基于观测器的非线性系统鲁棒故障检测与重构方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制系统的状态监控、故障诊断与容错控制一直是理论和工程实际应用中重点关注和迫切需要解决的关键问题之一。基于系统解析模型并结合现代控制理论与方法的故障诊断技术是一种在控制系统中广泛应用的方法。然而,非线性、建模误差和未知输入扰动等因素的存在,使其在工程实际中的应用带来了很大的局限性。论文在国家自然科学基金和部委级预先研究项目的支持下,围绕着将基于解析模型的状态观测器方法对系统参数的估计能力与滑模变结构控制理论对外部扰动的不变性有机结合这一核心,从提高故障检测的鲁棒性,提高执行器、传感器故障的诊断能力,提高微弱故障、缓慢变化故障等的诊断精度以及在故障诊断系统中实现容错控制功能等几个方面着手,对不确定非线性系统鲁棒故障检测与重构技术进行了较系统和深入的研究。
     论文的主要研究工作与结论如下:
     在深入调研当前理论与技术发展现状的基础上,归纳总结了该领域研究的特点和存在的问题。指出鲁棒故障检测与重构方法是提高故障诊断系统性能指标的有效方式,是解决基于观测器的非线性系统故障诊断方法实际应用问题的有效途径。
     针对残差生成故障检测方法中检测鲁棒性与灵敏度相矛盾的问题,提出基于滑模观测器的非线性系统鲁棒残差生成与故障检测方法。设计滑模观测器以生成残差,利用滑模变结构对未知输入扰动具有的不变性抑制扰动对残差信号的影响,从而提高系统对故障信号的灵敏度。将该方法加以推广,通过为系统中每种故障模型设计相应的滑模观测器以实现多个故障的检测与隔离。检测鲁棒性与灵敏度之间矛盾的解决也为后续故障重构技术的实现奠定了基础。
     针对机电系统中常见的仿射非线性系统执行器故障诊断问题,提出了鲁棒故障重构与容错控制集成设计方法。利用滑模观测器克服未知输入扰动对控制系统的影响并实现鲁棒状态观测,利用自适应观测器从模型不确定的系统中分离并重构故障,而所采用的观测器设计方法又自然地确保系统的控制状态不受故障影响,从而实现了集成故障重构和容错控制的系统功能。
     非线性系统中,传感器的故障诊断远远落后于执行器的故障诊断,且大多数方法难以满足工程实际应用的需要。为此,针对非线性系统传感器故障诊断的难题提出了基于等效变换的传感器鲁棒故障重构与容错控制集成设计方法。利用一阶滤波器将传感器故障等效变换为虚拟的执行器故障,并首次从能观性出发提出滤波器参数选取的理论依据。在此基础上,针对正则型非线性系统提出了集成容错控制功能的传感器鲁棒故障重构方法,该方法在确保系统鲁棒性的前提下对缓变故障也具有较高的灵敏度;针对一般非线性系统提出了考虑前向通道和反馈通道同时含有未知输入扰动的增强型传感器鲁棒故障重构算法,较之其它方法更加良好的工程实用性是该算法的突出特点。
     针对由于故障和未知输入扰动的相关性而使故障重构的精确性与鲁棒性之间产生矛盾的问题,利用滑模观测器和滑模变结构等值原理,提出了基于干扰解耦技术的精确故障重构方法。为解决系统既要对未知输入扰动不敏感,又要能精确重构出尽可能小的故障的所谓鲁棒故障重构问题,基于微分同胚变换提出不需对系统输出求导的多故障重构算法,较大程度地提高了算法的工程实用性;基于线性坐标变换,提出了故障与扰动完全解耦的精确重构方法,可在对故障精确重构的同时实现对未知输入扰动的精确重构;提出了通过消除滑模抖振对故障重构机制的影响,进一步提高了重构算法对故障的灵敏度,从而实现了微弱缓变故障的鲁棒重构。
     结合机电跟踪与稳定伺服平台的系统特点和工程需求,对所提出的不确定非线性系统中的鲁棒故障检测与重构技术进行了应用研究。针对平台中直流伺服电机控制系统设计了基于滑模观测器的故障重构与容错控制方法,实验研究结果显示本文的理论与技术正确有效。
     论文的研究对于非线性系统的故障诊断与重构技术研究具有重要的参考价值,填补和拓展了其理论方法、技术手段和应用范围,具有较好的学术价值与工程应用价值。
State monitoring, fault diagnosis and fault-tolerant control have drawn great public interest and been a key problem to be solved in theories and engineering application of control systems. The fault diagnosis technology based on a combination of the analytic model of system and modern control theories and methodologies is widely applied in control systems. Factors such as nonlinearity, modeling errors and unknown input disturbance, etc., however, have greatly limited the application of such technologies. Granted by the Natural Science Foundation of China and the Ministerial-level Preparatory Research Project, a systematic and deep investigation is done in this paper on the robust fault diagnosis and reconstructing technologies of uncertain nonlinear systems, focusing on the integration of parameters estimation capability of state observation based on analytic model and the invariance to external disturbance of the sliding mode variable structure control theory, so as to increase the fault diagnosis robustness, the diagnosis capacity of the actuator faults and sensor faults, the diagnosis accuracy for weak and incipient faults, and to achieve fault-tolerant control in fault diagnosis systems.
