负载型纳米铁铜二元金属的合成与改性及其修复地下水中有机氯污染物的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为人类重要的水资源,地下水环境面临着日益严重的污染。在我国,地下水环境的污染面积、污染程度和污染物的种类正不断扩大。TCE等卤代烃类污染物具有较强的毒性和致癌性,是浅层地下水中主要的有机污染物之一,其较难生物降解,传统的处理方式耗资大、周期长,且存在降解不完全等问题。近年来研究发现,纳米铁金属粒子是一种高效的还原脱卤剂,能够有效地将卤代烃类的有机物转化为气态烃类。纳米铁粒径小,比表面积大,表面活性高,将其制成浆料直接注入污染的地下水中,是一种新型的原位修复技术,能够实现对污染物的快速降解。
     目前,纳米铁在地下水环境的原位修复中应用尚存在一些问题,如纳米粒子微小的尺寸和极高的表面能使其在水体中易于团聚,难分散;单纯纳米铁颗粒脱氯速度慢,稳定性差,易失活;亲水性纳米铁与疏水性的DNAPL(dense nonaqoueous phase liquid)类有机氯代烃分子难于接触而反应;纳米颗粒降解有机卤化物的途径和反应动力学还有待进一步研究。为此,许多学者在纳米铁的合成与修饰,降解有机卤化物的效能,降解污染物的机理等方面开展大量研究。
     本论文针对这些问题,结合国家自然科学基金“乳化炭载纳米铁原位修复地下水中有机氯代烃”的部分研究,进行了负载型纳米铁及负载型纳米二元金属的合成研究,并考察负载型纳米材料的组成和形态对三氯乙烯(TCE)还原脱氯性能的影响;研究了表面改性的负载型纳米材料对TCE的还原降解及脱氯性能的长期稳定性;探讨了负载型纳米材料脱氯反应的动力学和反应机理。
     (一)在乙醇—水反应体系中,以石墨为载体,采用液相还原和载体沉淀的方式制备负载型纳米Fe0。又分别用分步法和同步法,制备负载型纳米Fe/Cu二元金属复合材料。
     合成的纳米Fe0均匀分散于石墨表面,单个铁颗粒粒径为50~80nm,是由许多微小粒子组成的球状团簇,晶形为微晶态体心立方形α-Fe0。Fe负载量为15wt%的负载铁比表面积为23.8 m2/g,高于其它Fe负载量的材料。选用一步法和两步法分别合成了负载型纳米Fe/Cu二元金属,负载型二元金属的比表面积、在石墨表面的形态及大小与单纯纳米Fe0基本相近。
     (二)分别应用负载型纳米Fe0、不同方式制备的负载型纳米Fe/Cu对TCE进行还原脱氯。
     负载型纳米Fe0、采用分步法制备的负载型纳米Fe/Cu二元金属及非负载型的纳米Fe/Cu二元金属这几种材料中,负载型纳米Fe/Cu二元金属对TCE具有最高的还原脱氯性能,反应体系中Fe0浓度为10g/L,能够在5小时内将10mg/L的TCE全部去除;非负载型纳米二元金属在溶液中易团聚,团聚后其脱氯反应活性降低;具有较高比表面积的负载型纳米Fe0对TCE的脱氯性能并不高。
     采用Fe2+和Cu2+同步还原制备的纳米二元金属还原脱氯性能较差;由于石墨载体对Fe0的分散有效地控制了纳米粒子的团聚,干法和湿法两种方式均适用于合成负载型纳米材料的后处理。
     二元金属中Cu与Fe0的质量百分比为4wt%时,材料对TCE具有最快的还原脱氯速率。Cu的含量较高或较低时,纳米二元金属的还原脱氯性能下降。
     Fe2+浓度为0.2mol/L时,合成了晶须状结构的纳米Fe0;Fe2+浓度为0.02mol/L时,球状纳米Fe0的粒径分布不均匀;Fe2+浓度为0.05 mol/L时,得到粒径均匀的球状纳米铁,此结构的二元金属具有最高的还原脱氯性能。
     (三)采用生物降解性良好,对环境无毒的阳离子表面活性剂十六烷基三甲基溴化铵CATB,对负载型纳米Fe/Cu二元金属进行表面改性处理。
     负载型纳米Fe/Cu复合材料改性后,部分表面由亲水性转变为疏水性,有利于与疏水性的TCE分子相吸附,在脱氯反应中加强了吸附TCE分子的性能,加速了还原降解。当Fe0投加量为5g/L时,4小时将10mg/L的TCE去除完全。Fe0投加浓度太高时,过多H2占据Fe0的活性反应位及溶液pH的升高,抑制了TCE的还原脱氯反应。
     杂质离子NO3-,SO42-对负载纳米二元金属的还原脱氯没有影响,溶液中离子强度增加使脱氯更快速。在36天周期内的长期脱氯实验中,改性材料具有较高的稳定性和还原性能,改性后纳米铁不易氧化失活。
     (四)采用准一级反应动力学模型研究了负载型纳米Fe/Cu二元金属还原TCE的反应动力学,探讨了复合材料对TCE的脱氯还原机理。
     通过线性回归,脱氯反应较好的符合准一级反应动力学模型;当Cu在Fe上质量百分比为4wt%时,脱氯反应的表观反应速率常数Kobs最大;TCE初始浓度在较高浓度范围的表观速率常数比浓度较低时的Kobs要低;表面积归一化反应速率常数Ksa在Fe0投加量在1.25g/L的反应条件下最高,加大Fe0浓度时,Ksa均有所下降。
     在对TCE的还原脱氯过程中,TCE的π电子与Cu的空轨道能够形成过渡络合物Cu…Cl…R,H2O在纳米Fe0表面被还原形成高还原性的新生态H2*,两者反应使得TCE脱去Cl-而被还原;石墨作为载体与纳米铁组成许多微小原电池,电池反应中H2O同时得到电子而生成H2,溶液pH在反应后升高。
     三种二氯乙烯中间副产物在脱氯反应中没有检测到,由于TCE的脱氯是在具有催化活性的金属表面依次快速进行直到完全脱氯,中间产物不会从金属表面脱附而在液相中累积。
     Fe3O4为二元金属脱氯后的腐蚀产物,当其在Fe0表面生成量过多而将铁表面逐渐包覆后,金属的还原活性逐渐减弱直到完全失活。
Groundwater as the important water source of human is now encountered enormous contamination. In our country, the groundwater contamination scale, degree and the variety of pollutants are becoming larger. Halogenated hydrocarbons such as trichloroethylene (TCE), which are strongly toxic and carcinogenic are found the main contaminants in shallow groundwater. Halogenated hydrocarbons are difficult to biodegrade and the conventional treatments technologies for it required long-term operational periods, incurring high operation costs. It is also found that the halogenated hydrocarbons could not degraded completely and produce the more toxic interim products under some remediation technologies. Recent studies show that nano zero-valent iron (ZVI) is the new and highly effective reductant on the transforming halogenated organic contamination to hydrocarbons. The nano scale ZVI particles have the small sizes, the large surface areas and high surface reactivity. The nano ZVI slurry can be directly injected under pressure to contaminated groundwater for remediation. This treatment method is a new in situ remediation technology which can be rapidly removed the pollutants in short term.
