.540%的砂质介质对PCE的等温平衡吸附特性用线性模型描述的效果最好。(3)本文定义的与修正的双模式等温吸附模型相对应的阻滞因子(R)表达式,可用于量化描述PCE在此类含水层介质中因吸附作用而滞迟的迁移过程,在特定的溶质迁移环境下,R的大小与溶质液相浓度直接相关。
     采用零价金属铁、锌或厌氧微生物单独作用、零价铁和厌氧微生物联合作用(FeMB)、零价锌和厌氧微生物联合作用等技术降解去除污染物PCE,研究表明:(1)在25天的运行时间内,FeMB技术对PCE的去除率最高,达到99.9%;约有44%的PCE被降解为乙烯、乙炔、乙烷等无氯碳氢化合物。与其它几种技术相比,FeMB技术不仅对PCE的去除率最高,而且对PCE的降解脱氯程度也最高。(2)PCE及其降解中间产物的衰减过程符合准一级反应动力学模型。(3)在FeMB降解体系中,PCE的主要降解路径为PCE先后经历氢取代反应脱去一个氯原子转化成三氯乙烯(TCE)和二氯乙烯(1,1-DCE),1,1-DCE再经历α-还原脱氯反应转化为乙烯,再经氢气加成反应转化为乙烷。这个路径不同于铁或微生物单独作用的反应体系,表明铁和微生物联合作用不仅能影响零价金属铁与PCE及其降解产物的反应速率,还能改变脱氯过程的反应路径。(4)根据降解反应动力学模型预测的结果显示,FeMB技术将反应体系中的PCE全部转化为无氯碳氢化合物所需的时间为150天,是所有降解反应体系中耗时最短的。研究结果表明FeMB技术是一项有巨大潜在意义的环境修复技术。
     基于室内试验结果建立的PCE在地下水中的物理性迁移模型、物理化学性迁移转化模型能很好的描述溶质PCE在模拟砂柱中的迁移转化规律,该模型是在经典对流弥散方程的基础上耦合了修正的双模式等温吸附模型和准一级反应动力学的溶质衰减模型而成,可用作PCE在地下水中的行为规律和最终归宿的预测分析。
Advection, dispersion, adsorption and degradation are important factors affecting the transport and fate of chlorinated organics in groundwater. Batch tests, column tests and mathematical methods were applied to investigate the environmental behaviors of perchloroethylene (PCE) in groundwater. The researches aimed at the adsorption characteristics of PCE to sandy materials, the best remediation technique for the groundwater contaminated by PCE, the transport and transformation of PCE in groundwater and the mathematical model to describe the transport, fate and remediation of PCE in groundwater.
     The batch non-equilibrium adsorption tests of PCE to sandy materials with organic carbon percent (f_(oc)) ranging from 0.080% to 0.540% show that the apparent equilibrium can be reached in 2 hours. Pore filling and capillary condensation probably play an important role in sorption kinetics for the media with f_(oc) 0.080~0.090% while the uptake by organic matter plays an important role in sorption kinetics for the media with relatively high f_(oc) 0.220~0.540%.
     The adsorption isotherm of PCE to media with f_(oc) 0.080~0.090% fit the amended dual-mode model developed from Linear and Langmuir isotherm model while the adsorption isotherm of PCE to media with f_(oc) 0.220~0.540% fit Linear model. The corresponding retardation factor (R) was defined to describe the retardation transport of PCE in aquifer similar to media with f_(oc) 0.080~0.090%. In given adsorption system, the retardation factor decreases gradually while the solute concentration increases.
     The degradation tests of PCE was carried out in five groups of degradation systems, that is, zero-valent iron alone, zero-valent zinc alone, anaerobic microbial community alone, the combination of zero-valent iron and anaerobic microbial community (FeMB), the combination of zero-valent zinc and anaerobic microbial community. The results show that within 25 days, the FeMB degradation system had the highest removal efficiency of PCE (99.9%), and about 44% of PCE was degraded to the non-chlorinated hydrocarbons, for example, ethylene, acetylene and ethane, it suggests that the FeMB remediation technique can dechlorinate more PCE and the reaction intermediates to less-chlorinated organics or non-chlorinated hydrocarbons. The results also showed that the degradation of PCE and its intermediates fit the pseudo-first-order kinetic reaction model. The major pathways of PCE degradation in FeMB degradation system are different from others. PCE was mainly via hydrogenolysis degraded to trichloroethylene (TCE), then TCE via hydrogenolysis to 1,1-dichloroethylene (1,1-DCE) and then 1,1-DCE viaα-elimination to ethylene. The integrated technique combining the iron and the microbial community showed better degradation efficiency than the others; it may be viewed as an environmentally desirable remediation.