     The major contents and conclusions can be summarized as follows:
     The features and existing problems in this field are investigated and summarized after an in-depth survey of current theories and technological development. It is proposed that robust fault diagnosis and reconstruction method is effective to improve the performance indices of fault diagnosis system and solve the application problems in observer-based fault diagnosis for mechatronic nonlinear systems.
     For the contradiction between robustness and sensitivity of diagnosis found in the residual generation fault diagnosis of nonlinear systems, a robust residual generation fault diagnosis based on a sliding mode observer is proposed, in which the sliding observer is designed to generate residues and the invariance of the sliding mode variable structure to unknown input disturbance is used to control the influence of disturbance on residue signals so that sensitivity of the systems to faults can be increased. An extension of this method is made by designing correspondent sliding mode observers for each fault type so as to realize multiple faults detection and isolation. The resolution of the contradiction between diagnosis robustness and sensitivity has laid a good foundation for the fault reconstruction mentioned in subsequent chapters.
     For the actuator fault diagnosis of the common affine nonlinear systems, a synthetic design is proposed to realize robust fault diagnosis and tolerant control. The sliding mode observer is used to decrease the influence of unknown input disturbance on the control system and realize robust state observation, the adaptive observer is used to separate and reconstruct faults for model uncertain systems, and the design of observers adopted naturally prevents the controlling states of system from being affected by faults, all of which guarantee the realization of a synthetic function of fault reconstruction and tolerant control.
     The research on sensor fault diagnosis for nonlinear systems is lagging far behind that on actuator fault diagnosis and most of the methodologies adopted cannot satisfy the needs in practice. For this case a synthetic design is made to realize robust fault reconstruction and tolerant control on the basis of the equivalent transformation between two different fault types. The first-order filter transfroms the sensor faults equivalently into virtual actuator faults. The parameter selecting principle for the filter is for the first time approached from the perspective of observability of system. Then, a robust fault tolerant control and reconstructing method is proposed for sensors faults of normal form nonlinear systems, which guarantees a considerably high sensitivity to incipient faults as well as the robustness of system. An enhanced sensor fault reconstructing algorithm is put forward for general nonlinear systems, in which unknown input disturbance is involved in both the forward channel and the feedback channel. A typical feature of this algorithm is its improved engineering practicability.
     For the contradiction between fault reconstruction accuracy and its robustness arising from the correlations between unknown input disturbance and faults, a precisely fault reconstructing method is proposed by using the disturbance decoupling technology concerning the sliding mode observer and the equivalence theory of sliding mode variable structure. To guarantee the insensitivity of the system to unknown input disturbance and the precise reconstruction of the weakest fault, that is, to realize robust fault reconstruction, a multiple faults reconstructing algorithm is achieved on the basis of diffeomorphism coordinate transformation, where the derivatives need not be calculated and the applicability greatly improved. On the basis of linear coordinate transformation, a precisely reconstructing method for of is constructed, where the faults and unknown input disturbances are completely decoupled and the precise reconstruction of them can be respectively achieved. It is also proposed that the sensitivity to the faults can be improved by eliminating the effects of sliding mode chattering on fault signals and that weak and incipient faults can be robustly reconstructed.
     Application study is carried out on the proposed robust fault detecting and reconstructing technology used in uncertain mechatronic nonlinear systems with a consideration of both engineering requirements and the system features of mechatronic tracking and steadying servo platform. For the DC servomotor control system on the platform, a fault reconstructing and tolerant control program based on slide mode observer is designed. Experimental results indicate the correctness and efficiency of the theories and technologies proposed in this paper.
