吸附法脱除及回收焦化粗苯中噻吩的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化粗苯中都含有一定量的噻吩,如不分离会严重影响焦化苯产品的质量。噻吩也是珍贵的化工原料,实现对焦化粗苯中噻吩的分离与回收,将产生较大经济价值。因此本论文对用吸附法脱除及回收焦化粗苯中噻吩进行了研究。
     本论文以NaY分子筛为原料,用离子交换法制备了CeY分子筛;并对CeY分子筛用等体积浸渍法制备了不同Ce浸渍量的吸附剂Ce-CeY。用X射线粉末衍射(XRD)、氮吸附实验和傅立叶变换红外光谱(FT-IR)对所制备的吸附剂的结构进行了表征,并对噻吩吸附机理进行了研究。还就噻吩的回收、吸附剂的再生与循环利用进行了初步研究。
     研究结果表明:CeY分子筛中,Ce(Ⅳ)提供了丰富的吸附活性位,可以和噻吩形成π络合、S-Ce键配合及氢键作用;浸渍的Ce生成CeO2,分散在分子筛孔道内壁,造成吸附剂Ce-CeY孔径缩小,对噻吩具有分子尺寸选择作用。随着Ce浸渍量的增加,吸附剂的孔径逐渐缩小,吸附剂选择吸附噻吩性能先增大后减小。当温度为30℃、吸附剂用量8.5 %Ce-CeY(g) /模拟液(ml)为1/14、吸附时间超过120 min时,吸附剂8.5 %Ce-CeY的噻吩脱除率接近100 %。
     以二甲基亚砜为溶剂,用溶剂洗涤法可以实现对噻吩的回收,噻吩的收率为30 %。用直接焙烧对吸附剂进行再生,再生后的吸附剂选择吸附噻吩性能和原吸附剂基本一样。重复利用吸附剂三次,吸附剂噻吩脱除率仍然能保持80 %以上。
The high thiophene content in coking crude benzene has seriously affected quality of the benzene product. Thiophene was also valuable chemical material, so it would have a great economic value to thiophene removal and recovery. Therefore, the thiophene removal and recovery from coking crude benzene by adsorption method were studied in this dissertation.
     Adsorbents Ce-CeY of different Ce impregnation amount prepared by incipient-wetness impregnation with zeolite CeY, which be prepared by ion exchanging with NaY zeolite, were investigated by XRD, Nitroge Adsorption Experiment and FT-IR. The thiophene recovery, adsorbent regeneration and recycling were also studied.
     The results indicated that Ce(Ⅳ) of CeY created a great deal of active site which could beπcomplexation, S-Ce interaction and hydrogen bonding with thiophene. Simultaneously, the pore size of adsorbents became narrowed due to the dispersion of CeO2 formed by impregnation of Ce on zeolite, which could be selective adsorption to thiophene for different molecular size. The pore size was narrowed, the thiophene selective adsorption performance was increased, and then decreased, with the Ce impregnation amount increasing. The thiophene removal of 8.5 %Ce-CeY could be 100 %, in the condition of 30℃, 1/ 14(adsorbent(g)/ model liquid(ml) ) and 120 min(contact time).
     Thiophene could be recovered whose yield was 30 % by solvent washing method, using DMSO as solvent. The thiophene removal of adsorbent regenerated by direct calcination was essentially as the original adsorbent. The thiophene removal could still maintain more than 80 % after repeated three times.
引文
[1]何建平,李辉.炼焦化学产品回收技术[M].冶金工业出版社,2006.
    [2]杜雄伟,林开成,申峻.焦化粗苯及其深加工探讨[J].现代化工,2007,27(81):344-348.
    [3]赵海龙.高纯焦化苯与噻吩精制方法的研究[D].天津大学硕士毕业论文,2007.
    [4]张亮.萃取精馏法精制苯与回收噻吩[D].天津大学硕士毕业论文,2007.
    [5]罗国华.用氯甲基化法脱除焦化粗苯中噻吩的研究[J].燃料与化工,2001,32(2):86-87.
    [6]邓景发.催化作用原理导论[M].吉林科学技术出版社,1984.
