城市公园绿地小气候环境效应及其影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化的快速推进,城市热岛效应越来越明显。城市热岛现象造成都市高温化进而影响居住环境的安全性和舒适性,并加剧能源消耗及温室气体排放。已有研究表明,增加城市公园绿地是降低城市热岛效应最有效的方式之一。然而,公园绿地降温效应受到诸多自身及环境因子的影响,对其机制的研究还十分薄弱。本研究针对具有特定气候条件和城市形态的北京市,以北京奥林匹克公园和奥林匹克森林公园为例,研究了城市公园内不同树木群落、不同下垫面组成的空气温湿度差异、变化规律及其对公园微尺度热环境的影响,探索了大型公园绿地对周围城市区域环境的降温效应和影响因素,揭示了局地尺度上城市气温与植被覆盖关系的时空变化。主要结论如下:
     (1)在夏季,树木群落可显著降低空气温度和光照强度,提高相对湿度。与群落外空旷地的对照点相比,植物群落内的日均降温强度为1.6-2.5℃;增湿强度为2.9%~5.2%;遮光率为61.0%~96.9%。同时,不同树种群落的微气候因子也存在着显著差异。植物群落与对照点的日平均不舒适指数差异不显著,但与对照点相比,群落都能降低一定的不舒适指数,降低不舒适指数率为2.5%~4.3%。相关性分析表明,树木群落的冠层特征(叶面积指数、冠层盖度和天空可视因子)对群落内的微气候因子具有重要的调节作用,群落叶面积指数和冠层盖度越大,群落内的光照强度越低,则群落内的空气温度也越低。
     (2)在夏季,不同下垫面的气温存在明显的差异,尤其是午后这种差异最为明显,此时路面的气温最高,其次是草坪和水体,林地的气温最低;而到了晚上,不同下垫面之间的气温差异较小,此时路面的气温仍然最高,而草坪的气温变得最低。不同下垫面的湿度格局和温度呈相反的变化趋势。不管白天还是晚上,公园内不同下垫面的湿度均高于公园外城市环境的湿度,形成“公园湿岛”;但是,午后公园内路面和草坪的气温有可能比附近城市环境的气温更高,从而形成不舒适的热环境。在午后,林地的面积比率对公园局地小气候起着主导作用,而到了晚上,草坪的面积比率对公园局地小气候有着决定性的作用。
     (3)公园区域比周围城市环境拥有更低的空气温度和更高的相对湿度,尤其是在午夜时,公园的降温效应最为明显,最大降温强度达4.8℃,平均降温强度为2.8℃。观测也发现,随着距公园边界距离的增加,空气温度呈上升趋势,尤其在午夜这种气温上升趋势最为明显,距公园边界距离每增加O.1km气温上升0.20~0.31℃。这种现象表明公园对周围的城市环境也产生一定的降温效应,这种降温效应可以延伸到距公园边界1km以外的地方。公园的降温强度和降温范围受周围城市环境的影响,周围城市环境温度越高,公园降温强度越大;公园周围环境越开阔,公园降温距离越远。通过回归分析发现,空气湿度和气温呈显著的负相关,表明蒸散作用对于公园降温效应起着重要的调节作用。此外,测点周围的下垫面组成对测点气温也有重要的影响,植被覆盖率越高气温越低:而不透水表面比率越高则气温越高。
     (4)在局地尺度的城市区域内仍然存在明显的空气温度差异,城市气温及其差异的形成主要受不同范围的植被覆盖以及测点环境特征的影响。植被的状况对于局地气温的分布与温度差异大小有着重要的影响,除了冬季白天,植被在冬季夜晚、夏季白天和夏季夜晚都有显著的降温效应,降温强度呈现出冬季夜晚>夏季夜晚>夏季白天>冬季白天的趋势。城市气温与测点周围植被覆盖率间的相关程度随不同时相而变化,两者之间的相关性夏季比冬季密切,晚上比白天密切。城市气温与测点周围植被覆盖率间的相关程度随周围范围大小而有变化,在白天时,测点气温主要受测点周围20m半径范围内植被覆盖率的影响;而到了晚上,气温主要受周围150m半径范围内植被覆盖情况的影响。城市气温也受到城市冠层结构的影响,在白天时气温随着天空可视因子的增加而升高,而到了晚上则呈现出相反的趋势。此外,测点的地理位置也对其气温的大小有影响,随着距公园和水体距离的增加空气温度呈上升趋势。
In the last decades, a great concentration of people around urban areas took place worldwide. The urbanization process, with its fast population increase, creates changes in the urban climate. A distinct feature of urban climate is the urban heat island (UHI) effect, which has significant negative effects on the buildings energy consumption, outdoor air quality, living environment, and habitability of cities. Therefore, there is a pressing need for urban researchers to evaluate strategies that may mitigate against further increases in temperatures in urban areas. Among all cooling measures, planting of vegetation in urban areas is one of the simplest and most effective strategies to mitigate the UHI effect. However, the cooling effect of urban green spaces are affected by park characteristics and their surrounding built areas. Understanding the causes of the cooling effect of urban green spaces is a first step in improving urban landscape design to ameliorate urban thermal environment. In the present study, the thermal performance of urban green spaces in Beijing were investigated through a field measurement campaign and statistical analysis. The main experimental results are as follows:
     (1) In hot summer, there existed significant differences in the air temperature, relative humidity and light intensity between tree communities and the control open site (CK). Compared with CK, the tree communities can decrease temperature by1.6~2.5℃, increase the relative humidity with2.9%-5.2%. Compared with the CK, all species communities are able to reduce the diurnal mean discomfort index (DI) in some degree. Correlation analysis between microclimate factors and the indices of the tree communities canopy structural characteristics show that canopy characteristics play important regulatory role in microclimate and thermal environment.