     Research done in this paper has filled in and expanded the theories, technologies and application scope of fault diagnosing and reconstructing technologies for nonlinear systems, which will be of great value both academically and practically.
引文
[1] Chen J , Patton R J . Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers,Norwell,1999.
    [2] Gentil S,Lesecq S,Barraud A. Improving decision making in fault detection and isolation using model validity . Engineering Applications of Artificial Intelligence,2009,22(4-5):534~545.
    [3]陈茂银,周东华.线性系统的鲁棒故障诊断.控制理论与应用,2005,22(5):718~722.
    [4] Isermann R.Fault-Diagnosis Systems - An introduction from fault detection to fault tolerance.Springer Verlag Gmbh,2006.
    [5]闻新,张洪钺,周露.控制系统的故障诊断和容错控制.北京:机械工业出版社,1998.
    [6] Frank P M.Fault diagnosis in dynamic systems using analytical and knowledge based redundancy—a survey and some new results.Automacica,1990,26(3):459~474.
    [7] Isermann R,Balle P.Trends in the application of model-based fault detection and diagnosis of technical processes.Control Engineering Practice,1997,5(5):709~719.
    [8]于春梅,张洪才.工业过程故障诊断方法的研究进展.合肥工业大学学报(自然科学版),2008,31(1):13~16.
    [9]张登峰.动态系统的故障检测与诊断研究:学位论文.南京:南京理工大学,2003.
    [10]陈莉,钟麦英.不确定奇异时滞系统的鲁棒H∞故障诊断滤波器设计.自动化学报,2008,34(8):943~949.
    [11] Besancon G.An overview on observer tools for nonlinear systems.Nonlinear Observers and Applications,2007,1~33:Springer-Verlag Berlin Heidelberg.
    [12] Frank P M . Fault detection in dynamic systems using analytical and knowledge-based redundancy– a survey and some new results.Automatica,1990,26(3):450~472.
    [13] Frank P M . Fault diagnosis in dynamic system via state estimation—a survey . System fault diagnostic , reliability & related knowledge-based approaches,1987:35~98.Dordrecht:D Reidel Press.
    [14] Ibaraki S,Suryanarayanan S,Tomizuka M.Design of Luenberger state observers using fixed-structure H∞optimization and its application to fault detection in lane-keeping control of automated vehicles . IEEE/ASME Trans . on Mechatronics,2005,10(1):34~42.
    [15]孙世国,王树青,伍斌.Luenberger鲁棒故障检测观测器的设计.浙江大学学报(工学版),2004,38(6):708~711.
    [16]周东华,孙优贤.控制系统的故障检测与诊断技术.北京:清华大学出版社,1994.
    [17]周东华,叶银忠.现代故障诊断与容错控制.北京:清华大学出版社,2000.
    [18] Chen J,Patton R J, Zhang H Y.Designing of unknown input observers and robust fault detection filters.Int.J.Control,1996,63(1):85~105.
    [19]张正道,胡寿松.基于未知输入观测器的非线性时间序列故障预报.控制与决策,2005,20(7):769~777.
    [20]王球,李治.动态系统故障诊断的未知输入观测器组方法.西南交通大学学报,2001,36(3):281~285.
    [21] Edwards C,Spurgeon S K,Patton R J.Sliding mode observers for fault detection and isolation.Automatica,2000,36(4):541~553.
    [22] Chen W,Saif M.Robust fault detection in uncertain nonlinear systems via a second order sliding mode observer.Decision and Control,2001.Proceedings of the IEEE Conference on Volume 1,4-7 Dec.2001:573~578.
    [23] Wu Q,Saif M.An overview of robust model-based fault diagnosis for satellite systems using sliding mode and learning approaches . IEEE International Conference on Systems,Man and Cybernetics,2007:3159~3164.
    [24] Casavola A,Famularo D,FranzèG.Robust fault detection of uncertain linear systems via quasi-LMIs.Automatica,2008,44(1):289~295.
    [25] Barenthin M, Hjalmarsson H.Identification and control:joint input design and state feedback with ellipsoidal parametric uncertainty via LMIs.Automatica,2008,44(1):543 ~ 551.
    [26] Fadali M S,Colaneri P,Nel M.H2 robust fault estimation for periodic systems.Proc.American Control Conference,2003:2973~2978.
