浮游颤藻对Cu~(2+)和Zn~(2+)的生物吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境的重金属污染已经成为一个全球性的环境问题。从工业废水中去除有毒的重金属元素是环境保护领域中的难题之一。传统的重金属废水处理技术包括稀释换水法、化学沉淀法、电解法、离子交换法等,这些方法在遇到含重金属废水的处理量大且重金属浓度低的情况时,就会暴露成本高、效果差的缺点。用生物吸附技术吸附重金属离子是一项新的处理技术,能有效的去除和回收溶液中的重金属。
     本文通过分批式实验方法对非活性浮游颤藻(Oscillatoria planctonica)吸附Cu~(2+)和Zn~(2+)的吸附特性进行研究,并研究pH值、吸附剂与溶液的固液比、初始重金属离子浓度、温度和反应接触时间对吸附的作用。非活性浮游颤藻的吸附容量随溶液pH值的改变而变化,在pH=2的时候,对Cu~(2+)和Zn~(2+)吸附量均非常小,pH值从2上升到4时,吸附量急剧增加,pH=4~5.5之间,吸附量有渐渐平衡的趋势。吸附反应温度对吸附反应没有明显的影响。随着吸附剂与溶液固液比的升高,吸附剂的单位吸附量反而减少,但是Cu~(2+)和Zn~(2+)的去除率却随之上升,非活性颤藻的最大去除率分别达到79.62%和65.60%。随着重金属离子Cu~(2+)和Zn~(2+)初始浓度的增加,非活性颤藻的单位吸附量也增加,最后渐渐趋向平衡。Cu~(2+)和Zn~(2+)的等温吸附平衡均能用Langmuir等温吸附线和Freundlich等温吸附线来描述,拟合相关系数均在0.9以上,且Freundlich模型对吸附的拟合效果更好。实验表明,吸附反应的速度很快,在反应40分钟左右吸附量就达到了平衡吸附量的80%~90%,吸附反应1小时左右就基本达到了平衡,二级动力学方程对实验数据的拟合相关度非常好。0.1 mol/L的硝酸溶液能有效的将吸附在非活性浮游颤藻上的Cu~(2+)和Zn~(2+)解吸下来。为了提高非活性浮游颤藻(Oscillatoria planctonica)的吸附能力,本文还研
     究了预处理对浮游颤藻吸附Cu~(2+)和Zn~(2+)的作用,以及环境因素对预处理藻粉吸附Cu~(2+)和Zn~(2+)的影响。用0.2 mol/L的CaCl2对浮游颤藻进行的预处理能提高其对Cu~(2+)和Zn~(2+)的生物吸附量,经预处理的藻粉对Cu~(2+)的理论最大吸附量为73.53 mg/g,对Zn~(2+)的理论最大吸附量为59.52 mg/g。环境因素对预处理藻粉吸附Cu~(2+)和Zn~(2+)的影响与其对非活性浮游颤藻吸附的作用相似。红外光谱分析表明预处理藻粉对Cu~(2+)和Zn~(2+)的生物吸附机理主要归结于重金属离子与—OH、—CH2—和酰胺基的结合作用。
Contamination of the aquatic environment by heavy metals has already become a worldwide environmental problem. The removal of toxic heavy metals from industrial wastewaters is one of the most important environmental issues. The conventional heavy metal treatment technologies such as dilute and exchange, chemical precipitaion, electrolytic technologies and ion-exchange, can be less effective and more expensive when situations involving high volumes and low metal concentrations are encountered. Biosorption of heavy metals ions is a relatively new technology, which is an effective process for the removal and recovery of heavy metal ions from aqueous solution.
     In this paper, the adsorption properties of nonliving Oscillatoria planctonica for Cu~(2+) and Zn~(2+) were investigated using the batch method as a function of pH, biosorbent to solution ratio, initial heavy metal ion concentration, temperature, and contact time. The biosorption capacities were solution pH dependent. At pH less than 2, the amount of biosorption was almost negligible for both Cu~(2+) and Zn~(2+), within the pH range of 2~4, the biosorption capacity increased rapidly, and in the pH range of 4~5.5, tended to a maximum value. But the biosorption wasn’t affected by temperature. The adsorption capacity decreased with increasing the biosorbent to solution ratio, while the removal ratios of Cu~(2+) and Zn~(2+) increased and the maximum removal ratios of nonliving Oscillatoria planctonica were 79.62% and 65.60% respectively. The sorption of Cu~(2+) or Zn~(2+) increased as the initial concentration increased. The adsorption equilibriums of Cu~(2+) and Zn~(2+) could be represented by Langmuir isotherms and Freundlich isotherms, R2>0.9. However, the Freundlich model exhibited a slightly better fit to the biosorption data than the Langmuir model. The biosorption kinetics was found to be fast, about 80%~90% of the total adsorbed heavy metal ions were removed from the solution within 40 min of agitation, and equilibrium reached in about 1 hour. Pseudo second-order described the sorption data very well. The adsorbed Cu~(2+) and Zn~(2+) could be desorbed effectively by 0.1 mol/L nitric acid.