     (2) The average air temperature difference among different land cover types was large during the day and small during the night. At noon, the average air temperature differed significantly among four land cover types, whereas on night, there was no significant difference among different land cover types. The results of the linear regression indicated that during daytime, there was a good negative correlation between air temperature and percent trees cover; while at nighttime, the air temperature had significant negative correlation with the coverage of lawn area. It was shown that as the coverage of trees areas increased10%, the air temperature decreased by0.26℃during daytime, while as the coverage of lawn areas increased10%, the air temperature decreased by0.56℃during nighttime.
     (3) Results from field measurements in and around the park showed that urban park were on average cooler than their surroundings, especially during midnight, with a mean cooling intensity of 2.8℃. The results also indicated that the cooling effect of the urban green space was remarkable not only at park areas but also the surrounding built environments. Air temperatures gradually increased with increasing distance from the park boundary, for every O.lkm increase in distance will increase air temperature by0.20~0.31℃, and the cooling effect could reach up to lkm from the park boundary. Relative humidity was one of the key variables affecting local air temperature. The observed air temperature decreased as relative humidity increased during all the time. Land cover composition was another crucial parameter. The percentage vegetation cover was consistently negatively correlated with air temperature, whereas the percentage of impervious surface area was positively related.
     (4) Spatial temperature difference between the maximum and minimum observed air temperature at a local scale in urban area ranged from1.2to7.0℃, depending on season and time of the day. The magnitude and spatial characteristic of the air temperature variations depend strongly on the coverage of vegetation characterizing the immediate environment of the measurement sites. The air temperature had a significant negative correlation with the percentage vegetation cover, but the degree of correlation varied among different times and seasons. Moreover, the influence of vegetation on air temperature also varied with spatial extent scale. Site geometry was another crucial parameter because of its importance in determining the receipt and loss of radiation. The observed air temperature increased as sky view factor increased during daytime, while a contrary tendency was observed during nighttime. In addition, the air temperature increased with increasing distance from the park and water body boundary.
引文
1.巴鲁克.吉沃尼著,汪芳等译.建筑设计和城市设计中的气候因素[M].北京:中国建筑工业出版社,2011.
    2.北京市气象局资料室.北京城市气候[M].北京:气象出版社,1992:3-7.
    3.蔡园园,闫淑君,陈英,等.亚热带城市河流廊道绿带结构的温湿效应[J].福建林学院学报,2013,33(4):357-362.
    4.陈朱,陈方敏,朱飞鸽,等.面积与植物群落结构对城市公园气温的影响[J].生态学杂志,2011,30(11):2590-2596.
    5.曹丹,周立晨,毛义伟,等.上海城市公共开放空间夏季小气候及舒适度[J].应用生态学报,2008,19(8):1797-1802.
    6.陈辉,古琳,黎燕琼,等.成都市城市森林格局与热岛效应的关系[J].生态学报.2009,29(9):4865-4874.
    7.邓莲堂,束炯,李朝颐.上海城市热岛的变化特征分析[J].热带气象学报,2001,17(3):273-280.
    8.冯晓刚,石辉.基于遥感的夏季西安城市公园“冷效应”研究[J].生态学报,2012,32(23):7355-7363.
    9.郭伟,申屠雅瑾,赵丽丽,等.秋季北方城市植物群落对温湿度的影响[J].生态环境学报,2009,18(4):1422-1426.
    10.高玉福,李树华,朱春阳.城市带状绿地林型与温湿效益的关系[J].中国园林,2012,28(1):94-97.
    11.纪鹏,朱春阳,李树华.河流廊道绿带结构的温湿效应[J].林业科学,2012,48(3):58-65.
    12.纪鹏,朱春阳,高玉福,等.河流廊道绿带宽度对温湿效益的影响[J].中国园林,2012,28(5):109-112.
    13.纪鹏,朱春阳,李树华.城市沿河不同垂直结构绿带四季温湿效应的研究[J].草地学报,2012,20(3):456-463.
    14.纪鹏,朱春阳,李树华.城市河道绿带宽度对空气温湿度的影响[J].植物生态学报,2013,37(1):37-44.
    15.黄承标,文祥凤,黄丹,等.大学校园不同绿地结构类型的小气候特征[J].广州大学学报:自然科学版,2010,9(1):37-41.
    16.黄聚聪,赵小锋,唐立娜,等.城市化进程中城市热岛景观格局演变的时空特征—以厦门市为例[J].生态学报,2012,32(2):622-631.
    17.黄良美,黄海霞,项东云,等.南京市四种下垫面气温日变化规律及城市热岛效应[J].生 态环境,2007,16(5):1411-1420.
    18.黄良美,黄玉源,黎桦,等.南宁市植物群落结构特征与局地小气候效应关系分析[J].广西植物,2008,28(2):211-217.
    19.季崇萍,刘伟东,轩春怡.北京城市化进程对城市热岛的影响研究[J].地球物理学报,2006,49(1):69-77.
    20.吉野正敏著,郭可展,等译.局地气候原理[M].南宁:广西科学出版社,1989:1-2.
    21.焦绪娟,赵文飞,张衡亮,等.几种绿化树种降低城市热岛效应的研究[J].江西农业大学学报,2007,29(1):89-93.
    22.金为民,姚永康.城市人工片林小气候研究初报[J].东北林业大学学报,2002,30(3):115-117.
    23.胡永红,王丽勉,秦俊,等.不同群落结构的绿地对夏季微气候的改善效果[J].安徽农业科学,2006,34(2):235-237.
    24. Landsberg HE,郑师中译.都市气候学[M].台湾:世界图书出版公司,1990:16-18.
    25.蔺银鼎,梁锋.城市灌木群落小气候效应的时空分布[J].中国农学通报,2007,23(3):313-317.
    26.理查德(Richard L.)著,姚启润译.森林小气候学[M].北京:气象出版社,1985.