    [27]钟麦英,李明,张太.故障诊断系统的H2优化设计.控制工程,2004,11(51):182~ 184.
    [28] Li W H,Shah S L.Data-driven Kalman filters for non-uniformly sampled multirate systems with application to fault diagnosis.Proc.2005 AmericanControl Conference,2005,4:2768~2774.
    [29] Li W H,Shah S L,Xi D.Kalman filters in non-uniformly sampled multirate systems:for FDI and beyond.Automatica,2008,44(1):199 ~208.
    [30] Chen W,Saif M. Adaptive actuator fault detection,isolation and accommodation in uncertain systems. International Journal of Control,2007,80(1):45~63.
    [31]姜斌,冒泽慧,杨浩,张友民.控制系统的故障诊断与故障调节.北京:国防工业出版社,2009.
    [32] Farza M, Saad M M,Maatoug T,Koubaa Y.A set of adaptive observers for a class of MIMO nonlinear systems.Proceedings of the IEEE Conference on Decision and Control,and the European Control Conference 2005 Seville,Spain,2005:12~15.
    [33]贾明兴,王福利,毛志忠.基于自适应观测器的一类非线性系统鲁棒故障诊断.自动化学报,2004,30(4):601~607.
    [34] Curry T,Collins E G.Robust fault detection and isolation using robust estimation.Proc.2004 American Control Conference,2004:2451~2456.
    [35]方华京.控制系统鲁棒故障检测的L1优化方法.自动化学报,2002,28(4):53~ 55.
    [36] Wen C,Saif M.Fault detection and accommodation in nonlinear time-delay systems.Proc of the ACC Conf.Colorado,2003:4255~4260.
    [37]叶大鹏,PaulP Lin,高志强.基于扩张状态观测器的故障诊断方法研究.仪器仪表学报,2008,29(4):696~700.
    [38]颜秉勇,田作华,施颂椒.基于预测观测器的时滞系统故障诊断.控制与决策.2008,23(2):233~236.
    [39] Zhong M Y,Ye T,Chen G Y,et al.An ILMI approach to RFDF for uncertainty linear systems with nonlinear perturbations.Automatica,2005,31(2):297~300.
    [40] Li X,Zhou K.A time domain approach to robust fault detection of linear time-varying systems.Automatica,2009,45(1):94~102 .
    [41] Hajiyev C,Caliskan F.Fault diagnosis and reconfiguration in flight control systems.Boston:Kluwer Academic,2003.
    [42] Jiang B,Chowdhury F N.Parameter fault detection and estimation of a class of nonlinear systems using observers.Journal of the Franklin Institute,2005,342(7):725~736.
    [43] Demetriou M A,Polycarpou M M.Incipient fault diagnosis of dynamical systems using online approximators.IEEE Trans,Automat, Contr.1998,43(11):1612~1617.
    [44] Jiang B,Staroswiecki M,Cocquempot V.Fault diagnosis for a class of nonlinear systems with unknown parameters.Proc.IFAC Workshop on Online Fault Detection and Supervision in the Chemical Process Industries,South Korea,May 2001:181~186.
    [45] Jiang B,Staroswiecki M,Cocquempot V.Fault estimation in nonlinear uncertain systems using robust /sliding-mode observers.IEE Proc.Control Theory Appl,2004,151(1):29~37.
    [46] Kabore P,Wang H.Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear Systems.IEEE Transaction on Automatic Control,2001,46(11):1805~1810.
    [47]葛哲学,杨拥民,温熙森.强跟踪UKF方法及其在故障辨识中的应用.仪器仪表学报,2008,29(8):1670~1674.
    [48]李雄杰,周东华,陈良光.一类非线性时滞过程的传感器主动容错控制.传感技术学报,2007,20(5):980~984.
    [49] Tan C P,Edwards C.Multiplicative fault reconstruction using sliding mode observers.5th Asian Control Conference,2004,2:957~ 962.
    [50] Tan C P,Edwards C.Robust fault reconstruction using multiple sliding mode observers in cascade : development and design . 2009 American Control Conference,ThC06.1.
    [51] Edwards C,Tan C P.Fault tolerant control using sliding mode observers.43rd IEEE Conference on Decision and Control,2004,5:5254~5259.
    [52] Tan C P,Edwards C.Sliding mode observers for robust detection and reconstruction of actuator and sensor faults.Int.J.Robust and Nonlinear Control 2003,13(5):443~463.