     The advection-dispersion transport model coupling amended dual-mode adsorption model and pseudo-first-order kinetic reaction model was developed to simulate the transport process of PCE in modeling column for the FeMB remediation, the simulated transport process accorded with the observed very well. The model can be used to describe the environmental behaviors and forecast the fate of PCE in groundwater.
引文
[1] Thornton S.F., Lerner D.N., Banwart SA. Assessing the natural attenuation of organic contaminants in aquifers using plume-scale electron and carbon balances: model development with analysis of uncertainty and parameter sensitivity. Journal of Contaminant Hydrology. 2001, 53: 199-232
    [2] Qiu X.J., Stock M.K., Davis J.W.. Remedial options for chlorinated volatile organics in a partially anaerobic aquifer. Remediation. 2004, 14(4): 39-47
    [3] Yeh T.Y., Kao C.M., Lee M.S.. Field investigation at a chlorinated ethylene contaminated site Practice Periodical of Hazardous, Toxic, and Radioactive. Waste Management. 2006, 10(4): 207-215
    [4] 美国地质调查局. 李烨 译. 美国地下水和饮用水井中挥发性有机物分析. 中国地质环境信息网,http://www.cigem.gov.cn/ReadNews.asp?NewsID=8319,2007.1.28 引用
    [5] 李海明, 陈鸿汉, 钟佐燊 等. 垃圾堆放场氯代脂肪烃对浅层地下水的污染特征初步分析. 地球科学-中国地质大学学报. 2002, 27(2): 227-230
    [6] 韩宝平, 王小英, 朱雪强 等. 某市岩溶地下水四氯化碳污染特征研究.环境科学学报. 2004, 24(6): 982-988
    [7] http://www.nanjing.cgs.gov.cn/DDDT/2004-1.1.htm, (accessed January 26, 2007)
    [8] 沈德中. 污染环境的生物修复. 北京: 化学工业出版社, 2003年: 1-9
    [9] 张永波,时红,王玉和. 地下水环境保护与污染控制. 北京:中国环境科学出版社, 2003年: 76-89
    [10] 瑞恩.P.施瓦茨巴赫,菲利普.M.施格文,迪特尔.M.英博登,王连生 译. 环境有机化学.北京:化学工业出版社环境科学与工程出版中心. 2004年: 195-198
    [11] 王连生. 有机污染化学. 北京:高等教育出版社. 2005年: 43
    [12] The U.S.EPA consumer Fact Sheet: Tetrachloroethlene. http://www.epa.gov/safewater/dwh/c-voc/tetrachl.html (accessed July 24, 2006)
    [13] 汪民, 吴永锋. 地下水微量有机污染. 地学前缘. 1996, 3(1-2): 169-175
    [14] 仵彦卿. 多孔介质污染物迁移动力学. 上海: 上海交通大学出版社. 2007年: 81-123
    [15] Schirmer M., Butler B.J.. Transport behaviour and natural attenuation of organic contaminants at spill sites. Toxicology. 2004, 205(3): 173-179
    [16] 贝尔.J 著, 李竞生, 陈崇希 译. 多孔介质流体动力学. 北京: 中国建筑工业出版社. 1983年: 151-200
    [17] Fetter C.W.. Contaminant hydrogeology. Second Edition, Prentice-Hall Inc. New Jersey, U.S.A. 1999: 121-140
    [18] Fesch C., Simon W., Haderlein S.B. et al.. Nonlinear sorption and nonequilibrium solute transport in aggregated porous media: Experiments, process identification and modeling. Journal of Contaminant Hydrology. 1998, 31(3-4): 373-407
    [19] Lee J., Hundal L.S., Horton R. et al.. Sorption and transport behavior of naphthalene in an aggregated soil. Journal of Environmental Quality. 2002, 31(5): 1716-1721
    [20] Sato T, Kimura Y, Takamizawa K.. Modeling transport and biodegradation of PCE in sandy soil. Brownfield Sites: Assessment, Rehabilitation and Development. 2002: 515-524
    [21] Sun Y.W., Lu X.J., Petersen J.N. et al.. An analytical solution of tetrachloroethylene transport and biodegradation. Transport in Porous Media. 2004, 55: 301-308
    [22] Clement T.P., Gautam T.R., Lee K.K. et al.. Modeling of DNAPL-Dissolution, rate-limited sorption and biodegradation reaction in groundwater systems. Bioremediation Journal. 2004, 8(1-2): 47-64
    [23] Mao M., Ren L.. Simulating nonequilibrium transport of atrazine through saturated soil. Ground Water. 2004, 42(4): 500-508
    [24] Huang W., Peng P., Yu Z., et al.. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Applied Geochemistry. 2003, 18 (7): 955-972
    [25] Allen-King R.M., Groenevelt H., Warren C.J. et al.. Non-linear chlorinated-solvent sorption in four aquitards. Journal of Contaminant Hydrology. 1996, 22: 203-221