    27.李延明,张济和,古润泽.北京城市绿化与热岛效应的关系研究[J].中国园林,2004,20(1):72-75.
    28.李延明,郭佳,冯久莹.城市绿色空间及对城市热岛效应的影响[J].城市环境与城市生态,2004,17(1):1-4.
    29.李英汉,王俊坚,李贵才,等.居住区植物绿量与其气温调控效应的关系[J].生态学报,2011,31(3):830-838.
    30.雷江丽,刘涛,吴艳艳,等.深圳城市绿地空间结构对绿地降温效应的影响[J].西北林学院学报,2011,26(4):218-223.
    31.林炳怀,杨大文.北京城市热岛效应的数值试验研究[J].水科学进展,2007,18(2):258-263.
    32.林学椿,于淑秋.北京地区气温的年代际变化和热岛效应[J].地球物理学报,2005,48(1):39--45.
    33.刘娇妹,李树华,吴菲,等.纯林、混交林型园林绿地的生态效益[J].生态学报,2007,27(2):674-684.
    34.刘娇妹,李树华,杨志峰.北京公园绿地夏季温湿效应[J].生态学杂志,2008,27(11):1972-1978.
    35.刘娇妹,杨志峰.北京市冬季不同景观下垫面温湿度变化特征[J].生态学报,2009,(6):3241-3252.
    36.刘伟东,季崇萍,仲跻芹.北京城市热岛效应的时空分析[C].推进气象科技创新加快气象事业发展——中国气象学会2004年年会论文集(下册),2004.
    37.刘振威,孙丽,沈军.校园内不同树种行道树生态效应研究[J].中国生态农业学报,2007,15(4):208-210.
    38.刘艳红,郭晋平.基于植被指数的太原市绿地景观格局及其热环境效应[J].地理科学进展,2009(5):798-804.
    39.马秀枝,李长生,陈高娃,等.校园内行道树不同树种降温增湿效应研究[J].内蒙古农业大学学报:自然科学版,2011,32(1):125-130.
    40.潘守文.小气候考察的理论基础及其应[M].北京:气象出版社,1989:1-3.
    41.宋丽华,曹兵,吴李.银川市几种绿化树种降温增湿效应的比较[J].西北林学院学报,2009,24(3):46-48.
    42.苏泳娴,黄光庆,陈修治,等.广州市城区公园对周边环境的降温效应[J].生态学报,2010,30(18):4905-4918.
    43.田武文,黄祖英,胡春娟.西安市气候变暖与城市热岛效应问题研究[J].应用气象学报,2006,17(4):438-443.
    44.佟华,刘辉志,桑建国,等.城市人为热对北京热环境的影响[J].气候与环境研究,2004,9(3):409-421.
    45.佟华,刘辉志,李延明,等.北京夏季城市热岛现状及楔形绿地规划对缓解城市热岛的作用[J].应用气象学报,2005,16(3):357-366.
    46.王喜全,王自发,郭虎.北京“城市热岛”效应现状及特征[J].气候与环境研究,2007,11(5):627-636.
    47.王喜全,龚晏邦.“城市干岛”对北京夏季高温闷热天气的影响[J].科学通报,2010,11:1043-1047.
    48.王修信,朱启疆,陈声海,等.城市公园绿地水,热与C02通量观测与分析[J].生态学报,2007,27(8):3232-3239.
    49.吴菲,李树华,刘娇妹.城市绿地面积与温湿效益之间关系的研究[J].中国园林,2007,(6):71-74.
    50.吴菲,李树华,刘娇妹.林下广场、无林广场和草坪的温湿度及人体舒适度[J].生态学报,2007,(7):2964-2971.
    51.吴菲,张志国,王广勇.北京54种常用园林植物降温增湿效应研究[C].中国观赏园艺研究进展,2012:661-670.
    52.吴菲,朱春阳,王广勇,等.北京市8种铺装材质温湿度变化特征[J].城市环境与城市生态,2012,25(1):35-38.
    53.武小钢,蔺银鼎,闫海冰,等.城市绿地降温增湿效应与其结构特征相关性研究[J].中国生态农业学报,2008,16(6):1469-1473.
    54.徐永明,覃志豪,朱焱.基于遥感数据的苏州市热岛效应时空变化特征分析[J].地理科学,2009,29(4):529-534.
    55.晏海,王雪,董丽.华北树木群落夏季微气候特征及其对人体舒适度的影响[J].北京林业大学学报,2012,34(5):57-63.
    56.杨士弘.城市绿化树木的降温增湿效应研究[J].地理研究,1994,13(4):74-80.
    57.杨士弘.城市绿化树木碳氧平衡效应研究[J].城市环境与城市生态,1996,9(1):37-39.
    58.于淑秋,卞林根,林学椿.北京城市热岛“尺度”变化与城市发展[J].中国科学:D辑,2006,35(A01):97-106.
    59.曾侠,钱光明,潘蔚娟.珠江三角洲都市群城市热岛效应初步研究[J].气象,2005,30(10):12-16.
    60.张佳华,孟倩文,李欣.北京城区城市热岛的多时空尺度变化[J].地理科学,2011,31(11):1349-1354.
    61.张景哲,刘启明.北京城市气温与下垫面结构关系的时相变化[J].地理学报,1988,43(2):159-168.
    62.张丽红,刘剑,李树华.铺装及园路用地比例对园林绿地温,湿度影响的研究[J].中国园林,2006,8:47-50.
    63.张艳丽,费世民,李智勇,等.成都市沙河主要绿化树种固碳释氧和降温增湿效益[J].生态学报,2013,33(12):3878-3887.
    64.郑祚芳,刘伟东,王迎春.北京地区城市热岛的时空分布特征[J].南京气象学院学报,2006,29(5):694-699.