     There are also some drawbacks on the in situ remediation of groundwater with nano ZVI. For example, nano ZVI particles have the potential of congregation in the solution due to their high surface area and high surface energy. Nano ZVI has the lower efficiency of the dechlorination and the poor stabilization in the air. It is not easy to contact and react between the dense nonaqueous phase liquids (DNAPL) such as TCE and the hydrophilic nano ZVI. The pathways and mechanisms of dechlorination by nano ZVI also require the more studies. Accordingly many researchers work on the preparation and modification of nano ZVI. The efficiency and mechanism of nano ZVI on the destroying halogenated hydrocarbons are also the interesting focus.
     In our research,which is a part of the project funded by National Science Committee named“The in-situ remediation of chlorinated hydrocarbons in groundwater with supported nano scale iron emulsion”the preparation of supported nano ZVI and nano Fe/Cu bimetal are presented. This study is aimed to: research the dechlorination efficiency of supported nano materials with different shapes and composition; research the effect of the surface modified supported nano metal on the removal of TCE and assess their stability; characterize and discuss the dechlorination kinetic and mechanism by supported nano metals.
     1. Synthesis of supported nano ZVI was achieved by liquid phase reduction and deposition while the graphite was the carrier of iron particles in ethanol/water system. The supported nano Fe/Cu bimetal was prepared by two methods of one-step and two-step.
     The nano ZVI particles with the size of 50~100nm were well dispersed on the surface of graphite. The individual iron nanocluster was composed by many small particles and is theα-Fe0.The surface area of supported nano iron with Fe loading of 15wt% was 23.8 m2/g and higher than other materials. The supported nano bimetal have the similar shape, size and surface area with the supported nano iron.
     2. The supported nano iron and nano bimetal were utilized in the dechlorination of TCE.
     The supported nano bimetal prepared by two-step was the most powerful reductant as compared to the supported nano iron and non-supported nano bimetal on the dechlorination of TCE. The 10mg/L TCE was completely removed in 5 hours by the supported nano bimetal. The non-supported nano bimetal was apt to aggregate in the aqueous phase so that its reactivity decreased in the reduction. The supported nano iron has the lower efficiency on the TCE reduction despite with the high surface area.
     The supported nano bimetal synthesized while the Fe2+and Cu2+ were reducing at the same time had the poor dechlorination efficiency. The nano bimetal particles were not easy to congregate due to the carrying by support, so the dry and wet treatment methods on nano metal were applicable at the end of synthesizing.
     The supported nano bimetal with 4wt% Cu on Fe0 had the fastest dechlorination rate. The material with higher or lower Cu mass neither has the better reducing effect on TCE.
     The nano iron had the whisker shape while the Fe2+ concentration was 0.02mol/L during the synthesizing. The size of nano iron was non-uniformly when the Fe2+ concentration was 0.2mol/L and the nano iron has the uniformly sphere shape when the Fe2+ concentration was 0.05mol/L. The nano bimetal with this shape had the fastest dechlorination rate on TCE.