     In order to enhance the adsorption capacity, the effects of pretreatment and environmental factors on biosorption of Cu~(2+) and Zn~(2+) were studied. The pre-treatment by 0.2 mol/L CaCl2 enhanced both Cu~(2+) and Zn~(2+) biosorption, the theoretic maximum capacity of pre-treated biomass was 73.53 mg/g for Cu~(2+) and 59.52 mg/g for Zn~(2+). The effects of environmental factors on Cu~(2+) and Zn~(2+) biosorption by pretreatment biomass were similar to the effects on the biosorption by nonliving biomass. The FTIR analysis showed that the mechanism involved in biosorption of Cu~(2+) and Zn~(2+) by pretreatment Oscillatoria planctonica was mainly attributed to binding of—OH,—CH2—and amide I.
引文
[1] 杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略.给水排水,2001,27(1):94-101
    [2] 李天杰.土壤环境学.北京:高等教育出版社,1995:102-103
    [3] 李博.生态学.北京:高等教育出版社,2000:359-364
    [4] 胡稳奇,张志光.微生物方法在重金属污染处理中的应用现状及展望.大自然探索,1995,14(52):58-62
    [5] Veenstra J N, Sanders D, Ahn S. Impact of chromium and copper on fixed film biological system. Journal of Environmental Engineering, 1999, 125(6): 522-531
    [6] 科学出版社编写组.环境中重金属研究文集.北京:科学出版社,1988:76-79
    [7] 叶锦韶,尹华,彭辉.微生物抗重金属毒性研究进展.环境污染治理技术与设备,2002,3(4):1-4
    [8] Dakiky M, Khamis M, Manassra A, et al. Selective adsorption of Cr(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 2002, 6: 533-540
    [9] Leborans G F, Novillo A. Toxicity and bioaccumulation of Cadmium in Olisthodiscus luteus. Water Resources, 1996, 30(1): 57-62
    [10] 鲁安怀.天然铁的硫化物净化含铬污水的新方法.地学前缘,1998,5(1-2):342
    [11] 彭根槐,吴上达.电石渣—铁屑法去除硫酸废水中的氟和砷.化工环保,1995,15(5):280-288
    [12] 黄琼玉,傅传书.转化法处理重金属废水的研究.水污染防治,1992,5:4-7
    [13] 王钧扬.矿山废水的治理与利用.中国资源综合利用,2000,3:4-7
    [14] 许民,余淑娴,胡全红,等.全湿法炼锌厂的环保工艺设计.江西化工,2000,2:9-10
    [15] Ridha A, Tellier S, Dubreuil J F, et al. Removal of heavy metals from industrial effluents by electrode position on carbon felt electrode. In Heidelberg: Proc of Int Conf on Heavy Metals in the Environment, 1983:940-942
    [16] 于秀娟,周定,王海燕.电渗析法净化再生化学镀镍老化液的研究.环境科学学报,2000,20(S):120-124
    [17] Katarzyna C, Aksu Z, ?ztürk A, et al. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry, 1999, 34(9): 885-892
    [18] 徐亚同,史家墚,张明.污染控制微生物工程.北京:化学工业出版社,2001:146-147
    [19] Ranald M A, Carl E C. Bioremediation of petroleum pollutants. BioScience, 1995, 45(5): 332-338
    [20] 郑天凌,庄铁城,蔡立哲,等.微生物在海洋污染环境中的生物修复作用.厦门大学学报,2001,40(2):524-534
    [21] Allard A S, Neilson A H. Bioremediation of organic waste sites: A critical review of microbiological aspects. International Biodeterioration and Biodegradation, 1997, 25(39): 253-285
    [22] 戴全裕,戴文宁,高翔,等.高等水生植物对废水中银的净化与富集特性研究.生态学报,1990,10(4):343-348
    [23] 戴全裕,高翔,卢红.水生植物对重金属废水的吸收累积能力.环境科学学报,1983,4(3):213-221
    [24] 颜素珠,彭秀娟.8 种水生植物对污水中重金属铜的抗性及净化能力研究. 中国环境科学,1990,10(3):166-170
    [25] Zhu Y L, Zayed A M, Qian J H, et al. Phytoaccumulation of trace elements by wetland plants: II water hyacinth. Journal of Environmental Quality, 1999, 28(1): 339-344
    [26] 朱斌,陈飞星,陈增奇.利用水生植物净化富营养化水体的研究进展.上海环境科学,2002,21(9):564-567
    [27] 胡厚堂,王海宁.生物处理法处理水体中的重金属的现状与展望.环境技术,2004,1:35-38
    [28] 刘刚,李清彪.重金属生物吸附的基础和过程研究.水处理技术,2002,28(1):17-18
    [29] Veglio F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy, 1997, 44(3): 301-316
    [30] Fourest E, Roux J. Heavy metal biosorption by fungal mycelial by-product: mechanisms and influence of pH. Applied Microbiology and Biotechnology, 1992, 37(3): 399-403
    [31] 王建龙,韩英健,钱易.微生物吸附金属离子的研究进展.微生物学通报,2000,27(6):449-450