    65.中国气象科学数据共享服务网-中国(1971-2000年)气候标准值[2010-12-08].http://cdc.cma.gov.cn/shishi/climate.jsp? stprovid=%B 1%B1%BE%A9.
    66.周淑贞,张超.上海城市热岛效应[J].地理学报,1982,37(4):372-382.
    67.周淑贞,束炯.城市气候学[M].北京:气象出版社,1994.
    68.朱春阳,李树华,纪鹏.城市带状绿地结构类型与温湿效应的关系[J].应用生态学报,2011,22(5):1255-1260.
    69. Adebayo YR. "Heat island" in a humid tropical city and its relationship with potential evaporation[J]. Theoretical and applied climatology,1991,43(3):137-147.
    70. Akbari H, Davis S, Huang J, et al. Cooling our communities:A guidebook on tree planting and light-colored surfacing[R]. Lawrence Berkeley Lab., CA (United States); Environmental Protection Agency, Washington, DC (United States). Climate Change Div.,1992.
    71. Akbari H, Kurn D M, Bretz S E, et al. Peak power and cooling energy savings of shade trees[J]. Energy and Buildings,1997,25(2):139-148.
    72. Akbari H, Pomerantz M, Taha H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas[J]. Solar energy,2001,70(3):295-310.
    73. Akbari H. Shade trees reduce building energy use and CO2 emissions from power plants[J]. Environmental pollution,2002,116:S119-S126.
    74. Alexandri E, Jones P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates[J]. Building and Environment,2008,43(4):480-493.
    75. Ali-Toudert F, Mayer H. Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons[J]. Solar Energy,2007,81(6):742-754.
    76. Andreou E, Axarli K. Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis[J]. Renewable Energy,2012,43:354-363.
    77. Armson D, Stringer P, Ennos AR. The effect of tree shade and grass on surface and globe temperatures in an urban area[J]. Urban Forestry & Urban Greening,2012,11(3):245-255.
    78. Arnfield A J. Two decades of urban climate research:a review of turbulence, exchanges of energy and water, and the urban heat island[J]. International journal of climatology,2003,23(1):1-26.
    79. Avissar R. Potential effects of vegetation on the urban thermal environment J]. Atmospheric Environment,1996,30(3):437-448
    80. Bernatzky A. The contribution of tress and green spaces to a town climate[J]. Energy and Buildings,1982,5(1):1-10.
    81. Barradas VL. Air temperature and humidity and human comfort index of some city parks of Mexico City[J]. International journal of biometeorology,1991,35:24-28.
    82. Barradas VL, Tejeda-Martmez A, Jauregui E. Energy balance measurements in a suburban vegetated area in Mexico City[J]. Atmospheric Environment,1999,33(24):4109-4113.
    83. Bornstein RD. Observations of the urban heat island effect in New York City[J]. Journal of Applied Meteorology,1968,7(4):575-582.
    84. Bourbia F, Awbi HB. Building cluster and shading in urban canyon for hot dry climate:Part 1: Air and surface temperature measurements[J]. Renewable Energy,2004,29(2):249-262.
    85. Bourbia F, Boucheriba F. Impact of street design on urban microclimate for semi arid climate (Constantine)[J]. Renewable Energy,2010,35(2):343-347.
    86. Bowler DE, Buyung-Ali L, Knight T M, Pullin A S. Urban greening to cool towns and cities:A systematic review of the empirical evidence[J]. Landscape and Urban Planning,2010,97(3): 147-155.
    87. Brown RD. Microclimatic landscape design:creating thermal comfort and energy efficiency[M]. John Wiley & Sons,1995.
    88. Bruse M, Fleer H. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model[J]. Environmental Modelling & Software,1998,13(3): 373-384.
    89. Buyantuyev A, Wu J. Urban heat islands and landscape heterogeneity:linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns[J]. Landscape Ecology,2010,25(1):17-33.
    90. Ca VT, Asaeda T, Abu EM. Reductions in air conditioning energy caused by a nearby park[J]. Energy and Buildings,1998,29(1):83-92.
    91. Cai G, Du M, Xue Y. Monitoring of urban heat island effect in Beijing combining ASTER and TM data[J]. International Journal of Remote Sensing,2011,32(5):1213-1232.
    92. Cao X, Onishi A, Chen J, Imura H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data[J]. Landscape and Urban Planning,2010,96:224-231.
    93. Carlson TN, Gillies RR, Perry EM. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews,1994,9(1-2):161-173.
    94. Chan ALS. Effect of adjacent shading on the thermal performance of residential buildings in a subtropical region[J]. Applied Energy,2012,92:516-522.
    95. Chang C, Li MH, Chang SD. A preliminary study on the local cool-island intensity of Taipei city parks[J]. Landscape and Urban Planning,2007,80:386-395.
    96. Chen XL, Zhao HM, Li PX, et al. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes[J]. Remote sensing of environment,2006, 104(2):133-146.
    97. Chen X, Su Y, Li D, et al. Study on the cooling effects of urban parks on surrounding environments using Landsat TM data:a case study in Guangzhou, southern China[J]. International Journal of Remote Sensing,2012,33(18):5889-5914.
    98. Chen Y, Wong NH. Thermal benefits of city parks[J]. Energy and Buildings,2006,38:105-120.
    99. Chow WTL, Roth M. Temporal dynamics of the urban heat island of Singapore[J]. International Journal of Climatology,2006,26(15):2243-2260.
    100. Chow WTL, Pope RL, Martin CA, et al. Observing and modeling the nocturnal park cool island of an arid city:horizontal and vertical impacts[J]. Theoretical and Applied Climatology,2011, 103(1-2):197-211.
    101. Cohen P, Potchter O, Matzarakis A. Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort[J]. Building and Environment,2012,51:285-295.