     3. The cationic surfactant Cetyltrimethyl Ammonium Bromide (CTAB) that has the better effect of biodegradation and is nontoxic to the environment was used to modify the surface of the supported nano bimetal.
     The hydrophilic surface of supported nano bimetal was transformed to the hydrophobic after modification. The hydrophobic bimetal was advantageous to contact with the nonaqueous TCE molecule and had the effect of dechlorination and sorption. When the Fe0 was 5g/L, the 10mg/L TCE could be completely removed in 4 hours. When the dosage of Fe0 was larger, the active reaction site of Fe0 was occupied by the excess H2 and the pH was increasing so that dechlorination was be prohibited. The ion of NO3-,SO42- could not weaken the dechlorination efficiency of modified supported nano bimetal because the enhancing ionic intensity facilitated the TCE reduction. During the 36 days of continuous dechlorination, the modified supported nano bimetal has the highly stable property and was not easy to be oxidized.
     4. The kinetic of TCE dechlorination was studied according the pseudo-first order model. The mechanism of dechlorination was also discussed in the paper.
     The dechlorination reaction by nano bimetal was better followed the pseudo-first order equation. When the Cu was 4wt% percent of Fe0, the apparent rate constants Kobs of dechlorination was the largest; the apparent rate constants Kobs of dechlorination at the high initial TCE concentration was smaller than the constants at the low initial TCE concentration; the surface-normalized rate constant Ksa had the maximum value when the Fe0 dosage is 5g/L.
     Theπelectron of TCE could be bonded with empty electron orbit of Cu to become the Cu…Cl…R transition substance and the high reactivity H2* was also produced on the surface of Fe0. The H2* attacked the Cu…Cl…R on the surface of bimetal so the Cl- was broken away. The graphite and the nano iron composed large numbers of galvanic cell. The H2O obtained the electrons to produce H2 in the galvanic reaction and the pH value of solution was increasing.
     The three kinds of dichloromethane of interim dechlorination products were not detected during the reaction. Because the Cl elimination of TCE was took place on the surface of nano bimetal with catalytic reactivity, the intermediate products were adsorbed on the metal and could not transplant to the liquid phase.
     It was found that Fe3O4 was the corrosion product of Fe oxidation after dechlorination. The attenuation of reduction activity of nano metal could be attributed to excess oxide precipitates on the surface. Fe3O4 entirely covered on nano metal surface eventually lead the losing of reduction reactivity.
引文
[1] 王大纯.水文地质学基础.北京:地质出版社,1998
    [2] 中国地质环境信息网,http://www.cigem.gov.cn/jcy/homepage/dxs/szjkls.htm.我国地下水水质情况,2003
    [3] 钟佐.地下水有机污染控制及就地恢复技术研究进展(一) .水文地质工程地质,2001 (3):1-3
    [4] MoCasland M 等,应亮译.饮用水中的硝酸盐对健康的影响.净水技术,2000,18(1):47-49
    [5] Bianchi Mosquera G. C.Enhanced Degradation of Dissolved Benzene and Toluene Using a Solid Oxygen Releasing Compound.GWMR,1994,Winter:120-128
    [6] Borden R C . Control of BTEX Migration Using a Biologically Enhanced Permeable.GWMR,1994,Winter:70-80
    [7] Mackay D M,Cherry J A,Groundwater contamination: pump-and-treat remediation. Environ Sci Technol,1989,23(6):630-636
    [8] 束善治,袁勇.污染地下水原位处理方法:可渗透反应墙.环境污染治理技术与设备,2002,3(1): 47-51
    [9] Beitinger E.Permeable treatment walls-design, construction and cost. NATO/CCMS pilot study 1998.Special Session, Treatment Walls and Permeable Reactive Barriers, U.S.EPA. Report No:542-R-98-003,1998,(229):6-16
    [10] 张锡辉,王慧,罗启仕.电动力学技术在受污染地下水和土壤修复中的新进展.水科学进展,2001,12(2):249-255