    [32] 陈玉成.污染环境生物修复工程.北京:化学工业出版社,2003:26-28
    [33] Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 2003, 37(18): 4311-4330
    [34] Ar?ca M Y, Tüzün ?, Yal??n E. Utilisation of native, heat and acid-treatedmicroalgae Chlamydomonas reinhardtii preparations for biosorption of Cr(VI) ions. Process Biochemistry, 2005, 40(7): 2351-2358
    [35] Brady J M, Tobin J M. Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme and Microbial Technology, 1995, 17: 791-796
    [36] Holan Z R, Volesky B, Prasetyo I. Biosorption of cadmium by biomass of marine algae. Biotechnology and bioengineering, 1993, 41: 819-825
    [37] Tsezos M, Deutschmann A A. An investigation of the engineering parameters for the use of immobilized biomass particles in biosorption. Journal of Chemical Technology and Biotechnology, 1990, 48: 29-39
    [38] Bai R S, Abraham T E. Studies on Cr(VI) adsorption–desorption using immobilized fungal biomass. Bioresource Technology, 2003, 87(1): 17-26
    [39] 朱雪强,韩宝平.重金属生物吸附研究进展.中国环保产业,2004,5:19-21
    [40] Crist R H, Obserholser K, Shank N, et al. Nature of bonding between metallic ions and algal cell walls. Environment Science and Technology, 1981, 15(10): 1212-1217
    [41] Huang C P, Huang C P, Morehart A L. The removal of Cu(II) from dilute aqueous solution by Saccharomyces cerevisiae. Water Research, 1990, 24(4): 433-439
    [42] Ehrlich H L, Brierley C L. Microbial Mineral Recovery. NewYork:Mcgraw-Hill Publishing, 1990:277-302
    [43] Ariff A B, Mel M, Hasan M A, et al. The kinetics and mechanism of lead(II) biosorption by powderized Rhizopus oligosporus. World Journal of Microbiology and Biotechnology, 1999, 15(2): 255-260
    [44] Aksu Z, ?zer D, ?zer A, et al. Investigation of the column performance of cadmium(II) biosorption by Cladophora crispate flocs in a packed bed. Separation Science and Technology, 1998, 35(5): 667-682
    [45] Macfie S M, Welbourn P M. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Archives of Environment Contamination Toxicology, 2000, 39(4): 413-419
    [46] Lodi A, Solisio C, Converti A, et al. Cadmium, zinc, copper, silver and chromium(III) removal from wastewaters by Sphaerotilus natans. Bioprocess Engineering, 1998, 19: 197-203
    [47] Terry P A, Stone W. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 2002, 47: 249-255
    [48] Sandau E, Sandau P, Pulz O. Heavy-metal sorption by microalgae. Acta Biotechnologica, 1996, 16(4): 227-235
    [49] Ar(?)ca M Y, Bayramoglu G, Y?lmaz M, et al. Biosorption of Hg2+, Cd2+ and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trvgii. Journal of Hazardous Material, 2004, 109: 191-199
    [50] Yal(?)nkaya Y, Arica M Y, Soysal L, et al. Cadmium and mercury uptake by immobilized Pleurotus sapidus. Turkish Journal of Chemistry, 2002, 26: 441-452
    [51] Sa(?)lam N, Say R, Denizli A, et al. Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochemistry, 1999, 34(7): 725-730
    [52] 田建民.生物吸附法在含重金属废水处理中的应用.太原理工大学学报,2000,31(1): 74-77
    [53] Liu Y Y, Fu J K, Zhou Z H, et al. A study of Pt4+ adsorption and its reduction by bacillus megaterium D01. Chemical Research in Chinese Universities, 2000, 16(3): 1-4
    [54] 王亚雄,郭瑾珑,刘瑞霞.微生物吸附剂对重金属的吸附特性.环境科学,2001,22(6):72-75
    [55] Chang J S, Law R, Chang C C. Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Research, 1997, 31(7): 1651-1658
    [56] Lopez A, Lazaro N, Morales S. Nickel biosorption by free and immobilized cells of Pseudomonas Fluoreseens 4F39: a comparative study. Water Air and Soil Pollution, 2002, 135: 157-172