    102. Costa A, Labaki L, Araujo V. A methodology to study the urban distribution of air temperature in fixed points[C]//2nd PALENC and 28th AIVC conference on Building Low Energy Cooling and Advanced Ventilation Technologies for the 21st Century.2007.
    103. de Munck C, Pigeon G, Masson V, et al. How much can air conditioning increase air temperatures for a city like Paris, France?[J]. International Journal of Climatology,2013,33(1): 210-227.
    104. Dimoudi A, Nikolopoulou M. Vegetation in the urban environment:microclimatic analysis and benefits[J]. Energy and buildings,2003,35(1):69-76.
    105. Donovan GH, Butry DT. The value of shade:estimating the effect of urban trees on summertime electricity use[J]. Energy and Buildings,2009,41(6):662-668.
    106. Eliasson I. Intra-urban nocturnal temperature differences:a multivariate approach[J]. Climate Research,1996,7(1):21-30.
    107. Erell E, Williamson T. Intra-urban differences in canopy layer air temperature at a mid-latitude city[J]. Int J Climatol 2007,27(9):1243-1255.
    108. Fahmy M, Sharples S, Yahiya M. LAI based trees selection for mid latitude urban developments: A microclimatic study in Cairo, Egypt[J]. Building and Environment,2010,45(2):345-357.
    109. Foley JA, Costa MH, Delire C, et al. Green surprise? How terrestrial ecosystems could affect earth's climate[J]. Frontiers in Ecology and the Environment,2003,1(1):38-44.
    110. Georgi JN, Dimitriou D. The contribution of urban green spaces to the improvement of environment in cities:Case study of Chania, Greece[J]. Building and Environment,2010,45: 1401-1414.
    111. Georgi NJ, Zafiriadis K. The impact of park trees on microclimate in urban areas[J]. Urban Ecosystems,2006,9(3):195-209.
    112. Gill SE, Handley JF, Ennos AR, et al. Adapting cities for climate change:the role of the green infrastructure[J]. Built Environment,2007,30(1):115-133.
    113. Golden JS, Carlson J, Kaloush KE, et al. A comparative study of the thermal and radiative impacts of photovoltaic canopies on pavement surface temperatures[J]. Solar Energy,2007,81(7): 872-883.
    114. Gomez F, Gaja E, Reig A. Vegetation and climatic changes in a city[J]. Ecological engineering, 1998,10(4):355-360.
    115. Gomez-Munoz VM, Porta-Gandara MA, Fernandez JL. Effect of tree shades in urban planning in hot-arid climatic regions[J]. Landscape and Urban Planning,2010,94(3):149-157.
    116. Gosling SN, Lowe JA, McGregor GR. Associations between elevated atmospheric temperature and human mortality:a critical review of the literature[J]. Climatic Change 2009;92:299-341.
    117. Grimm NB, Faeth SH, Golubiewski NE, et al. Global change and the ecology of cities[J]. science, 2008,319(5864):756-760.
    118. Grimmond CSB, Souch C, Hubble MD. Influence of tree cover on summer-time surface energy balance fluxes, San Gabriel Valley, Los Angeles[J]. Climate Research,1996,6(1):45-57.
    119. Grimmond CSB, Roth M, Oke TR, et al. Climate and more sustainable cities:climate information for improved planning and management of cities (producers/capabilities perspective)[J]. Procedia Environmental Sciences,2010,1:247-274.
    120. Hagishima A, Narita K, Tanimoto J. Field experiment on transpiration from isolated urban plants[J]. Hydrological processes,2007,21(9):1217-1222.
    121. Hamada S, Ohta T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas[J]. Urban Forestry & Urban Greening,2010,9(1):15-24.
    122. Hamada S, Tanaka T, Ohta T. Impacts of land use and topography on the cooling effect of green areas on surrounding urban areas[J]. Urban Forestry & Urban Greening,2013,12(4):426-434.
    123. Hardin PJ, Jensen RR. The effect of urban leaf area on summertime urban surface kinetic temperatures:a Terre Haute case study[J]. Urban Forestry & Urban Greening,2007,6(2):63-72.
    124. Hart MA, Sailor DJ. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island[J]. Theor Appl Climatol 2009;95(3-4):397-406.
    125. Heisler GM. Effects of individual trees on the solar radiation climate of small buildings[J]. Urban Ecology,1986,9(3):337-359.
    126. Honjo T, Takakura T.Simulation of thermal effects of urban green areas on their surrounding areas[J]. Energy and Buildings,1991,15(3):443-^46.
    127. Holmer B, Thorsson S, Linden J. Evening evapotranspirative cooling in relation to vegetation and urban geometry in the city of Ouagadougou, Burkina Faso[J]. International Journal of Climatology,2013,33(15):3089-3105.
    128. Huang LM, Li JL, Zhao DH, et al. A fieldwork study on the diurnal changes of urban microclimate in four types of ground cover and urban heat island of Nanjing, China[J]. Building and Environment,2008,43:7-17.
    129. Ichinose T, Shimodozono K, Hanaki K. Impact of anthropogenic heat on urban climate in Tokyo[J]. Atmospheric Environment,1999,33(24):3897-3909.
    130. Imhoff ML, Zhang P, Wolfe R E, et al. Remote sensing of the urban heat island effect across biomes in the continental USA[J]. Remote Sensing of Environment,2010,114(3):504-513.
    131. Jauregui E. Influence of a large urban park on temperature and convective precipitation in a tropical city[J]. Energy and buildings,1991,15(3):457-463.
    132. Johnson DB. Urban modification of diurnal temperature cycles in Birmingham, UK[J]. J Climatol 1985,5(2):221-225.
    133. Jonsson P. Vegetation as an urban climate control in the subtropical city of Gaborone, Botswana[J]. International Journal of Climatology,2004,24(10):1307-1322.