    [11] Shapiro A P, Probstein R F . Removal of contaminants from saturated clay by electroosmosis.Environ Sci Technol,1993,27:283-291
    [12] Bruell C J, Segall B A, Walsh H T.Electro-osmotic removal of gasoline hydrocarbons and TCE from clay.J Environ Eng,ASCE,1992,118:84-100
    [13] 钟佐.地下水有机污染控制及就地恢复技术研究进展(一).水文地质工程地质,2001(3):1-3
    [14] 朱雪强,韩宝平,尹儿琴.地下水 DNAPLs 污染的研究进展.四川环境,2005,24(2):65-70
    [15] 刘兆昌,张兰生,聂永锋等.地下水系统的污染与控制.北京:地质出版社,1999
    [16] 刘明柱.氯代烃在浅层地下水中运移转化的数值模拟研究:[博士学位论文] .北京:中国地质大学,2002
    [17] 孟凡生,王业耀.三氯乙烯污染地下水和土壤的修复.中国给水排水,2005,21(4):34-36
    [18] 李海明.浅层地下水有机污染研究—以某城市近郊为例:[博士学位论文] .北京:中国地质大学,2002
    [19] 李青花.挥发性有机氯化物 TCE 的活性炭吸附生物再生处理研究:[硕士学位论文] .大连:大连理工大学,2000
    [20] 郭永海,沈照理,钟佐燊.河北平原地下水有机氨污染及其与防污性能的关系.水文地质工程地质,1996, (1): 40-42
    [21] 樊惠江,徐本良等.沈阳市服装干洗业氯代烃使用情况及污染状况调查.环境保护科学,1998,24(3): 40-42
    [22] 郭华明,王焰新.地下水中有机污染治理技术现状及发展前景.地质科技情报,1999,18(2):69-73
    [23] Gillham R W . Enhanced degradation of VOCS: Laboratory and pilot scale field demonstration [A].In: International Containment Technology conference, St.Florida:Petersburg.1997,858-864
    [24] Roberts A L.Reductive elimination of chlorinated ethylences by zero valent metals.Environ Sci Technol,1996,30(8):2654-2659
    [25] Shoe S H.Permeable reactive barriers [A], In: Rumer R R,Mitchell J K.Assessment of barrier containment technologies . Baltimore Maryland : International Containment Technology Workshop, 1995,301-353
    [26] Sivavec T M.Redox-active media for permeable reactive barriers [A].In: International Containment Technology conference, St .Florida: Petersburg. 1997,753-759
    [27] 程元恺.致癌性多环芳烃.人民卫生出版社,1979
    [28] 张坤海.三氯乙烯对人体健康的影响.职业与健康,2003,19(3):5-6
    [29] Mackay D M , Cherry T A . Groundwater Contamination : Pump and Treat remediation.Environ Sci Tech,1989,23(6):630-636
    [30] 宋汉周,Woodbury A D.抽出处理措施的有效性评价——某碳酸盐岩含水层中地下水有机污染及其去除研究之三.河海大学学报,2000,28(4):67-71
    [31] Hinchee R E.Bioventing of petroleum hdrocarbons[A].Norris, R.D. et al.(Eds.)Handbook of bioremediation.Lewis Publisher,1994
    [32] Amarante D.Applying in-situ chemical oxidation several oxidizers provide an effective first step in groundwater and soil remediation.Pollut Eng,2000,32 (2) : 40-42
    [33] Gates D D, Siegrist R L, Cline S R.Comparison of potassium permanganate and hydrogen peroxide as chemical oxidation for organically contaminated soils.J Environ Eng,2001,127 (4) : 337 – 347
    [34] Gates D D,Siegrist R L.In-situ chemical oxidation of trichloroethylene using hydrogen peroxide.J Environ Eng,1995,121 (9) : 639 – 644
    [35] Yan Y E, Schwartz F W . Kinetics and mechanisms for TCE oxidation by permanganate.Environ Sci Tech,2000,34 (12) : 2535 – 2541
    [36] 页:127 陈翠柏,杨琦,沈照理.地下水三氯乙烯生物修复研究进展.华东地质学院报,2003,26(1):10-14国地质大学,2002
    [19] 李青花.挥发性有机氯化物 TCE 的活性炭吸附生物再生处理研究:[硕士学位论文] .大连:大连理工大学,2000
    [20] 郭永海,沈照理,钟佐燊.河北平原地下水有机氨污染及其与防污性能的关系.水文地质工程地质,1996, (1): 40-42
    [21] 樊惠江,徐本良等.沈阳市服装干洗业氯代烃使用情况及污染状况调查.环境保护科学,1998,24(3): 40-42
    [22] 郭华明,王焰新.地下水中有机污染治理技术现状及发展前景.地质科技情报,1999,18(2):69-73
    [23] Gillham R W . Enhanced degradation of VOCS: Laboratory and pilot scale field demonstration [A].In: International Containment Technology conference, St.Florida:Petersburg.1997,858-864
    [24] Roberts A L.Reductive elimination of chlorinated ethylences by zero valent metals.Environ Sci Technol,1996,30(8):2654-2659
    [25] Shoe S H.Permeable reactive barriers [A], In: Rumer R R,Mitchell J K.Assessment of barrier containment technologies . Baltimore Maryland : International Containment Technology Workshop, 1995,301-353
    [26] Sivavec T M.Redox-active media for permeable reactive barriers [A].In: International Containment Technology conference, St .Florida: Petersburg. 1997,753-759
    [27] 程元恺.致癌性多环芳烃.人民卫生出版社,1979