    [53] Boyd S P,Ghaoui L El,Feron E,Balakrishnan V.Linear matrix inequalities in systems and control theory.SIAM:Philadelphia,PA,1994.
    [54] Floquet T,Edwards C,Spurgeon S K.On sliding mode observers for systems with unknown inputs.Int.J.Adapt.Control Signal Process,2007,21(8-9) :638~656.
    [55] Ng K Y,Tan C P,Edwards C,Kuang Y C.New results in robust actuator fault reconstruction for linear uncertain systems using sliding mode observers.Int.J.Robust and Nonlinear Control,2007,17(4):1294 ~1319.
    [56] Chen W,Saif M,Soh Y C.A variable structure adaptive observer approach for actuator fault detection and diagnosis in uncertain nonlinear systems.Proceeding of the 2000 American control conference,2000:2674~2678.
    [57] Yan X G,Edwards C.Sensor fault detection and isolation for nonlinear systems based on a sliding mode observer.Int.J.Adaptive Control and Signal Processing,2007,21(8-9):657~673.
    [58] Saif M,Xiong Y.Sliding mode observers and their application in fault diagnosis.Fault Diagnosis and Fault Tolerance for Mechatronic Systems,Springer-Verlag Berlin Heidelberg, 2003:1~57.
    [59] Yan X G, Edwards C.Nonlinear robust fault reconstruction and estimation using a sliding mode observer.Automatica,2007,43(9):1605~1614.
    [60] Sharma R,Aldeen M.Fault detection in nonlinear systems with unknown inputs using sliding mode observer. Proceedings of the 2007 American Control Conference,2007:432~437.
    [61]姜云春.基于模型的控制系统鲁棒故障诊断技术研究.国防科学技术大学博士学位论文,2006.
    [62]彭秀艳.工程随机过程.哈尔滨:哈尔滨工程大学出版社,2000.
    [63]吴敏,桂卫华,何勇.现代鲁棒控制.长沙:中南大学出版社,2006.
    [64] Chen J , Patton R J . Robust mode based fault diagnosis for dynamic system.Kluwer Academic Publishers.London,1999.
    [65] Chen W,Saif M.Novel sliding mode observers for a class of uncertain systems.Proceedings of the 2006 American Control Conference Minneapolis,Minnesota,USA,2006:2622~2627.
    [66] Mhaskar P,McFall C,Gani A,Christofides P D.Isolation and handling of actuator faults in nonlinear systems.Automatica,2008,44(1):53~62.
    [67] Steven X Ding.Model-based fault diagnosis techniques design schemes,algorithms and tools.Springer Berlin Heidelberg,2008.
    [68] Patton R J,Chen J.Robust fault detection of jet engine sensor systems using eigenstructure assignment.Proc of the 1991 AIAA Guidance Navigation and Control Conf,New Orleans,1991:1666~1975.
    [69] Gertler J,Luo Q.Robust isolable models for failure diagnosis.AIChE J.1989,35(11):1856~1868.
    [70] Patton R J,Chen J.Optimal selection of unknown input distribution matrix in the design of robust observers for fault diagnosis.Pre-prints of IFAC/IMACS Symposium SAFEPROCESS'91,Baden-Baden,1991,1:221~226.
    [71]栾家辉.故障重构技术在卫星姿控系统故障诊断中的应用研究.哈尔滨工大学博士学位论文,2006.
    [72] Isermann R.Fault-Diagnosis systems an introduction from fault detection to fault tolerance.Springer Berlin Heidelberg,2006.
    [73] Emelyanov S V.Variable structure automatic control systems.Moscow,1967.
    [74] Utkin V I.Sliding mode and their application in VSSs.Moscow,1978.
    [75] Itkin U.Control systems of variable structure.John Wiley & Sons,1976.
    [76] UtkinV I.Sliding modes and their application in discontinuous systems.Automat Remote Contr,1974,21:1898~1907.
    [77] Slotine J J E.Sliding controller design for nonlinear systems.Int.J.Control, 1984,40(2):421~434.
    [78] Kaynak O,Erbatur K,Ertugrul M.The fusion of computationally intelligent methodologies and sliding mode control-a survey.IEEE Trans.on Electronics,2001,48(1):4~17.
