多尺度序列算法发展及镍基高温合金元素协同效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学成分对于镍基单晶高温合金力学性能具有重要影响,多组元固溶元素的作用和它们之间的相互影响以及协同效应具有重要的科学内涵和研究意义。本文对镍基单晶高温合金中化学元素——结构缺陷复合体电子结构与材料物性相关机制及Re和Ru元素协同效应进行了理论和实验研究。
     本文基于第一原理电子结构计算和位错线弹性理论发展了多尺度序列模式——物理参量解析传递算法,并将该算法用于镍基单晶高温合金力学性质研究。通过第一原理计算了合金元素对γ-Ni中层错能以及空位扩散激活能的影响,通过物理参量解析传递,计算了合金元素对Ni中位错攀移速度的影响。结果表明Re,Mo和W元素能够通过提高割阶形成能和空位扩散势垒有效地抑制位错攀移,从而提高了合金的蠕变强度和寿命。
     我们研究了合金元素对γ-Ni3Al中面缺陷能量及广义堆垛能的影响。通过物理参量解析传递,评估了合金元素对γ相中位错交滑移激活焓的影响,进而可以定性地了解合金元素强化γ相的能力。结果显示Re元素能够比W、Ta、Ti和Ru元素更有效地提高Ni3Al的流变应力。另一方面,根据Rice的韧脆判据,Re元素会使γ相变得更脆,有利于裂纹解理断裂。
     本文设计了Ni-Al二元,Ni-Al-Re和Ni-Al-Ru三元以及Ni-Al-Re-Ru四元模型合金,结合透射电子显微镜和三维原子探针实验,实现对合金相内区及界面区多化学元素分布特征及原子尺度构型的观测。实验结果表明,Ru的加入使得Re原子从γ相向γ相转移,并在γ相内形成Re-Ru原子团。第一原理计算结果显示,Re和Ru原子在第四近邻(大约5)范围内存在相互吸引作用,且距离越近,吸引作用越强。键强分析显示Re-Ru成键强度比Re-Ni和Ru-Ni键大,Re和Ru之间的强键合源于Re和Ru原子之间存在d-d电子杂化。
Chemical compositions are critical to the mechanical properties of Ni-basedsingle-crystal superalloys. The strengthening mechanisms of multi-chemical alloy-ing elements, their interactions and synergistic efects are of great significance in bothscience and engineering application. By using sequential multiscale modeling, the re-lationship between the electronic structure of alloying element-fault complex and me-chanical properties of superalloys are studied. Besides, the synergistic efect of Re andRu in Ni-based single-crystal superalloys are explored via theoretical and experimentalmethod.
     The efects of alloying elements on stacking fault energy and difusion activationenergy of vacancy in Ni are calculated by first-principles. The results are used asthe input parameters for analytical expressions based on elastic dislocation theory toevaluate the efects of alloying elements on the velocity of dislocation climbing in γ-Niphase. The results suggest that the elements Re, Mo and W can efectively suppressthe velocity of dislocation climbing by raising both the jog formation energy and thedifusion barrier of the vacancy.
     First-principles electronic structure calculations are used to study the influences ofalloying elements on the planar fault energies and generalized stacking fault energies inNi3Al. In combination with dislocation theory, the evaluation of strengthening efectsof various alloying elements can be given. Re is found to be more efective than W,Ta, Ti and Ru in decreasing cross-slip activation enthalpy and increasing flow stressin γ-Ni3Al. Meanwhile, according to Rice-criterion, Re increases brittleness of Ni3Almost, which promotes the probability of cleavage fracture near crack tip.
     Four kinds of single-crystal model alloys are designed, including Ni-Al, Ni-Al-Re,Ni-Al-Ru and Ni-Al-Re-Ru alloys. Three-dimensional atom probe tomography andhigh-resolution scanning transmission electron microscope are used to attain atomicscale resolution and obtain direct experimental evidence of element partitioning and site preference. The results show that the addition of the element Ru drives Re torepartition to γ phase and form Re-Ru clusters. First-principles calculations indicatethat Ru and Re attract each other in the range of4thnearest neighbor (about5),the attraction becomes stronger as the distance between Re and Ru decreasing. Theanalyses of bonding strength shows that Re-Ru bonding is stronger than Re-Ni and Ru-Ni, the strong interaction between Re and Ru originates from d-d orbital hybridizations.