    [28] 张坤海.三氯乙烯对人体健康的影响.职业与健康,2003,19(3):5-6
    [29] Mackay D M , Cherry T A . Groundwater Contamination : Pump and Treat remediation.Environ Sci Tech,1989,23(6):630-636
    [30] 宋汉周,Woodbury A D.抽出处理措施的有效性评价——某碳酸盐岩含水层中地下水有机污染及其去除研究之三.河海大学学报,2000,28(4):67-71
    [31] Hinchee R E.Bioventing of petroleum hdrocarbons[A].Norris, R.D. et al.(Eds.)Handbook of bioremediation.Lewis Publisher,1994
    [32] Amarante D.Applying in-situ chemical oxidation several oxidizers provide an effective first step in groundwater and soil remediation.Pollut Eng,2000,32 (2) : 40-42
    [33] Gates D D, Siegrist R L, Cline S R.Comparison of potassium permanganate and hydrogen peroxide as chemical oxidation for organically contaminated soils.J Environ Eng,2001,127 (4) : 337 – 347
    [34] Gates D D,Siegrist R L.In-situ chemical oxidation of trichloroethylene using hydrogen peroxide.J Environ Eng,1995,121 (9) : 639 – 644
    [35] Yan Y E, Schwartz F W . Kinetics and mechanisms for TCE oxidation by permanganate.Environ Sci Tech,2000,34 (12) : 2535 – 2541
    [36] 页:127 陈翠柏,杨琦,沈照理.地下水三氯乙烯生物修复研究进展.华东地质学院报,2003,26(1):10-141837-1845
    [55] Fennelly J P,Roberts A L.Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants.Environ Sci Technol,1998,32(13):1980-1988
    [56] Burris D R,Campbell T J,Manoranjan V S.Sorption of Trickloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System.Environ Sci Technol,1995,29(11):2850-2855
    [57] Li T,Farrell J.Reductive Dechlorination of Trichloroethene and Carbon Tetrachloride Using Iron and Palladized-Iron Cathodes.Environ Sci Technol,2000,34(1):173-179
    [58] Sweeny K H.Reductive degradation treatment of industrial and municipal wastewaters. Proc. Water Reuse Symposium; American Water Works Association Research Foundation:Denver,1979,2,1487-1497
    [59] Sweeny K H.The reductive treatment of industrial wastes.Process applications AIChE Symp Ser,1981,77(209):72-78
    [60] USEPA.An In Situ Permeable Reactive Barrier for the Treatment for Hexaval GWSR ENt Chromium and Trichloroethylene in Ground Water:Volume 1 Design and Installation.US:EPA/ 600/ R2 99/ 095a,1999
    [61] USEPA.An In Situ Permeable Reactive Barrier for the Treatment for Hexavalent Chromium and Trichloroethylene in Ground Water:Volume2 Performance Monitoring.U:EPA/ 600/ R299/095b , 1999
    [62] Mcnab W W,Ruiz R.In situ destruction of chlorinated hydrocarbons in groundwater using catalytic reductive dehalogenation in a reactive well : testing and operational experiences.Environ Sci Technol,2000,34(1):149-153
    [63] 蓝俊康,王焰新.利用铁屑腐蚀电池原位修复被氯代烃污染地下水的研究进展.地质科技情报,2002,21(3):84-88
    [64] Cantrell K J,Kaplan D I,Wietsma T W.Zero-valent iron for the in situ remediation of selected metals in groundwater.J Hazar Mater,1995,42(2):201-212
    [65] Arnold A W,Robert A L.Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe particles.Environ Sci Technol,2000,34(9):1794-1801
    [66] Schlicker O,Ebert M,Fruth M.Degradation of TCE with iron:The role of competing chromate and nitrate reduction.Ground Water,2000,38 (3):403-409
    [67] 刘菲,汤鸣皋,何小娟,等.零价铁降解水中氯代烃的实验室研究,地球科学-中国地质大学学报,2002,27(2):186-188
    [68] 何小娟,刘菲,黄园英, 等.利用零价铁去除挥发性氯代脂肪烃的试验.环境科学, 2003,24 (1) :139-142
    [69] Muftikian R,Fernando Q,Korte N.A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water.Wat Res,1995,29 (10):2434-2439
    [70] Ghittini G. M,Malcomsonm Q F.Rapid Dechlorination of Polychlorinated Biphenyls on the surface of a Pd/Fe Bimetallic System.Environ Sci Technol.1995,29(11):2898-2900
    [71] 朱晓军,朱建华.脱氯技术现状与研究进展.化工生产与技术,2005,12(1):24-28
    [72] 吴德礼,马鲁铭,徐文英等.Fe/Cu 催化还原法处理氯代有机物的机理分析.水处理技术,2005,31 (5):30-33
    [73] 全 燮,杨凤林,薛大明.钯- 铁催化还原法对水中三氯乙烯的快速脱氯研究.大连理工大学学报,1997,37 (1):46-50
    [74] 全 燮,刘会娟,杨凤林.二元金属体系对水中多氯有机物的催化还原脱氯特性.中国环境科学,1998,18 (4):333-338