    [57] Yin P H, Yu Q M, Jin B, et al. Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater. Water Research, 1999, 33(8): 1960-1963
    [58] Volesky B, May H A. Biosorption of heavy metals by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1995, 42(5): 797-806
    [59] Kogej A, Pavko A. Comparison of Rhizopus nigricans in a pelleted growth form with some other types of waste microbial biomass as biosorvents for metal ions. World Journal of Microbiology and Biotechnology, 2001, 17: 677-685
    [60] 陈明,赵永红.微生物吸附重金属离子的试验研究.南方冶金学院学报,2001,22(3):168-174
    [61] 孟琴.生物吸附剂 BAP 对 Cu2+的吸附研究.水处理技术,1998,24(3):175-178
    [62] 李春明,姜恒,侯文强,等.酵母菌对重金属离子吸附的研究.菌物系统,1998,17(4):367-373
    [63] Cossich E S, Tavares C R, Ravagnani T M. Biosorption of chromium(III) bySargassum sp. biomass. Electronic Journal of Biotechnology, 2002, 5(2): 133-140
    [64] Kratochvil D, Volesky B. Biosorption of Cu from ferruginous wastewater by algal biomass. Water Research, 1998, 32(9): 2760-2768
    [65] Volesky B, Prasetyo I. Cadmium Removal in a biosorption Column. Biotechnology Bioengineering, 1994, 43(11): 1010-1015
    [66] Bailey S E, Olin T J, Bricka R M, et al. A review of potentially low-cost sorbents for heavy metals. Water Research, 1999, 33(11): 2469-2479
    [67] 常秀莲,王文华,冯咏梅,等.不同海藻吸附重金属镉离子的研究.离子交换与吸附,2002,18(5):432-439
    [68] Maria B. Sorption of heavy metals by prepared bacterial cell surfaces. Phytochemistry, 1983, 22: 1603-1604
    [69] 陈勇生,孙启俊,陈钧,等.重金属的生物吸附技术研究.环境科学进展,1997,5(6):34-43
    [70] Kuyucak N, Volesky B. The mechanism of cobalt biosorption. Biotechnology Bioengineering, 1989, 33: 823-831
    [71] Kapoor A, Viraraghavan T, Cullimore D R. Removal of heavy metals using the fungus Aspergillus niger. Bioresourse Technology, 1999, 70: 95-104
    [72] Li Q, Wu S, Liu G, et al. Simultaneous biosorption of Cd(II) and Pb(II) by pretreated biomass of Phanerochacte chrysosporium. Separation and Purification Technology, 2004, 34(1-3): 135-142
    [73] Sarret G, Manceau A, Spadini L, et al. Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy. Environment Science and Technology, 1998, 32(11): 1648-1655
    [74] Friis N, Myers K P. Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnology Bioengineering, 1986, 28(1): 21-28
    [75] Guibal E, Roulph C, Cloirech P. Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environment Science and Technology, 1995, 29(10): 2496-2503
    [76] Fourest E, Volesky B. Contribution of sulfonate groups and alginate to heacy metal biosorption by the dry biomass of Sargassum fluitans. Environment Science and Technology, 1996, 30(1): 277-282
    [77] 刘瑞霞,汤鸿霄,劳伟雄.重金属的生物吸附机理及吸附平衡模式研究.化学进展,2002,14(2): 87-92
    [78] 刘学虎,张清,马伟.非活性藻类吸附重金属的研究.山东化工,2002,31(3):15-17
    [79] Flávia P P, Francisca P F, Antonio C A. The use of waste biomass of Sargassum sp. for the biosorption of copper from simulated semiconductor effluents. Bioresource Technology, 2005, 96(13): 1511-1517
    [80] Kaewsarn P, Yu Q M. Cadmium(II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp.. Environmental pollution, 2001, 112(2): 209-213
    [81] Gulnaz O, Sayqideger S, Kusvuran E. Study of Cu(II) biosorption by dried activated sludge: effect of physico-chemical environment and kinetics study. Journal of Hazardous Materials, 2005, 120(1-3): 193-200
    [82] Gong R, Ding Y, Liu H, et al. Lead biosorption and desorption by intact and pretreated spirulina maxima biomass. Chemosphere, 2005, 58(1): 125-130