引文
[1] Reed R C. The Superalloys: Fundamentals and Applications. New York: CambridgeUniversity Press,2006.
    [2] Heckl A, Neumeierb S, Gokenb M, et al. The efect of Re and Ru on γ/γ microstructure,γ-solid solution strengthening and creep strength in nickel-base superalloys. Mater. Sci.Eng. A,2011,528:3435–3444.
    [3] Seiser B, Drautz R, Pettifor D. TCP phase predictions in Ni-based superalloys: Structuremaps revisited. Acta Mater.,2011,59:749–763.
    [4] Chen J Y, Feng Q, Sun Z Q. Topologically close-packed phase promotion in a Ru-containingsingle crystal superalloy. Scripta Mater.,2010,63:795–798.
    [5] Cervenka M. The Rolls-Royce Trent Engine. The website of University of Cambridge.http://www.msm.cam.ac.uk/phase–trans/mphil/Trent1/index.htm.
    [6]胡壮麒.镍基单晶高温合金的发展.航空发动机,2005,31:1–7.
    [7] Matan N, Cox D C, Carter P, et al. Creep of CMSX-4superalloy single crystals: efects ofmisorientation and temperature. Acta Materialia,1999,47:1549–1563.
    [8] Matan N, Cox D C, Rae C M F, et al. On the kinetics of rafting in CMSX-4superalloysingle crystals. Acta Materialia,1999,47:2031–2045.
    [9] Drew G L, Reed R C, Kakehi K, et al. Single crystal superalloys: the transition from primaryto secondary creep. Superalloys2004(Warrendale, PA: The Minerals, Metals and MaterialsSociety),2004.127–136.
    [10] Nabarro F R N, Villiers H L. The Physics of Creep. London: Taylor andFrancis,1995.
    [11] Field R D, Pollock T M, Murphy W H. The development of γ/γ interfacial dislocationnetworks during creep in Ni-base superalloys. Superalloys1992(Warrendale, PA: The Min-erals, Metals and Materials Society),1992.557–566.
    [12] Amouyal Y, Seidman D N. The role of hafnium in the formation of misoriented defects inNi-based superalloys: An atom-probe tomographic study. Acta Meter.,2011.3321–3333.
    [13] Srinivasan R, Banerjee R, Hwang J Y, et al. Atomic Scale Structure and Chemical Compo-sition across Order-Disorder Interfaces. Phys. Rev. Lett.,2009,102:086101.
    [14] Mottura A, Finnis M W, Reed R C. On the possibility of rhenium clustering in nickel-basedsuperalloys. Acta Mater.,2012,60:2866–2872.
    [15] Blavette D, Caron P. An atom probe investigation of the role of rhenium additions in im-proving creep resistance of Ni-base superalloys. Scripta metallurgica,1986,20:1395–1400.
    [16] Nash P, ed. Phase Diagrams of Binary Nickel Alloys. Materials Park, OH: ASM Interna-tional,1991.
    [17] Ricks R A. The growth of gamma prime precipitates in nickel-base superalloys. ActaMetallurgica,1983,31:43–53.
    [18] Fahrmann M, Hermann W, Fahrmann E, et al. Mater. Sci. Eng. A,1999,260:212–221.
    [19] Zhang J X, Wang J C, Harada H, et al. The efect of lattice misfit on the dislocation motion insuperalloys during high-temperature low-stress creep. Acta Mater.,2005,53:4623–4633.
    [20] Wu W P, Guo Y F, Wang Y S, et al. Molecular dynamics simulation of the structuralevolution of misfit dislocation networks at γ/γ phase interfaces in Ni-based superalloys.Philosophical Magazine,2011,91:357–372.
    [21] Mukherjee A K, J E Bird J E D. Experimental Correlations for High-Temperature Creep.ASTM Transactions Quarterly,1969,62:155–179.
    [22] Ma S, Carroll L, Pollock T M. Development of γ phase stacking faults during high temper-ature creep of Ru-containing single crystal superalloys. Acta Mater.,2007,55:5802–5812.