    [79]高为炳.变结构研究的发展与现状.控制与决策,1993,8(4):241~248
    [80] Edwards C,Spurgeon S K.Sliding mode control theory and applications.CRC Press ,1998.
    [81] Bartolini G,Pisano A,Fridman L,Usai E.Modern sliding mode control theory.Springer Berlin Heidelberg,2008.
    [82] Young K D,Utkin V I,et al.A control engineer’s guide to sliding mode control.IEEE Trans.on Control Systems Technology,1999,7(3):328~342.
    [83] Katsuhisa Furuta , Pan Y D . Variable structure control with sliding sector.Automatica,2000,36(2):211~228.
    [84]王丰尧.滑模变结构控制.北京:机械工业出版,1995.
    [85]高为炳.变结构控制理论基础.北京:科学出版社,1990.
    [86] Xu R,Ozguner U.Sliding mode control of a class of underactuated systems Automatica,2008,44(1):233~241.
    [87] Bessa W M.Some remarks on the boundedness and convergence properties of smooth sliding mode controllers. Int. J. Automation and Computing,2009,6(2):154~158.
    [88] Koshkouei A J,Zinober A S I. Sliding mode state observation for non-linear systems. Int. J. Control,2004,77(2):118~127.
    [89]刘金琨.滑模变结控制Matlab仿真.北京:清华大学出版社,2005.
    [90] Adamy J,Flemming A.Soft variable-structure controls:a survey.Automatica, 2004,40(11):1821~1844.
    [91] Edwards C,Fossas Colet E,Fridman L.Advances in variable structure and sliding mode control,Springer,2006.
    [92]张昌凡,何静.滑模变结构的智能控制理论及应用.北京:科学出版社2005.
    [93] Walcott B L,Corless M J,Zak S H.Comparative study of nonlinear state-observation techniques,Int.J.Control,1987,45(6):2109~2132.
    [94] Thau F E.Observing the state of nonlinear dynamical systems.International Journal of Control,1973,17:471~479.
    [95] Kou S R,Elliott D L,Tarn T J.Exponential observers for nonlinear dynamic systems.Information and Control,1975,29:204~216.
    [96] Edwards C , Spurgeon S K , On the development of discontinuous observers.International Journal of Control,1994,59(5):1211~1229.
    [97] Patel R V,Toda M.Qualitative measures of robustness for multivariable systems.Joint Automatic Control Conference,1980,TP8-A.
    [98] Utkin V I.Sliding mode in control and optimization.New York,Springer Berlin Heidelberg,1992.
    [99]胡剑波,庄开宇.高级变结构控制理论及应用.西安:西北工业大学出版社,2008.
    [100] IEEE recommended practice for the design of reliable industrial and commercial power systems.IEEE Std 493~1997 [IEEE Gold Book],Appendix H.
    [101] Allbrecht P F,Appiarius J C,McCoy R M,et al.Assessment of the reliability of motors in utility applications– updated . IEEE Transactions on Energy Conversion,1986,1(1):39~46.
    [102] Kliman G B,Premerlani W L,Koegl R A,Hoeweler D.A new approach to on-line fault detection in ac motors,IEEE-IAS Annual Meeting,San Diego,CA,1996:687~693.
    [103] Henao H,Razik H,Capolino G A.Analytical approach of the stator current frequency harmonics computation for detection of induction machine rotor faults.IEEE Trans.Ind.Applicat,2005,41(3):801 ~ 807.
    [104] Betta G,Liguori C,Paolillo A,Pietrosanto A.A DSP-based FFT-analyzer for the fault diagnosis of rotating machine based on vibration analysis.IEEE Transactions on Instrumentation and Measurement,2002,51(6):1316 ~ 1322.
    [105] Nelson A L,Chow M Y.Characterization of coil faults in an axial flux variable reluctance PM motor.IEEE Transactions on Energy Conversion,2002,17(3):340~348.
    [106] Carvajal A,Garcia C V R.High capacity motors on-line diagnosis based on ultra wide band partial discharge detection. IEEE International Symposium on Diagnostics for Electric Machines,Power Electronics and Drives (SDEMPED),2003:168 ~170.
    [107]沈标正.电机故障诊断技术.北京:机械工业出版社,1996.
    [108] Li Liu.Robust fault detection and diagnosis for permanent magnet synchronous motors.A Dissertation submitted to the degree of Doctor of Philosophy,2006,The Florida State University.