    [83] Nuhoglu Y, Malkoc E, Gürses A, et al. The removal of Cu(II) from aqueous solutions by Ulothrix zonata. Bioresource Technology, 2002, 85(3): 331-333
    [84] Sánchez A, Ballester A, Blazquez M L, et al. Biosorption of copper and zinc by Cymodocea nodosa. FEMS Microbiology Reviews, 1999, 23(5): 527-536
    [85] 吴海锁,张洪玲,张爱茜.小球藻吸附重金属离子的试验研究.环境化学,2004,23(2):173-177
    [86] Prerna A, Rani G, Saxena R K. Zn2+ biosorption by Oscillatoria anguistissima. Process Biochemistry, 1999, 34(1): 77-85
    [87] Wallace M A, Aderval S L, Cristiane A H, et al. An evaluation of copper biosorption by a brown seaweed under optimized conditions. Electronic Journal of Biotechnology, 2003, 6(3): 174-184
    [88] Vilar V J, Botelho C M, Boaventura R A. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochemistry, 2005, 40(10): 3267-3275
    [89] Karna R R, Uma L, Subranmanian U G, et al. Biosorption of toxic metal ions by alkali-extracted biomass of a marine cyanobacterium Phormidium Valderianum BDU 30501. World Journal of Microbiology and Biotechnology, 1999, 15(6): 729-732
    [90] Hafez N, Abdel R A, Hafez M B. Accumulation of heavy metals on Aspergillus Flavus. Journal of Chemical Technology and Biotechnology, 1997, 68(1): 19-22
    [91] Gadd G M. Biosorption. Journal of Chemical Technology and Biotechnology, 1986, 55: 302-304
    [92] Nourbakhsh M, Sag Y, Ozer D, et al. A comparative study of various biosorbents for removal of chromium(VI) ions from industrial wastewaters. ProcessBiochemistry, 1994, 29(1): 1-5
    [93] Kadukova J, Vircikova E. Comparison of differences of between copper bioaccumulation and biosorption. Environment International, 2005, 31(2): 227-232
    [94] Yasemin S, Ayten ?. Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 2005, 40(5): 1895-1901
    [95] 黄民生,施华丽,郑乐平.霉对水中重金属的吸附去除.化工装备技术,2001,22(4):17-21
    [96] 近藤精一,石川达雄,安部郁夫.吸附科学.北京:化学工业出版社,2006:37-40
    [97] Bayramo?lu G, Denizli A, Bekta? S, et al. Entrapment of Lentinus Sajur-caju into Ca-alginate gel beads for the removal of Cd(II) ions from aqueous solutions: preparations and biosorption kinetics analysis. Microchemical Journal, 2002, 72(1): 63-76
    [98] Tien C J. Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochemistry, 2002, 38(4): 605-613
    [99] Aksu Z, Tezer S. Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: effect of temperature. Process Biochemistry, 2000, 36: 431-439
    [100] Pan X L, Wang J L, Zhang D Y. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochemistry, 2005, 40(8): 2799-2803
    [101] Ho Y S, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451-456
    [102] Tewari N, Vasudevan P, Guha B K. Study on biosorption of Cr(VI) by Mucor hiemalis. Biochemical Engineering Journal, 2005, 23(2): 185-192
    [103] Katarzyna C, Andrzej C, Helena G. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 2005, 59(1): 75-84
    [104] Feng D, Aldrich C. Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy, 2004, 73(1-2): 1-10
    [105] Kaewsarn P. Biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp.. Chemosphere, 2002, 47(10): 1081-1085
    [106] Aksu Z, Sag Y, Kutsal T. The biosorption of copper(II) by C. vulgaris and Z.Ramigera. Environmental Technology, 1992, 13: 579-586
    [107] Kratochvil D, Fourest E, Volesky B. Biosorption of copper by Sargassum fluitans biomass in a fixed bed column. Biotechnology Letters, 1995, 17(7): 777-782

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700