    [23] Janotti A, Krcmar M, Fu C L, et al. Solute difusion in metals: Larger atoms can movefaster. Phys. Rev. Lett.,2004,92:085901–1–085901–4.
    [24] Sato A, Harada H, Yokokawa T, et al. The efects of ruthenium on the phase stability offourth generation Ni-base single crystal superalloys. Scripta Mater.,2006,54:1679–1684.
    [25] Amouyal Y, Mao Z, Seidman D N. Efects of tantalum on the partitioning of tungsten be-tween the and-phases in nickel-based superalloys: Linking experimental and computationalapproaches. Acta Meter.,2010.5898–5911.
    [26] Wang W, Jin T, Liu J, et al. Role of Re and Co on microstructures and γ coarsening insingle crystal superalloys. Mater. Sci. Eng. A,2008,479:148–156.
    [27] Anderson P W. More is diferent. Science,1972,177:393–396.
    [28] Pablo J J, Curtin W A. Multiscale Modeling in Advanced Materials Research: Challenges,Novel Methods, and Emerging Applications. MRS Bulletin,2007,32:905–911.
    [29] Clementi E. Global Scientific and Engineering Simulations on Scalar, Vector and ParallelLCAP-Type Supercomputers. Phil. Trans. R. Soc. Lond. A,1988,326:445–470.
    [30] Ceder G. Opportunities and challenges for first-principles materials design and applicationsto Li battery materials. MRS bulletin,2010,35:693–701.
    [31] Lu G, Tadmor, Kaxiras E. From electrons to finite elements: A concurrent multiscaleapproach for metals. Phys. Rev. B,2006,73:024108.
    [32] Ramasubramaniam A, Carter E A. Coupled Quantum–Atomistic and Quan-tum–Continuum Mechanics Methods in Materials Research. MRS Bulletin,2007,32:913–918.
    [33] Kang K, Meng Y S, Bréger J, et al. Electrodes with High Power and High Capacity forRechargeable Lithium Batteries. Science,2006,311:977–980.
    [34] Leyson G P M, Curtin W A, Hector L G, et al. Quantitative prediction of solute strengthen-ing in aluminium alloys. Nature Materials,2010,9:750–755.
    [35]朗道,栗弗席兹.弹性理论(第五版).北京:高等教育出版社,2009.
    [36]李正中.固体理论(第二版).北京:高等教育出版社,2002.
    [37] Hohenberg, Kohn. Inhomogeneous electron gas. Phys. Rev,1964,136:864–871.
    [38]徐光宪,黎乐民,王德民.量子化学——基本原理和从头计算法(第二版).北京:科学出版社,2009.
    [39]阎守胜.固体物理基础(第二版).北京:北京大学出版社,2003.
    [40] Kohn, Sham. Self-consistent equations including exchange and correlation efects. Phys.Rev,1965,140:1133–1138.
    [41] Martin R M. Electronic Structure: basic theory and practical methods. New York: Cam-bridge University Press,2004.
    [42] Ellis D E, Benesh G A, Byrom E. Molecular cluster studies of binary alloys: LiAl. Phys.Rev. B,1977,16:3308–3313.
    [43]章晓中.电子显微分析.北京:清华大学出版社,2006.
    [44] Williams D B, Carter C B. Transmission Electron Microscopy: A Textbook for MaterialsScience.北京:清华大学出版社,2007.
    [45] Cowley J M. Difraction physics (3rd ed). Amsterdam: Elsvier Service,1995.
    [46]朱静,叶恒强,王仁卉.高空间分辨分析电子显微学.北京:科学出版社,1987.
    [47] Jia C L, Lentzen M, Urban K. Atomic-Resolution Imaging of Oxygen in Perovskite Ce-ramics. Science,2003,299:870–873.
    [48] Jia C L, Urban K. Atomic-resolution measurement of oxygen concentration in oxide mate-rials. Science,2004,303:2001–2004.
    [49] Wang C Y, Liu S Y, Han L G. Electronic structure of impurity (oxygen)–stacking-faultcomplex in nickel. Phys. Rev. B,1990,41:1359–1367.