    [109] Staroswiecld M,Jiang B.Fault identification for a class of linear systems based on adaptive observer,Proc.of 40th IEEE Conference on Decision & Control,2001:2283~2288.
    [110] Frank P M,Steven X D.Survey of robust residual generation and evaluation methods in observer-based fault detection systems.Journal of Process Control,1997,7(6):403~424.
    [111] Pertew A M,Marquez H J,Zhao Q.LMI-based sensor fault diagnosis for nonlinear lipschitz systems.Automatic,2007,43(8):1464~1469.
    [112] Kallesoe C S,Izadi Z R,Vadstrup P,Rasmussen H.Observer-based estimation of stator-winding faults in delta-connected induction motors:a linear matrix inequality approach.IEEE Transactions on Industry Applications,2007,43(4):1022~1031.
    [113] Fang M,Tian Y,Guo L.Fault diagnosis of nonlinear system based on generalized observer.Applied Mathematics and Computation,2007,185(2): 1131~1137.
    [114]闻新.控制系统和智能故障诊断研究.北京航空航天大学博士后研究工作报告,1998.3.
    [115] Zhang X D,Parisini T,Polycarpou M M.Sensor bias fault isolation in a class of nonlinear systems.IEEE Transactions On Automatic Control,2005,50(3):370~376
    [116]王耀南,孙炜.机器人鲁棒轨迹跟踪控制系统.动力学与控制学报,2004,2(1):75~81.
    [117] Chen W,Chowdhury F N.Design of sliding mode observers with sensitivity to incipient faults. IEEE International Conference on Control Applications.2007,795~800.
    [118] Tan C P,Edwards C.Sliding mode observers for detection and reconstruction of sensor faults.Automatica,2002,38(10):1815~1821.
    [119] Qaiser S H,Bhatti A I,Samar R I M,Qadir J.Higher order sliding mode observer based estimation of precursor concentration in a research reactor.4th International Conference on Emerging Technologies,2008:338~343.
    [120] Demetriou M . Robust adaptive techniques for sensor fault detection and diagnosis.Proceedings of the IEEE Conferenceon Decision & Control Tampa,Florida USA,1998,1143~1148.
    [121] Haskara I,Ozguner U.Equivalent value filters in disturbance estimation and state observation.Variable structure system,sliding mode and nonlinear control.1999,Springer,London,167~179.
    [122]张昌凡,王耀南,何静.Variable structure intelligent control for PM synchronous servo motor drive.中国电机工程学报,2002,22(7):13~16.
    [123]刘冠军,姜云春,邱静.基于鲁棒估计火炮位置伺服系统故障检测.兵工学报.2002,28(4):402~405.
    [124] Khalil H K.Nonlinear system.Third Edtion,Pearson Education,2002.
    [125] Kang W,Xiao M,Borges C.New trends in nonlinear dynamics and control and their applications.New York:Springer Berlin Heidelberg,2004.
    [126] Chen X,Kano H.State observer for a class of nonlinear systems and its application to machine vision. IEEE Transactions on Automatic Control,2004,49(11):2085~2091.
    [127] Ashari A E,Khaloozadeh H.Sliding-mode observer design with extra-robustness and its application for an aircraft example.SICE-ICASE,International Joint Conference.2006:87~92.
    [128] Slotine J,Hedrick J E,Misawa E.On sliding mode observers for nonlinear systems.Transaction of the ASME:Journal of Dynamic System,Measurement and Control,1987,109:245~252.
    [129] Wu Q,Saif M.Robust fault detection and diagnosis for a multiple satellite formation flying system using second order sliding mode and wavelet networks.American Control Conference,ACC '07,2007:426~ 431.
    [130] Haskara I,Ozguner U.Equivalent value filters in disturbance estimation and state observation . Variable structure system , sliding mode and nonlinear control.Springer,London,1999.
    [131] Edwards C,Tan C P.Fault tolerant control using sliding mode observers.43rd IEEE Conference on Decision and Control,2004,5:5254~5259.
    [132] Marino R, Tomei P.Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems.Automatica,1993,29(1):181~189.
    [133] Edwards C , Tan C P . Sensor fault tolerant control using sliding mode observers.Control Engineering Practice,2006,14(8) :897~908.
    [134] Khan H,Abou S,Sepehri N. Fault detection in electro-hydraulic servo-positioning systems using sequential test of wald.Proceeding of the 2002 Canadian Conference on Electrical & Computer Engineering,2002:1628~1633.