    [26] Hellerich L.A., Nikolaidis N.P.. Sorption studies of mixed chromium and chlorinated ethenes at the field and laboratory scales. Journal of Environmental Management. 2005, 75: 77-88
    [27] Mouvet C., Barberis D., Bourg A.C.. Adsorption isotherms of tri- and tetrachloroethylene by various natural solids. Journal of Hydrology. 1993, 149: 163-182
    [28] Yang K., Zhu L.Z., Lou B.F. et al.. Correlations of nonlinear sorption of organic solutes withsoil/sediment physicochemical properties. Chemosphere. 2005, 61: 116-128
    [29] Silva J.K., Bruant R.G., Conklin M.H. et al.. Equilibrium partitioning of chlorinated solvents in the vadose zone: low foc geomedia. Environmental Science & Technology. 2002, 36: 1613-1619
    [30] Pignatello J.J., Xing B.. Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science & Technology. 1996, 30: 1-11
    [31] Werth C.J., Reinhard M.. Effects of temperature on trichloroethylene desorption from silica gel and natural sediments. 2. Kinetics. Environmental Science & Technology. 1997, 31: 697-703
    [32] 李韵珠, 李保国. 土壤溶质运移. 北京:科学出版社. 1998 年: 145-156
    [33] Weber W.J., McGinley P.M., Katz L.E.. A distributed reactivity model for sorption by soils and sediments: 1. Conceptual basis and equilibrium assessments. Environmental Science & Technology. 1992, 26: 1955-1962
    [34] Xia G., Pignatello J.J.. Detailed sorption isotherms of polar and apolar compounds in high-organic soil. Environmental Science & Technology. 2001, 35: 84-94
    [35] 毕新慧, 储少岗, 徐晓白. 多氯联苯在土壤中的吸附行为. 中国环境科学. 2001, 21(3): 284-288
    [36] An T.C., Chen H., Zhan H.Z., et al.. Sorption kinetics of naphthalene and phenanthrene in loess soils. Environmental Geology. 2005, 47(4): 467-474
    [37] Chang C.M., Wang M.K., Chang T.W., et al.. Transport modeling of copper and cadmium with linear and nonlinear retardation factors. Chemosphere. 2001, 43 (8): 1133-1139
    [38] Schaerlaekens J., Mallants D., Simunek J., et al.. Numerical simulation of transport and sequential biodegradation of chlorinated aliphatic hydrocarbons using CHAIN_2D. Hydrological Processes. 1999, 13: 2847-2859
    [39] 杨琦, 尚春涛, 李惠娣. 四氯乙烯(PCE)厌氧生物修复的国外研究进展. 中国沼气. 2006 24(2): 16-20
    [40] Kaseros V.B., Sleep B.E., Bagley D.M.. Column studies of biodegradation of mixtures of tetrachloroethene and carbon trtrachloride. Water Resource. 2000, 34(17): 4161-4168
    [41] Roberts A.L., Totten L.A., Arnold W.A. et al.. Reductive elimination of chlorinated ethylenes by zero-valent metals. Environmental Science & Technology. 1996, 30 (8): 2654-2659
    [42] Hara J., Ito H., Suto K., et al.. Kinetics of trichloroethene dechlorination with iron powder. Water Research. 2005, 39 (6): 1165-1173
    [43] Arnold W.A., Roberts A.L.. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environmental Science & Technology. 2000, 34: 1794-1805
    [44] Arnold W.A., Roberts A.L.. Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0). Environmental Science & Technology. 1998, 32 (19): 3017-3025
    [45] 史敬华, 刘菲, 李烨 等. 不同基质共代谢降解地下水中四氯乙烯的研究. 地学前缘. 2006, 13(1): 145-149
    [46] 李烨, 刘菲, 史敬华 等. 以醋酸为共代谢基质时四氯乙烯的生物降解初步研究. 水文地质工程地质. 2006, 3: 7-10
    [47] 刘明柱, 陈鸿汉, 胡丽琴 等. 生物降解作用下地下水中 TCE、PCE 迁移转化的数值模拟研究. 地学前缘, 2006 13(1), 155-159
    [48] 刘晓丽, 梁冰, 薛强. 地下水环境中有机污染物迁移转化动力学模型的研究. 工程勘察. 2003, 1: 24-28
    [49] Mojid M.A., Vereecken H.. On the physical meaning of retardation factor and velocity of a nonlinearly sorbing solute. Journal of Hydrology. 2005, 302 (1-4): 127-136
    [50] Balazova A., Slodicka M., Keer R.V.. Parameter determination for reductive dechlorination of chlorinated solvents. Transport in Porous Media. 2006, 65: 411-424
    [51] Mclin S.G.. Estimating aquifer transmissivity from specific capacity using MATLAB. Ground Water. 2005, 43(4): 611-614