    [75] 吴德礼,马鲁铭.氯代烷烃在 Fe/Cu 二相金属体系中的催化还原脱氯研究.净水技术,2004,23 (3):14-17
    [76] 何小娟,汤鸣皋,李旭东.镍/铁和铜/铁双金属降解四氯乙烯的研究.环境化学,2003,22 (4):334-339
    [77] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001 第一版
    [78] 杜飞鹏,余颖,曾艳.纳米 TiO2 光催化氧化技术研究进展.环境科学与技术,2004,3,27(2):94-97
    [79] Judin.New light on TiO2-reply.Chemistry In Britain,1993, 29(11):947-950
    [80] 施周,许光眉,张彬.纳米颗粒的分散及其在水与废水处理中的应用.环境污染治理技术与设备,2003,11,4(11):1-5
    [81] Zhang W X,Wang C B.Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs.Environ Sci Technol,1997,31(7):2154-2157
    [82] Zhang W X,Wang C B,Lien H.Treatment of chlorinated organic contaminants with nanoscale bimetallic particles.Catalysis Today,1998,(40):387-395
    [83] Lien H,Zhang W X.Reactions of chlorinated methanes with nanoscale metal particles in aqueous solutions.J Environ Eng,1999,125(11):1042-1047
    [84] Lien H . Nanoscale bimetallic particles for dehalogenation of halogenated aliphatic compounds:[Dissertation] .Bethlehem,Pennsylvania:Lehigh University,2000
    [85] Ponder S M,Darab J G,Mallouk T E.Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported Nanoscale Zero-valent Iron.Environ Sci Technol,2000, 34(12): 2564-2569
    [86] Ponder S M,Darab J G.,Bucher J,et al.Surface Chemistry and Electrochemistry of Supported Zerovalent Iron Nanoparticles in the Remediation of Aqueous Metal Contaminants.Chem Mater,2001,13,(2):479-486
    [87] Zhang W X.Nanoscale iron particles for environmental remediation:On overview.Journal of Nanoparticle Research,2003,(5):323-332
    [88] Masciangioli T,Zhang W X.Environmental nanotechnology: Potential and pitfalls.Environ Sci Technol,2003,37(1) :102A-108A
    [89] Fang li,Vipulananda C, Kishoore K.Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene.Colloids and surfaces A:Physicochem Eng Aspects,2003,223:103-112
    [90] Kanchan M,Gautham J,Shashi B L.Removal of selenate by Fe and Ni/Fe nanosized particles.Ind Eng Chem Res,2004,43(16):4922-4934
    [91] Daniel W E,Zhang W X.Field assessment of nanoscale bimetallic particles for groundwatertreatment.Environ Sci Technol,2001,35(24):4922-4925
    [92] Korte N E,Zutman J L,Schlosser R M,et al.Field application of palladized iron for the dechlorination of trichloroethene.Waste management,2000,(20):687-694
    [93] Juszczyk W,Pielaszek J,Karpinski Z,et al.Reaction of 2 ,2-dimethylpropane with dihydrogen over silica-supported Pd-Fe catalysts.Applied Catalysis A-General,1996,144(1-2):281-291
    [94] Lien H L,Zhang W X.Nanoscale iron particles for complete reduction of chlorinated ethenes.Colloids and Surface A:Physiochemical and Engineering Aspects,2001,191:97-105
    [95] Liu Y Q,Majetich S A,Tilton R D,et al.TCE dechlorination rates, pathways and efficiency of nanoscale iron particles with different properties .et al.Environ Sci Technol,2005,39(5):1338-1345
    [96] 梁震,王焰新.纳米级零价铁的制备及其用于污水处理的机理研究.环境保护,2002,(4):14-16
    [97] 刘小虹,颜肖慈,李伟.纳米铁微粒制备的新进展.金属功能材料,2002,9(2):2-5104
    [98] 秦伯雄,曾悦坚,张炳范.等离子体制纳米铁粉技术.天津大学学报,1996,29(2):2-5
    [99] Cui Z I,Dong L F,Zhang Z K.Oxidation behavior of nano-Fe prepared by hydrogen arc plasma method.Nanostructured Materials,1995,5(7-8):829-833
    [100] Gleiter H.Nanocryst Mater,1989,20(4):223
    [101] 古军辉.高能球磨纳米铁粉的制备及其稳定性分析:[硕士论文],广州:华南理工大学,2002
    [102] Del B L,Herando A,Navarro E, et al.J Phys ,1998,8:107-110
    [103] Malow T R,Koch C C,Miraglia P Q, et al.Mate Sci Eng,1998,252A(1):36-43
    [104] Islamgaliev R K, Chemliek F,Gibadulin I F,et al.Nanostructmater, 1994,4(4):387-390
    [105] Ding X Z,Qi Z Z,He Y Z.Effect of hydrolysis water on the preparation of nano-crystalline titania powders via sol-gel process.Journal of Material Science Letters,1995,14(1):21-22