    [135] Guan Chen,Zhu Shanan.Adaptive time-varying sliding mode control for hydraulic servo system.2004 International Conference on Control,Automation,Robotics and Vision China,2005:1774~1779.
    [136] Jerouane M,Sepehri N,Lamnabhi L F.Dynamic analysis of variable structure force control of hydraulic actuators via the reaching law approach. Int.J.Control,2004,77(14):1260~1268.
    [137] Zhang K,Hu S,Jing B.Sliding mode integral observers for sensor faults detection and isolation in nonlinear systems.Proceedings of the IEEE conference on control and automation,China,2007:147~151.
    [138] Iskander B,Anis S,Fay?al B H,Moncef G.Robust sensor faults reconstruction for a class of uncertain linear systems using a sliding mode observer:an LMI approach.Intelligent Systems and Automation:2nd Mediterranean Conference on Intelligent Systems and Automation ,2009,1107:96~ 101.
    [139] Garcia E A,Frank P M.Deterministic nonlinear observer-based approaches to fault diagnosis:a survey.Control Engineering Practice,1997,5(5):663~670.
    [140] Ng K Y,Tan C P,Edwards C,Kuang Y C.New result in robust actuator fault reconstruction with application to an aircraft. IEEE International Conference on Control Applications Part of IEEE Multi-conference on Systems and Control Singapore,1~3 October,2007:801~806.
    [141]仇韬,张清峰,丁艳军,吴占松.PCA在非线性系统传感器故障检测和重构中的应用.清华大学学报(自然科学版),2006,46(5):708~711.
    [142] Russell E L,Chiang L H,Braatz R D.Fault detection in industrial process using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory System,2000,51:80~94.
    [143] Diao Y X , Passino K M . Stable adaptive control feedback linearizable time-varying non-linear systems with application to fault-tolerant engine control.Int.J.Control,2004,77(17):1463~1480
    [144] Khalil H K.Nonlinear systems(3rd edn).Prentice-Hall:Englewood Cliffs,NJ,2002.
    [145] Rugh W J.Nonlinear system theory.Johns Hopkins University Press,2002.
    [146] Marino R , Tomei P . Nonlinear control design-geometric , adaptive and robust.London:Prentice Hall,1995:220~234.
    [147] Yang H,Jiang B,Cocquempot V.A fault tolerant control framework for periodic switched nonlinear systems.Int.J.Control,2009,82(1):117~129.
    [148] Chen R,Speyer J.Robust multiple-fault detection filter.Int.J.Robust Nonlinear Control,2002,12(8):675~696.
    [149] White J,Speyer J.Detection filter design:spectral theory and algorithms.IEEE Trans.Autom.Control,1987,32(6):593~603.
    [150] Blanke M,Kinnaert M,Lunze J,Staroswiecki M.Diagnosis and fault-tolerant control,2003,Berlin:Springer Verlag.
    [151] Corless M , Tu J . State and Input estimation for a class of uncertain systems.Automatica,1998,34(6):757~764.
    [152] Corless M , Tu J . State/input estimation for a class of uncertain systems.1997,Technical report,Purdue University
    [153] Siwakosit W,Snell S A,Hess R A.Robust flight control design with handling qualities constraints using scheduled linear dynamic inversion and loop-shaping. IEEE Trans. on Control Systems Technology,2000,8(3):483~494.
    [154]温熙森,徐永成,易晓山,陈循.智能机内测试理论与应用.北京:国防工业出版社,2002:118~119.
    [155]杨光.机电产品BIT系统传感层故障虚警的理论与技术研究,国防科学技术大学博士学位论文,2003.
    [156]张洪钺,杨萍.基于非线性状态观测器的无刷电机故障诊断.电机与控制学报,2006,10(1):4~8.
    [157] Xu L,Yao B.Adaptive robust control of mechanical systems with non-linear dynamic friction compensation.Int.J.Control,2008,81(2):167~176.
    [158] Armstrong H B,Dupont P,Canudas W C.A survey of models,analysis tools and compensation methods for the control of machines with friction.Automatica,1994,30(7):1083~1138.
    [159] Lee S W,Kim J H.Robust adaptive stick-slip friction compensation.IEEE Trans. on Industrial Electrons,1995,42(5):474~479.
    [160]范影乐,杨胜天,李轶.MATLAB仿真应用详解.北京:人民邮电出版社,2001:297~311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700