    134. Jansson C, Jansson PE, Gustafsson D. Near surface climate in an urban vegetated park and its surroundings[J]. Theoretical and Applied Climatology,2007,89(3-4),185-193.
    135. Kalnay E, Cai M. Impact of urbanization and land-use change on climate[J]. Nature 2003, 423(6939):528-531.
    136. Kawashima S. Effect of vegetation on surface temperature in urban and suburban areas in winter[J]. Energy and Buildings,1991,15(3):465-469.
    137. Kim HH. Urban heat island[J]. International Journal of Remote Sensing,1992,13(12): 2319-2336.
    138. KIM YH, BAIK JJ. Maximum urban heat island intensity in Seoul[J]. Journal of applied meteorology,2002,41(6):651-659.
    139. Kim YH, Baik JJ. Spatial and Temporal Structure of the Urban Heat Island in Seoul[J]. Journal of Applied Meteorology,2005,44(5):591-605.
    140. Kinney PL. Climate change, air quality, and human health[J]. American journal of preventive medicine,2008,35(5):459-467.
    141. Klysik K, Fortuniak K. Temporal and spatial characteristics of the urban heat island of L6dz, Poland[J]. Atmospheric Environment,1999,33(24):3885-3895.
    142. Kohler M, Schmidt M, Grimme FW, et al. Green roofs in temperate climates and in the hot-humid tropics-far beyond the aesthetics[J]. Environmental management and health,2002, 13(4):382-391.
    143. Kolokotroni M, Giannitsaris I, Watkins R. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies[J]. Solar Energy,2006,80(4):383-392.
    144. Kolokotroni M, Ren X, Davies M, et al. London's urban heat island:Impact on current and future energy consumption in office buildings[J]. Energy and buildings,2012,47:302-311.
    145. Kotzen B. An investigation of shade under six different tree species of the Negev desert towards their potential use for enhancing micro-climatic conditions in landscape architectural development[J]. Journal of Arid environments,2003,55(2):231-274.
    146. Kruger E, Givoni B. Outdoor measurements and temperature comparisons of seven monitoring stations:Preliminary studies in Curitiba, Brazil[J]. Building and environment,2007,42(4): 1685-1698.
    147. Kumar R, Kaushik SC. Performance evaluation of green roof and shading for thermal protection of buildings[J]. Building and Environment,2005,40(11):1505-1511.
    148. Lambin EF, Ehrlich D. The surface temperature-vegetation index space for land cover and land-cover change analysis[J]. International journal of remote sensing,1996,17(3):463-487.
    149. Lau SS, Lin P, Qin H. A preliminary study on environmental performances of pocket parks in high-rise and high-density urban context in Hong Kong[J]. International Journal of Low-Carbon Technologies,2012,7(3):215-225.
    150. Lee SH, Lee KS, Jin WC, et al. Effect of an urban park on air temperature differences in a central business district area[J]. Landscape and Ecological Engineering,2009,5(2):183-191.
    151. Li J, Song C, Cao L, et al. Impacts of landscape structure on surface urban heat islands:a case study of Shanghai, China[J]. Remote Sensing of Environment,2011,115(12):3249-3263.
    152. Li X, Zhou W, Ouyang Z. Relationship between land surface temperature and spatial pattern of greenspace:What are the effects of spatial resolution?[J]. Landscape and Urban Planning,2013a, 114:1-8.
    153. Li H, Harvey J, Kendall A. Field measurement of albedo for different land cover materials and effects on thermal performance[J]. Building and Environment,2013b,59:536-546.
    154. Lin BS, Lin YJ. Cooling effect of shade trees with different characteristics in a subtropical urban park[J]. HortScience,2010,45(1):83-86.
    155. Lin TP, Ho YF, Huang YS. Seasonal effect of pavement on outdoor thermal environments in subtropical Taiwan[J].Building and Environment,200742(12):4124-4131.
    156. Luber G, McGeehin M. Climate change and extreme heat events[J]. American journal of preventive medicine,2008,35(5):429-435.
    157. Rizwan AM, Dennis LYC, Liu C. A review on the generation, determination and mitigation of Urban Heat Island[J]. Journal of Environmental Sciences,2008,20(1):120-128.
    158. Mangone G, van der Linden K. Forest microclimates:Investigating the performance potential of vegetation at the building space scale[J]. Building and Environment,2014,73:12-23.
    159. Mitchell VG, Cleugh HA, Grimmond CSB, et al. Linking urban water balance and energy balance models to analyse urban design options[J]. Hydrological processes,2008,22(16): 2891-2900.
    160. Moriwaki R, Kanda M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area[J]. Journal of Applied Meteorology,2004,43(11):1700-1710.
    161. Ng E, Chen L, Wang Y, Yuan C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong[J]. Building and Environment,2012,47:256-271.
    162. Nichol JE. High-resolution surface temperature patterns related to urban morphology in a tropical city:a satellite-based study[J]. Journal of Applied Meteorology,1996,35(1):135-146.
    163. Nunez M, Oke TR. The Energy Balance of an Urban Canyon[J]. Journal of Applied Meteorology, 1977,16(1):11-19.
    164. Offerle B, Grimmond CSB, Fortuniak K, et al. Temporal variations in heat fluxes over a central European city centre[J]. Theoretical and applied climatology,2006,84(1-3):103-115.
    165. Oke TR. City size and the urban heat island[J]. Atmospheric Environment (1967),1973,7(8): 769-779.
    166. Oke TR. Canyon geometry and the nocturnal urban heat island:comparison of scale model and field observations[J]. Journal of Climatology,1981,1(3):237-254.
    167. Oke TR. The energetic basis of the urban heat island[J]. Quarterly Journal of the Royal Meteorological Society,1982,108(455):1-24.