    [52] Lee H.S., Matthews C.J., Braddock R.D. et al.. A MATLAB method of lines template for transport equations. Environmental Modeling & Software. 2004, 19: 603-614
    [53] Sevella B., Bertalan G.. Development of a MATLAB based bioprocess simulation tool. Bioprocess Engineering. 2000, 23: 621-626
    [54] Park E., Zhan H. Analytical solutions of contaminant transport from finite one-, two-, and three-dimensional sources in a finite-thickness aquifer. Journal of Contaminant Hydrology. 2001, 53 (1-2): 41-61
    [55] 宋汉周, Woodbury A.D.. 抽出处理措施的有效性评价-某碳酸盐岩含水层中地下水有机污染及其去除研究之三. 河海大学学报. 2000, 28(4): 67-71
    [56] Matheson L.J., Tratnyek P.G.. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology. 1994, 28(12): 2045-2053
    [57] Gillham R.W., O’Hannesin S.F.. Enhanced degradation of halogenated aliphhatics by zero-valent iron. Ground Water. 1994, 32: 958-967
    [58] Wadley S.L., Gillham R.W., Gui L.. Remediation of DNAPL source zones with granular iron: Laboratory and field tests. Ground Water. 2005, 43(1): 9-18
    [59] Lai K., Lo I., Birkelund V., et al.. Field monitoring of a permeable reactive barrier for removal of chlorinated organics. Journal of Environmental Engineering. 2006, 132 (2): 199-210
    [60] 钟佐燊. 地下水有机污染控制及就地恢复技术研究进展(一). 水文地质工程地质. 2001, 4: 1-3
    [61] 钟佐燊. 地下水有机污染控制及就地恢复技术研究进展(二). 水文地质工程地质, 2001, 4: 26-31
    [62] 钟佐燊, 刘菲. 地下水有机污染控制及就地恢复技术研究进展(三). 水文地质工程地质. 2001, 5: 76-79
    [63] 刘菲, 钟佐燊. 地下水中氯代烃的格栅水处理技术. 地学前缘. 2001, 8(2): 309-314
    [64] Yang Y., Pesaro M., Sigler W. et al.. Identification of microorganisms involved in reductive dehalogenation of chlorinated ethenes in an anaerobic microbial community. Water Resources. 2005, 39 (16): 3954-3966
    [65] Middeldorp P.J., Aalst M.A., Rijnaarts H.H., et al.. Stimulation of reductive dechlorination for in situ bioremediation of a soil contaminated with chlorinated ethenes. Water Science and Technology. 1998, 37(8): 105-110
    [66] Aulenta F., Tomassi C, Cupo C., et al.. Influence of hydrogen on the reductive dechlorination of tetrachloroethene (PCE) to ethene in a methanogenic biofilm reactor: Role of mass transport phenomena. Journal of Chemical Technology and Biotechnology. 2006, 81(9): 1520-1529
    [67] Aulenta F., Bianchi A., Majone M., et al.. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: A microcosm study. Environment International. 2005, 31(2): 185-190
    [68] Harald B.. Permeable Treatment Walls - Design, Construction, and Cost. NATO/CCMS PilotStudy Evaluation of Demonstrated and Emerging Technologies for the Treatment of Contaminated Land and Groundwater (phaseⅢ). 1998: 6-16
    [69] United States Environmental Protection Agency. Field applications of in situ remediation technologies: Permeable reactive barriers. Rep. No. EPA/68/W-00/084, Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, D.C. 2002
    [70] Zhang Y., Gillham R.W.. Effects of gas generation and precipitates on performance of Fe0 PRBs. Ground Water. 2005, 43 (1): 113-121
    [71] Liu C.C., Tseng D.H., Wang, C.Y.. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials. 2006, 136(3): 706-713
    [72] Jeen S.W., Gillham R.W., Blowes D.W.. Effects of carbonate precipitates on long-term performance of granular iron for reductive dechlorination of TCE. Environmental Science & Technology, 2006, 40 (20): 6432-6437
    [73]Liu Y., Lowry G.V.. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology. 2006, 40(19): 6085-6090
    [74] Cheng S.F., Wu S.C.. The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere. 2000, 41(8): 1263-1270
    [75] Feng J., Lim T.T.. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: Comparison with commercial micro-scale Fe and Zn. Chemosphere. 2005, 59(9): 1267-1277