    [7] Babich I V, Moulijn J A. Science and technology of novel process for deep desulfurization of oil refinery streams: a review[J]. Fuel, 2003, 82: 60 -631.
    [8] Herna’ndez-maldonado A J, Yang R T. Desulfurization of liquid fuels by adsorption viaπ-complexation with Cu(I)-Y and Ag-Y zeolites[J]. Industrial & Engineering Chemistry Research, 2003, 42(1): 123- 129.
    [9] Herna’ndez-maldonado A J, Yang R T. Desulfurization of commercial jet fuels by adsorption viaπ-complexation with vapor phase ion exchanged Cu(I)-Y zeolites[J]. Industrial & Engineering Chemistry Research, 2004, 43(19): 6142-6149.
    [10] Herna’ndez-maldonado A J, Rang F T, Rang R T, et al. Desulfurization of transportation fuels byπ-complexation sorbents: Cu(Ⅰ)-, Ni(Ⅱ)-, and Zn(Ⅱ)- zeolites[J]. Applied Catalysis B: Environmental, 2005, 56: 111-126.
    [11] Velu S, Ma XL, Song C S. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents[J]. Industrial & Engineering Chemistry Research, 2003, 42: 5293-5304.
    [12] King D L, Faz C. Desulfurization of gasoline feedstocks for application in fuel reforming[J]. Society of Automotive Engineers, 2000, 20: 153-161.
    [13]罗国华.脱除焦化粗苯中噻吩的研究[D].大连理工大学硕士论文,1994.
    [14]谭小耀等.液相吸附法脱除焦化苯中噻吩[J].山东工程学院学报,2000,4:4-9.
    [15]张景成,柳云骐,安高军等.吸附脱硫生产清洁油品[J].化学进展,2008,20(11):1834-1845.
    [16]罗国华,徐新,佟泽民等.沸石分子筛选择吸附焦化粗苯中噻吩[J].燃料化学学报,1999,27(5):476- 480.
    [17] Haji S , Erkey C. Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applictions[J]. Industrial & Engineering Chemistry Research, 2003, 42: 6933—6937.
    [18] Richardeau D, Joly G, Canaff C, et al. Adsorption and reaction over HFAU zeolites ofthiophene in liquid hydrocarbon solutions[J]. Applied Catalysis A: General, 2004, 263: 49- 61.
    [19] Larrubia M A, Gutierrez-Alejandre A, Ram’rez J, et al. A FT-IR Study of the adsorption of indole, carbazole, benzothiophene,dibenzothiophene and 4, 6- dibenzothiophene over solid adsorbents and catalysts[J]. Applied Catalysis A: General, 2002, 224: 167-178.
    [20] Hernandez-Maldonado A J, Rang R T. Desulfurization of diesel fuels viaπ-complexation with nickel(Ⅱ)-exchanged X- and Y-zeolites[J]. Industrial & Engineering Chemistry Research, 2004, 43: 1081-1089.
    [21] Wang Yuhe, Yang R T. Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration[J]. Langmuir, 2007, 23: 3825-3831.
    [22] Kikkinides E S, Sikavitsas V I, Yang R T. Natural gas desulfurization by adsorption: feasibility and multiplicity of cyclic steady states[J]. Industrial & Engineering Chemistry Research, 1995, 34, 255-262.
    [23] Yang R T, Takahashi A, Yang F H. New sorbents for desulfurization of liquid fuels byπ-complexation[J]. Industrial & Engineering Chemistry Research, 2001, 40: 6236-6239.
    [24] Wang Yuhe, Yang F H, Yang R T, et al. Desulfurization of high-sulfur jet fuel byπ-complexation with copper and palladium halide sorbents[J]. Industrial & Engineering Chemistry Research, 2006, 45: 7649-7655.
    [25] Hernandez-Maldonado A J, Stamatis S D, Yang R T. New sorbents for desulfurization of diesel fuels viaπ-complexation: layered bed and regeneration[J]. Industrial & Engineering Chemistry Research, 2004, 43: 769-776.
    [26] Velu S, Ma X , Song C. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents[J]. Industrial & Engineering Chemistry Research, 2003, 42: 5293-5304.