    [106] 曾京辉,郑化桂,曾恒兴等.联氨在金属纳米粉制备中的行为研究.中国科技大学学报,1999,29(5):59-599
    [107] 曾京辉,郑化桂,曾恒兴.纳米 α-Fe 金属粉合成.信息纪录材料,1998,4:14-17
    [108] 王翠英,陈祖耀,程彬等.金属铁纳米粒子的液相制备、表面修饰及其结构表征.化学物理学报,1999,12(6): 670-674
    [109] Gibson C P , Put K L . Synthesis and Characterization of Anisometric Cobalt Nanoclusters.Science,1995,267:1338
    [110] 崔正刚.微乳化技术及应用,北京:中国轻工业出版社,1999
    [111] 王莹利.微乳反应法超细铁铜催化剂的制备及其活性评价:[硕士学位论文],郑州:郑州大学,2005
    [112] Pileni M P.The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals.Nature Materials,2003,(2):145-150
    [113] Natter L,Schmelzer M L,Effler M S,et al.Grain-Growth Kinetics of Nanocrystalline Iron Studied In Situ by Synchrotron Real-Time X-ray Diffraction.J Phys Chem,B2000,104(11):2467-2476
    [114] Jean L,Jean D,Jacques R,et al.Chem Mater,2000,12:946-955
    [115] 曹茂盛,邓启刚,鞠刚等.α-Fe 纳米粉末制备及其表征.化学通报,2000,(2):42-43
    [116] 李发伸,杨文平,薛德胜.纳米 Fe 微粒的制备及研究.兰州大学学报(自然科学版),1994,30(1):144-146
    [117] 田春霞.纳米粉末的制备方法综述.粉末冶金工业,2001,11(5):19-24
    [118] 杨勇彬,高家诚,王勇.铁基纳米粉末的研究.钢铁研究,2003,(1):36-41
    [119] 王其祥,宋宝珍,李洪钟.H2+H2O 还原法制备超细金属磁记录粉.无机材料学报,2001,16(5):861-866
    [120] Schrick B,Hydutsky B W,Blough J L.Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater .Chem. Mater,2004, 16, 2187-2193
    [121] 王桂香.铁系元素纳米合金的合成及性能研究:[硕士学位论文],哈尔滨:哈尔滨工程大学,2001
    [122] 李玲.表面活性剂与纳米技术.北京:化学工业出版社,2004,2 月
    [123] Li Y D,Li C W,Wang H R,et al.Preparation of nickel ultrafine powder and crystalline film by chemical control reduction.Materials Chemistry and Physics,1999,(59):88-90
    [124] Hashiba M,Okmoto H,Nurishi Y,et al.Dispersion of ZrO2 particles in aqueous suspensions by ammonium polyacrylate.J Mater Sci, 1989,24(3):873-875
    [125] 刘琪,朱宣惠.胶粒聚集程度对 ZrO2MgO 超细粉末团聚状态的影响.硅酸盐学报,1989,17(6):522-525
    [126] 许迪春,郝晓春,朱宣惠.湿化学法制备 ZrO2 (Y2O3) 超细粉末过程中团聚状态的控制.硅酸盐学报,1992,20(1):48-54
    [127] 邹同征,涂江平,夏正志等.聚乙二醇为分散剂的沉淀法制备 IF-MoS2.无机化学学报,2005,21(8):1170-1175
    [128] 贺拥军,杨伯伦.微乳液和均匀沉淀耦合法制备 CeO2 纳米粒子.化学通报,2003,(5):120-124
    [129] Luo P,Nieht G,Schwartz A J,et al.Surface characterization of nanostructured metal and ceramic particles.Materials Science and Engineering,1995,(A204):59-67
    [130] Jeong Y U,Manthiram A.Synthesis of Nickel Sulfides in Aqueous Solutions Using Sodium Dithionite.Inorg Chem,2001,40:73-77
    [131] 耿新玲,袁伟.液相法制备 Ni3S4 纳米粉.无机材料学报,2003,18(1):149-155
    [132] Chen H I,Chang H Y.Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents.Colloids and Surfaces A:Physicochem Eng Aspects,2004,242:61-69
    [133] 王秀宇,杨桂琴,严乐美.醇-水溶液共沉淀法制备纳米尖晶石型 ZnFexCr2xO4.硅酸盐通报,2004 ,23 (1):91-95
    [134] 黄惠忠.纳米材料分析.北京:化学工业出版社,2003 年 3 月第一版
    [135] Mitov M,Popov A,Dragieva I.Nanoparticles produced by borohydride reduction as precursors for metal hydride electrodes.J Appl Electrochem, 1999,29,59-63
    [136] Shen J,Li Z,Yan Q.Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles.J Phy Chem,1993,97,8504-8511
    [137] Zhang L, Manthiram A.Appl Phys Lett,1997,70(18):2469
    [138] Choe S,Chang Y Y,Hwang K Y,et al.Kinetics of reductive denitrification by nanoscale zero- valent iron.Chemosphere,2000,41 (12):1307-1314
    [139] Yang G C C,Hsaio L L.Chemical reduction of nitrate by nanosized iron: kinetics and pathways.Water Research,2005, 39 (5):884-894
    [140] Jana N R,Wang Z L,Sau T K,et al.Research Commun,2000,79 :1367 -1370
    [141] 于迎涛,张钦辉,徐柏庆.溶液体系中的纳米金属粒子形状控制合成.化学进展,2004,16(4):520-527
    [142] 张可从.近代晶体学基础.北京:科学出版社,1987
    [143] 刘虎威.气相色谱方法及应用.北京:化学工业出版社,2000
    [144] 许国旺.现代实用气相色谱法.北京:化学工业出版社,2004
    [145] 沈钟.胶体科学导论.北京:高等教育出版社,1989
    [146] 王一钧.铁系纳米合金的合成及性能研究:[硕士学位论文],哈尔滨:哈尔滨工程大学,2002
    [147] Alessi D S,Li Z H.Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron.Environ Sci Technol,2001,35(18):3713-3717