    [76] 何小娟, 汤鸣皋, 李旭东 等. 镍/铁和铜/铁双金属降解四氯乙烯的研究. 环境化学. 2003, 22(4): 334-339
    [77] 程荣,王建龙,张伟贤. 纳米金属铁降解有机卤化物的研究进展. 化学进展. 2006, 18(1): 93-99
    [78] Freedman D.L., Gossett J.M.. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and Environmental Microbiology. 1989, 55: 2144-2155
    [79] Major D.M., Hodgins E.W., Butler B.J.. Field and laboratory evidence of in situ biotransformation of tetrachloroethene to ethene and ethane at a chemical transfer facility in North Toronto. In: Hinchee RE, Olfenbuttel RF, editors. On-site bioremediation, Stoneham:Butterworth-Heinemann. 1991: 147-171
    [80] Nielsen R.B., Keasling J.D.. Reductive dechlorination of chlorinated ethane DNAPLs by a culture enriched from contaminated groundwater. Biotechnology and Bioengineering. 1999, 62(2): 160-165
    [81] Ferguson J.F., Pietari J.M.. Anaerobic transformations and bioremediation of chlorinated solvents. Environmental Pollution. 2000, 107(2): 209-215
    [82] Adamson D.T., Mcdade J.M., Hughes J.B.. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE. Environmental Science & Technology. 2003, 37(11): 2525-2532
    [83] Holliger C., Schraa G.. A highly purified enrichment culture couples reductive dechlorination of tetrachloroethene to growth. Applied and Environmental Microbiology. 1993, 59: 2991-2997
    [84] Duhamel M., Wehr S.D., Yu L. et al.. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Resources. 2002, 36(17): 4193-4202
    [85] Maymo-Gatell X., Chien Y.T., Gossett J.M., et al.. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane. Science. 1997, 276: 1568-1571
    [86] Olaniran A.O., Pillay D., Pillay B.. Chloroethenes contaminants in the environment: still a cause for concern.. African Journal of Biotechnology. 2004, 3(12): 675-682
    [87] Morrill P.L., Lacrampe C.G.., Slater G.F., et al.. Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes. Journal of Contaminant Hydrology. 2005, 76(3-4): 279-293
    [88] Hoelen T.P., Reinhard. M.. Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation. 2004, 15: 395-403
    [89] Rekha S., Adrian L., Derrick E., et al.. Genome Sequence of the PCE-Dechlorinating Bacterium Dehalococcoides ethenogenes. Science. 2005, 307: 105-108
    [90] Sung Y., Fletcher K.E., Ritalahti K.M. et al.. Geobacter lovleyi sp. Nov. Strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Applied and Environmental Microbiology. 2006, 72: 2775-2782
    [91] Nonaka H., Keresztes G., Shinoda Y., et al.. Complete genome sequence of thedehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. Journal of Bacteriology. 2006, 188 (6): 2262-2274
    [92] Becker J.G.. A modeling study and implications of competition between Dehalococcoides ethenogenes and other tetrachloroethene-respiring bacteria. Environmental Science & Technology, 2006, 40 (14): 4473-4480
    [93] Lampron K.J., Chiu P.C., Cha D.K.. Reductive dehalogenation of chlorinated ethenes with elemental iron: The role of microorganisms. Water Resources. 2001, 35(13): 3077-3084
    [94] 李惠娣, 杨琦, 陈翠柏 等. 用于四氯乙烯降解的厌氧污泥的培养与驯化研究. 环境污染治理技术与设备. 2003, 4(12): 23-25
    [95] 杨柳燕, 肖琳. 环境微生物技术. 北京:科学出版社. 2003 年: 26-29
    [96] Baek D.S., Kim S.B., Kim D.J., Irreversible sorption of benzene in sandy aquifer materials, Hydrological Processes, 2003,17: 1239-1251
    [97] Gossett J.M.. Measurement of Henry’law constants for C1 and C2 chlorinated hydrocarbons. Environmental Science & Technology. 1987, 21: 202-208
    [98] Allen-King R.M., Grathwohl P., Ball W.P.. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks. Advances in Water Resources. 2002, 25: 985-1016
    [99] 王军辉, 周志芳. erfc(x)近似公式及其在求解地下水运移参数中的应用. 河海大学学报. 2001, 29(3): 111-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700