    168. Oke TR. Boundary layer climates[M]. London:Routledge,1987
    169. Oke TR. The urban energy balance[J]. Progress in Physical geography,1988,12(4):471-508.
    170. Oke TR. The micrometeorology of the urban forest[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,1989,324:335-349.
    171. Oke TR, Johnson GT, Steyn DG, et al. Simulation of surface urban heat islands under 'ideal'conditions at night Part 2:Diagnosis of causation[J]. Boundary-Layer Meteorology,1991, 56(4):339-358.
    172. Oliveira S, Andrade H, Vaz T. The cooling effect of green spaces as a contribution to the mitigation of urban heat:A case study in Lisbon[J]. Building and Environment,2011,46: 2186-2194.
    173. Papangelis G, Tombrou M, Dandou A, et al. An urban "green planning" approach utilizing the Weather Research and Forecasting (WRF) modeling system. A case study of Athens, Greece[J]. Landscape and Urban Planning,2012,105(1):174-183.
    174. Parker JH. Landscaping to reduce the energy used in cooling buildings[J]. Journal of Forestry, 1983,81(2):82-105.
    175. Peng S, Piao S, Ciais P, et al. Surface urban heat island across 419 global big cities[J]. Environmental science & technology,2011,46(2):696-703.
    176. Peters EB, McFadden JP. Influence of seasonality and vegetation type on suburban microclimates[J]. Urban ecosystems,2010,13(4):443-460.
    177. Pongracz R, Bartholy J, Dezso Z. Remotely sensed thermal information applied to urban climate analysis[J]. Advances in Space Research,2006,37(12):2191-2196.
    178. Potchter O, Cohen P, Bitan A. Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel[J]. International Journal of Climatology, 2006,26(12):1695-1711.
    179. Potchter O, Goldman D, Kadish D, et al. The oasis effect in an extremely hot and arid climate: the case of southern Israel[J]. Journal of arid environments,2008,72(9):1721-1733.
    180. Rizwan AM, Dennis LYC, Liu C. A review on the generation, determination and mitigation of Urban Heat Island[J]. Journal of Environmental Sciences,2008,20(1):120-128.
    181. Saaroni H, Ben-Dor E, Bitan A, et al. Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel[J]. Landscape and Urban Planning,2000,48(1):1-18.
    182. Sailor DJ, Lu L. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas[J]. Atmospheric Environment,2004,38(17):2737-2748.
    183. Shahidan MF, Jones P. Plant canopy design in modifying urban thermal environment:theory and guidelines[C]//The 25th Conference on Passive and Low Energy Architecture, Dublin, October. 2008:22-24.
    184. Shahidan MF, Shariff MKM, Jones P, et al. A comparison of Mesua ferrea L. and Hura crepitans L. for shade creation and radiation modification in improving thermal comfort[J]. Landscape and Urban Planning,2010,97(3):168-181.
    185. Shashua-Bar L, Hoffman ME. Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees[J]. Energy and Buildings,2000,31(3):221-235.
    186. Shashua-Bar L, Hoffman ME. Quantitative evaluation of passive cooling of the UCL microclimate in hot regions in summer, case study:urban streets and courtyards with trees[J]. Building and Environment,2004,39(9):1087-1099.
    187. Shashua-Bar L, Hoffman ME, Tzamir Y. Integrated thermal effects of generic built forms and vegetation on the UCL microclimate[J]. Building and Environment,2006,41(3):343-354.
    188. Shashua-Bar L, Pearlmutter D, Erell E. The cooling efficiency of urban landscape strategies in a hot dry climate[J]. Landscape and Urban Planning,2009,92(3):179-186.
    189. Shashua-Bar L, Pearlmutter D, Erell E. The influence of trees and grass on outdoor thermal comfort in a hot-arid environment[J]. International Journal of Climatology,2011,31:1498-1506.
    190. Shudo H, Sugiyama J, Yokoo N, et al. A study on temperature distribution influenced by various land uses[J]. Energy and buildings,1997,26(2):199-205.
    191. Shuko H, Takeshi O. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas[J]. Urban Forestry & Urban Greening,2010,9:15-24.
    192. Simpson JR, McPherson EG. Tree planting to optimize energy and CO2 benefits[C]//Investing in natural capital:proceedings of the 2001 national urban forest conference.2001:5-8.
    193. Simpson JR. Improved estimates of tree-shade effects on residential energy use[J]. Energy and Buildings,2002,34(10):1067-1076.
    194. Siu LW, Hart MA. Quantifying urban heat island intensity in Hong Kong SAR, China[J]. Environmental monitoring and assessment,2013,185(5):4383-4398.
    195. Skelhorn C, Lindley S, Levermore G. The impact of vegetation types on air and surface temperatures in a temperate city:A fine scale assessment in Manchester, UK[J]. Landscape and Urban Planning,2014,121:129-140.
    196. Skoulika F, Santamouris M, Kolokotsa D, et al. On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece[J]. Landscape and Urban Planning,2014, 123:73-86.
    197. Sobrino JA, Raissouni N. Toward remote sensing methods for land cover dynamic monitoring: application to Morocco[J]. International Journal of Remote Sensing,2000,21(2):353-366.
    198. Souch CA, Souch C. The effect of trees on summertime below canopy urban climates[J]. Journal of Arboriculture,1993,19:303-303.
    199. Spronken-Smith RA, Oke TR. The thermal regime of urban parks in two cities with different summer climates[J]. International journal of remote sensing,1998,19(11):2085-2104.
    200. Spronken-Smith RA, Oke TR. Scale modelling of nocturnal cooling in urban parks[J]. Boundary-Layer Meteorology,1999,93(2):287-312.
    201. Streiling S, Matzarakis A. Influence of single and small clusters of trees on the bioclimate of a city:a case study[J]. Journal of Arboriculture,2003,29(6):309-316.