    [50] Friedel J. Dislocations. New York: Pergamon Press,1964.
    [51] Stroh A N. The Formation of Cracks as a Result of Plastic Flow. Proc. R. Soc. Lond. A,1954,223:404–414.
    [52] Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys.Rev. B,1993,48:13115–13118.
    [53] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys. Rev. B,1976,13:5188–5192.
    [54] Murr L E. Interfacial Phenomena in Metals and Alloys. Reading MA: Addison Wesley,1975.
    [55] Carter C B, Hoimes S M. The stacking-fault energy of nickel. Philos. Mag.,1977,35:1161–1172.
    [56] Henkelman G, Uberuaga B P, Jo′nsson H. A climbing image nudged elastic band methodfor finding saddle points and minimum energy paths. J Chem Phys,2000,113:9901–9904.
    [57] Wycisk W, Feller-Kniepmeier M. Quenching experiments in high purity Ni. J. Nucl. Mater.,69:616–619.
    [58] Karnthaler H P, Muhlbacher E T H, Rentenberger C. The influence of the fault energies onthe anomalous mechanical behaviour of Ni3Al alloys. Acta Mater.,1996,44:547–560.
    [59] Paidar V, Pope D, Vitek V. A theory of the anomalous yield behavior in L12ordered alloys.Acta Metall,1984,32:435–448.
    [60] Yoo M H. On the theory of anomalous yield behavior of Ni3Al—efect of elastic anisotropy.Scripta metall,1986,20:915–920.
    [61] Kruml T, Conforto E, Piccolo B L, et al. From dislocation cores to strength and work-hardening: a study of binary Ni3Al. Acta Mater,2002,50:5091–5101.
    [62] Hemker K J, Mills M J. Measurements of antiphase boundary and complex stacking faultenergies in binary and B-doped Ni3Al using TEM. Philos. Mag. A,1993,68:305–324.
    [63] Paxton A T, Sun Y Q. The role of planar fault energy in the yield anomaly in L12inter-metallics. Phil. Mag. A,1998,78:85–104.
    [64] Fu C L, Ye Y Y, Yoo M H. Bulk and Defect Properties of Ordered Intermetallics: A First-Principles Total-Energy Investigation. Proceedings of MRS fall meeting: Symposium L,1992,288:21–32.
    [65] Delley B, Ellis D E, Freeman A J, et al. Binding energy and electronic structure of smallcopper particles. Phys. Rev. B,1983,27:2132–2144.
    [66] Wang C Y, An F, Gu B L, et al. Electronic structure of the light-impurity (boron)–vacancycomplex in iron. Phys. Rev. B,1988,38:3905–3912.
    [67]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中的应用.北京:科学出版社,1998.
    [68] Wang F H, Wang C Y. First-principles investigation of hydrogen embrittlement in polycrys-talline Ni3Al. Phys. Rev. B,1998,57:289–295.
    [69] Parthasarathy T A, Dimiduk D M. Atomistic simulations of the structure and stability of“PPV”locks in an L12compound. Acta Mater,1996,44:2237–2247.
    [70] Vitek V. Theory of the Core Structures of Dislocations in BCC Metals. Cryst. LatticeDefects,1974,5:1–34.
    [71] Rice J R. Dislocation nucleation from a crack tip: An analysis based on the Peierls concept.J. Mech. Phys. Solids,1992,40:239–271.
    [72] Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystalsuperalloys with various γ volume fraction. Acta Mater.,2004,52:3737–3744.
    [73] Mottura A, Warnken N, Miller M K, et al. Atom probe tomography analysis of the distri-bution of rhenium in nickel alloys. Acta Mater.,2010,58:931–942.
    [74] Mottura A, Wu R T, Finnis M W, et al. A critique of rhenium clustering in Ni–Re alloysusing extended X-ray absorption spectroscopy. Acta Mater.,2008,56:2669–2675.
    [75] Zhang S B, Northrup J E. Chemical potential dependence of defect formation energies inGaAs: Application to Ga self-difusion. Phys. Rev. Lett.,1991,67:2339–2342.
    [76] Kohan A F, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO.Phys. Rev. B.15019–15027.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700