    [27] Song C S, Ma X L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J]. Applied Catalysis B: Environmental, 2003, 41: 207 -238.
    [28]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978.
    [29]王桂茹.催化剂与催化作用[M].大连理工大学出版社,2007.
    [30] XIE You-chang, TANG You-qi. Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis[J]. Advances in Catalysis, 1990, 37: 1-42.
    [31]唐有祺,谢有畅,桂琳琳.氧化物和盐类在载体表面的自发单层分散及其应用[J].自然科学进展,1994,4(6):642- 652.
    [32]谢有畅,唐有祺.氧化物和盐类在分子筛内外表面及孔穴中的自发扩散及应用[J].北京大学学报(自然科学版),1998,34(2-3):302-308.
    [33]王春明,赵璧英,谢有畅.盐类和氧化物在载体上自发单层分散研究新进展[J].催化学报,2003,24(6):475-482.
    [34] Xue M, Chitrakar R, Sakane K, et al. Preparation of cerium-loaded Y-zeolites for removal of organic sulfur compounds from hydrodesulfurizated gasoline and diesel oil[J]. Journal of Colloid and Interface Science, 2006, 298: 535-542.
    [35]薛志元,朱雷明,戴林森. LaHY分子筛的羟基及其酸性的红外分析[J].物理化学学报,1990,6(2): 183-189.
    [36]肖淑勇,邵建国,孟中岳. Si(CH3)3Cl对NaY沸石改性的研究[J].催化学报,1989,10(4):378- 382.
    [37] WANG Hong-guo, SONG Li-juan, JIANG Heng, et al. Effects of olefin on adsorptive desulfurization of gasoline over Ce(IV)Y zeolites[J]. Fuel Processing Technology, 2009, 90: 835-838.
    [38] Mills P, Korlann S, Bussell M E. Vibrational study of organometallic complexes with thiophene ligands: models for adsorbed thiophene on hydrodesulfurization catalysts[J]. The Journal of Physical Chemistry, 2001, 105(18): 4418-4429.
    [39]鞠秀芳,王洪国,徐静等.噻吩、苯在CeⅣY分子筛上的吸附行为[J].石油学报(石油加工),2009,25(5):655-660.
    [40]张晓彤,徐静,宋丽娟等.烯烃对CeY分子筛脱硫效果影响的红外光谱研究[J].燃料化学学报,2010,38(1):91-95.
    [41]王洪国,姜恒,徐静等.苯和1-辛烯对Ce(Ⅳ)Y分子筛选择吸附脱硫的影响[J].物理化学学报,2008,24(9):1714-1718.
    [42]徐静,王洪国,靳玲玲等.红外光谱法研究烯烃对Ce(Ⅳ)Y分子筛脱硫效果的影响[J].辽宁化工,2009,38(10):691-694.
    [43]田福平.汽油馏分的吸附脱硫及红外光谱研究[D].大连理工大学博士学位论文,2005.
    [44] TIAN Fu-ping, Wu Wei-cheng, JIANG Zong-xuan, et al. The study of thiophene adsorption onto La(Ⅲ)-exchanged zeolite NaY by FT-IR spectroscopy[J]. Journal of Colloid and Interface Science, 2006, 301:395-401.
    [45] (美)中西香尔,(美)P. H.索罗曼(著),王绪明(译).红外光谱分析100例[M].北京:科学出版社,1984.
    [46] Koranyi T, Moreau F, Rozanov V, et al. Identification of SH groups in zeolite-supported HDS catalysts by FT-IR spectroscopy[J]. Journal of Molecular Structure, 1997, 410-411: 103-110.
    [47] Garcia C, Lercher J. Adsorption of H2S on ZSM5 zeolites[J]. The Journal of Physical Chemistry, 1992, 96: 2230-2235.
    [48] Garcia C, Lercher J. Adsorption and surface reactions of thiophene on ZSM5 zeolites[J]. The Journal of Physical Chemistry, 1992, 96: 2669-2675.
    [49] Yang R T, Hernandez-Maldonado A J , Cannella W. DesumIrization of transportation fuels with zeolite under ambient conditions[J]. Science, 2003, 301: 79-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700