    [148] Zhang P,Tao X,Li Z H,et al .Enhanced Perchloroethylene Reduction in Column Systems Using Surfactant-Modified Zeolite/Zero-Valent Iron Pellets.Environ Sci Technol,2002,36(17):3597-3603
    [149] 袁凤英,秦清风.表面活性剂改性沸石及其处理废水研究.太原科技大学学报,2005,26(2):157-158
    [150] 胥思勤,王焰新.表面活性剂改性岩矿材料去除废水中氯代烃的实验研究, 地球科学———中国地质大学学报,2004,29(1):55-59
    [151] Larson R A,Jafvert C T,Bosca F,et al .Effects of Surfactants on Reduction and Photolysis (>290 nm) of Nitroaromatic Compounds, Environ Sci Technol,2000,34(3):505-508
    [152] Matheson L J,Tratnyek P G.Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol,1994,28(12):2045-2053
    [153] 卫建军.纳米级 Pd/Fe 双金属对水中氯酚的催化脱氯研究.[博士学位论文],杭州:浙江大学,2004
    [154] Huang C P,Wang H W,Chiu P C.Nitrate reduction by metallic iron, Water Res. 1998,32 (8):2257-2264
    [155] Cheng I F,Muftikian R,Fernando Q.Reduction of nitrate to ammonia by zero-valent iron.Chemosphere,1997b,35 (11) :2689–2695
    [156] Fanning J C.The chemical reduction of nitrate in aqueous solution.Coord Chem,2000,199:159–179
    [157] Rahman A,Agrawal A.Reduction of nitrate and nitrite by iron metal: implications for ground water remediation.In: Extended Abstract,Division of Environmental Chemistry,ACS National Meeting,1997,13–17 April, San Francisco, CA
    [158] 李海莹,王薇,金朝晖等.纳米铁的制备及其对污染地下水的脱硝研究.南开大学学报,2006,39 (1):8-13
    [159] 李铁龙,刘海水,金朝晖等.纳米铁去除水中硝酸盐氮的批试验.吉林大学学报(工学版),2006,32(2):264-268
    [160] Venkatapathy R,Bessingpas D G,Canonica S,et al.Kinetics models for trichloroethylene transformation by zero-valent iron. Applied Catalysis B: Environmental ,2002,37(2):139–159
    [161] Gander J W,Parkin G F,Scherer M M. Kinetics of 1,1,1-Trichloroethane Transformation by Iron Sulfide and a Methanogenic Consortium. Environ Sci Technol,2002,36(21):4540-4546
    [162] Su C,Puls R W.Kinetics of Trichloroethene Reduction by Zero-valent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products. Environ Sci Technol,1999,33(1):163-168
    [163] Burris D R,Campbell T J,Manoranjan V S. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environ Sci Technol,1995,29(11):2850-2855
    [164] Kim Y,Carraway E R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol,2000,34(10):2014-2017
    [165] Venkatapathy R,Bessingpas D G,Canonica S,et al.Kinetics models for trichloroethylene transformation by zero-valent iron, Applied Catalysis B:2002,37,139-159
    [166] Liu Y Q,Majetich S A,Tiltion R D,et al.TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties. Environ Sci Technol,2005, 39(5):1338-1345
    [167] Deng B, Burris D R, Campbell T.Reduction of vinylchlorinated in metallic iron-water system. Environ Sci Technol,1999,33(15):2651-2656
    [168] Hara J,Ito H,Suto K,et al.Kinetics of trichloroethene dechlorination with iron powder .Water Research,2005,39:1165-1173
    [169] Schrick, Bettina. Supported metal nanoparticles for the remediation of chlorinated hydrocarbons:[Dissertation] .The Pennsylvania State University, 2002
    [170] Janda V,Vasek P,Bizova J,et al. Kinetic models for volatile chlorinated hydrocarbons removal by zero-valet iron.Chemosphere,2004,54(7):917-925
    [171] Scherer M M,Baiko B A,Gallagher D,et al.Correlation analysis of rate constants fordechlorination by zero-valent iron. Environ Sci Technol,1998,32(19):3026-3033
    [172] Johnson T L,Scherer M M, Tratnyek P G.Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol,1996,30(8):2634–2640
    [173] Rober A L,Totten L A, Arnold W A,et al.Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ Sci Tech,1996,30(8):2654-2659
    [174] 常文保,李克安.简明分析化学手册. 北京:北京大学出版社,1981
    [175] Mackenzie P D,Horney D P,Sivavec T M. Mineral precipitation and porosity losses in granular iron columns. J Hazard Materi,1999,68(1-2):11-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700