    202. Streutker DR. Satellite-measured growth of the urban heat island of Houston, Texas[J]. Remote Sensing of Environment,2003,85(3):282-289.
    203. Sun CY, Brazel AJ, Chow WTL, et al. Desert heat island study in winter by mobile transect and remote sensing techniques[J]. Theoretical and applied climatology,2009,98(3-4):323-335.
    204. Sun CY. A street thermal environment study in summer by the mobile transect technique[J]. Theoretical and applied climatology,2011,106(3-4):433-442.
    205. Sun R, Chen L. How can urban water bodies be designed for climate adaptation?[J]. Landscape and Urban Planning,2012,105(1):27-33.
    206. Sung CY. Mitigating surface urban heat island by a tree protection policy:A case study of The Woodland, Texas, USA[J]. Urban Forestry & Urban Greening,2013,12(4):474-480.
    207. Taha H, Akbari H, Rosenfeld A. Heat island and oasis effects of vegetative canopies: micro-meteorological field-measurements[J]. Theoretical and Applied Climatology,1991,44(2): 123-138.
    208. Taha H. Urban climates and heat islands:albedo, evapotranspiration, and anthropogenic heat[J]. Energy and buildings,1997,25(2):99-103.
    209. Tan J, Zheng Y, Tang X, et al. The urban heat island and its impact on heat waves and human health in Shanghai[J]. International journal of biometeorology,2010,54(1):75-84.
    210. Thom EC. The distribution index[J]. Weatherise,1959,12(2):57-60.
    211. Tran H, Uchihama D, Ochi S, et al. Assessment with satellite data of the urban heat island effects in Asian mega cities[J]. International Journal of Applied Earth Observation and Geoinformation, 2006,8(1):34-48.
    212. Tsiros IX. Assessment and energy implications of street air temperature cooling by shade tress in Athens (Greece) under extremely hot weather conditions[J]. Renewable Energy,2010,35(8): 1866-1869.
    213. Vez JPM, Rodriguez A, Jimenez JI. A study of the urban heat island of Granada[J]. International Journal of Climatology,2000,20:899-911.
    214. Unger J. Heat island intensity with different meteorological conditions in a medium-sized town: Szeged, Hungary[J]. Theoretical and Applied Climatology,1996,54(3-4):147-151.
    215. Unger J. Intra-urban relationship between surface geometry and urban heat island:review and new approach[J]. Climate Research 2004;27(3):253-264.
    216. Upmanis H, Chen D. Influence of geographical factors and meteorological variables on nocturnal urban-park temperature differences-a case study of summer 1995 in Goteborg, Sweden[J]. Climate Research 1999;13(2):125-139.
    217. Upmanis H, Eliasson I, Lindqvist S. The influence of green areas on nocturnal temperatures in a high latitude city (Goteborg, Sweden) [J]. Int J Climatol 1998;18(6):681-700.
    218. Weng Q, Lu D, Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote sensing of Environment,2004,89(4): 467-483.
    219. Wong NH, Chen Y, Ong CL, et al. Investigation of thermal benefits of rooftop garden in the tropical environment[J]. Building and environment,2003,38(2):261-270.
    220. Wong NH, Chen Y. Study of green areas and urban heat island in a tropical city[J]. Habitat International,2005,29(3):547-558.
    221. Wong NH, Tan PY, Chen Y. Study of thermal performance of extensive rooftop greenery systems in the tropical climate[J]. Building and Environment,2007,42(1):25-54.
    222. Wong NH, Steve KJ. Air temperature distribution and the influence of sky view factor in a green Singapore estate[J]. J Urban Plan D-ASCE 2009; 136(3):261-272.
    223. Wong NH, Steve KJ. Air temperature distribution and the influence of sky view factor in a green Singapore estate[J]. Journal of Urban Planning and Development,2009,136(3):261-272.
    224. Xu J, Wei Q, Huang X, et al. Evaluation of human thermal comfort near urban waterbody during summer[J]. Building and environment,2010,45(4):1072-1080.
    225. Yamashita S, Sekine K, Shoda M, Yamashita K, Hara Y. On relationships between heat island and sky view factor in the cities of Tama River basin, Japan[J]. Atmos Environ 1986;20(4):681-686.
    226. Yague C, Zurita E, Martinez A. Statistical analysis of the Madrid urban heat island[J]. Atmospheric Environment. Part B. Urban Atmosphere,1991,25(3):327-332.
    227. Yan H, Hao PY, Dong L. Study on the Microclimatic Characteristics of Four Land Cover Types in Urban Parks during Hot Summer[C].2012 International federation of landscape architects Asia-Pacific region annual conference,2012:10-13.
    228. Yan H, Fan S, Guo C, et al. Assessing the effects of landscape design parameters on intra-urban air temperature variability:The case of Beijing, China[J]. Building and Environment,2014,76: 44-53.
    229. Yokohari M, Brown RD, Kato Y, et al. The cooling effect of paddy fields on summertime air temperature in residential Tokyo, Japan[J]. Landscape and urban planning,2001,53(1):17-27.
    230. Yokobori T, Ohta S. Effect of land cover on air temperatures involved in the development of an intra-urban heat island[J]. Climate Research,2009,39(1):61-73.
    231. Yuan F, Bauer ME. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery [J]. Remote Sensing of Environment,2007,106(3):375-386.
    232. Zhang Z, Lv YM, Pan HT. Cooling and humidifying effect of plant communities in subtropical urban parks[J]. Urban Forestry & Urban Greening,2013,12(3):323-329.
    233. Zhou W, Huang G, Cadenasso ML. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes[J]. Landscape and Urban Planning,2011,102(1):54-63.
    234. Zoulia I, Santamouris M, Dimoudi A. Monitoring the effect of urban green areas on the heat island in Athens[J]. Environmental monitoring and assessment,2009,156(1-4):275-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700