以顶层参数为目标的舰船可靠性关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,大量先进系统、武器设备的配备,大大提高了现代舰船的战技性能。然而,技术性能好并不等于整体作战能力强。舰船整体作战能力是较好的技术性能与较高的可靠性的有机结合。获得高可靠性的必要条件是实施系统的可靠性工程。舰船是一个典型的大型复杂系统,具有动态性和多阶段任务性等特点,目前的可靠性分析技术对舰船而言,有诸多不适宜的地方。总的说来,一方面是实施舰船可靠性工程、提高舰船可靠性刻不容缓;另一方面是舰船可靠性方法体系不完善,科学实用的可靠性分析技术严重缺乏。这一矛盾揭示了开展舰船可靠性分析关键技术研究的必要性和紧迫性。
     本文以舰船可靠性分析技术需求为牵引,根据舰船的特点,从任务可靠度、固有可用度这两个舰船顶层可靠性参数出发,开展舰船可靠性关键技术研究,旨在打通舰船可靠性工程技术瓶颈,为舰船可靠性工程的开展提供理论依据和技术支持。本文主要贡献可以归结为“探索一个体系,解决三个关键技术问题”:
     1)针对目前舰船可靠性工程方法研究“无章可循”的现状,探索了舰船可靠性研究方法体系的构建问题。研究提出了舰船可靠性工程方法研究应该以“顶层可靠性参数为中心”,即遵循“从总体到系统,再回归总体”的思路,
     2)针对舰船总体可靠性参数不仅包含可靠性因素,维修性因素也隐含其中的特点,探索了舰船总体可靠性指标分配过程中可靠性参数与维修性参数如何协同的问题,提出了基于顶层参数的舰船可靠性、维修性综合分配方法。该方法为舰船可靠性分配问题提供了一种有效解决方案。
     3)针对舰船具有动态性、多阶段任务性的特点,引入贝叶斯网络理论,提出基于动态性和多阶段任务性的舰船可靠性分析技术,弥补了传统方法在舰船可靠性分析时模型描述上的局限性及算法上的缺陷问题。在模型方面,用贝叶斯网络能有效地刻画舰船的动态行为、多阶段任务行为,克服了故障树、事件树、二元决策图在舰船可靠性模型描述方面的局限性;在分析方面,利用贝叶斯网络的预测推理功能,实现舰船可靠性预测分析,利用其诊断推理功能实现重要度分析、故障诊断等。
     4)针对现有可靠性评定方法仅适用于静态、不可维修、单阶段任务系统的现状,提出了基于贝叶斯网络理论和数值仿真理论的舰船总体任务可靠度评定方法。该方法不仅可以处理具有动态性、可维修性的系统的可靠性评定问题,还可以处理多阶段任务系统的可靠性评定问题。
With the development of the science and technology, tactic and technical performance of the warship equipped with a lot of advanced system and weapon are greatly improved. How-ever, good technical performance is not equal to strong combat capability. The strong combat capability is the organic combination of good technical performance and high reliability. The necessary conditions for obtaining a high reliability is implementing reliability project systematically. Warship is a typical complex system with multi-phase mission and dynamic characteristic. The traditional technologies have lots of maladjustment in warship’s reliability analysis.
     In this dissertation, staring with the top-level reliability parameters, namely mission reli-ability and inherent availability, the key technologies for warship’s reliability analysis were studied. The objective of the study is to get through the bottleneck problem of warship’s reli-ability technology, and provide necessary theoretical basis and technical support for developing the warship’s reliability project.
     The main contributions of the study can be concluded as:Constructing a system and solving three specific problems.
     1) Accordingg to status that the research on the technology of warship’s reliability analysis is unsystematized, this dissertation put forward that research on the technology of warship’s reliability analysis should centred by top reliability paramemters, which is not the starting point,but also the stay point of the research. Thus, a system guiding the research on technology of warship’s reliability analysis is constructed, that is“warship overall—system-- warship overall”.
     2) Accordingg to that the top reliability parameter of the warship not only involving the factors of reliability, but also the factors of maintainability, a comprehensive reliability and maintainability allocation method, which is suitable for the warship’s reliability allocation, is suggested. The method proposed can efficiently solve the synergetic problem of the reliability parameter and maintainability parameter.
     3) In order to solve the multi-phase mission and dynamic characteristic of the warship during the reliability analysis, a new method based on Bayesian Network (BN) was presented. In this method, BN model is used to depict the multi-phase mission and dynamic characteristic of the warship. The prognostic inference of the BN is employed to implement the reliability prediction and the diagnosis inference of the BN is used to perform the importance analysis and fault diagnosis. The method proposed not only effectively overcomes limitations of the tradi-tional reliability analysis method in model description, but also remedys its defects in algo-rithm.
     4) Due to the limitations of the traditional reliability assement method which is only suitable for system with and single-phase mission and static characteristic, this thesis proposed a new method based the BN and numerical simulation for reliability assement of the warship. The proposed method provides a solution to the reliability assement for static system, dynamic system and multi-phase mission system.
引文
[1]郭余庆,王岩.系统可靠性理论及应用.北京:煤炭工业出版社. 1991.
    [2]高社生,张玲霞.可靠性理论与工程应用.北京:国防工业出版社. 2002.
    [3]中国舰船研究院,上海交通大学. 052D型舰可靠性维修性分析技术研究报告[R]. 2009.
    [4]上海交通大学.陆军船艇可靠性分析方法及可靠性工程工具包研究[R]. 2005.
    [5]易宏,沈国鉴.常规潜艇总体任务可靠性模型研究[J].舰船科学技术. 1991(05): p. 17-27.
    [6]易宏,张祖卫,霍步洲,周杰.舰船可靠性工程导论.北京:国防工业出版社. 1995.
    [7]易宏.舰船总体可靠性通用模型及舰船可靠性工程方法研究[博士学位论文].上海:上海交通大学. 2003.
    [8] D.F.Hassl. Advanced Concepts in Fault Tree Analysis. in Boeing/UW System Safety Symposiun. 1965. Seattle,Washington.
    [9] Rauzy, A. New algorithms for fault trees analysis[J]. Reliability Engineering and System Safety. 1993. 40(3): p. 203-211.
    [10] Dutuit, Y., Rauzy, A. Approximate estimation of system reliability via fault trees[J]. Reliability Engineering & System Safety. 2005. 87(2): p. 163-172.
    [11] Oh, Y., Yoo, J., Cha, S., Seong Son, H. Software safety analysis of function block diagrams using fault trees[J]. Reliability Engineering & System Safety. 2005. 88(3): p. 215-228.
    [12] Wood, A.P. MULTISTATE BLOCK DIAGRAMS AND FAULT TREES[J]. Ieee Transactions on Reliability. 1985. R-34(3): p. 236-240.
    [13] Xue, J. ON MULTISTATE SYSTEM ANALYSIS[J]. Ieee Transactions on Reliability. 1985. R-34(4): p. 329-337.
    [14] Huang, X. The generic method of the multistate fault tree analysis[J]. Microelectronics Reliability. 1984. 24(4): p. 617-622.
    [15] Gopal, K., Aggarwal, K.K., Gupta, J.S. RELIABILITY ANALYSIS OF MULTISTATE DEVICE NETWORKS[J]. Ieee Transactions on Reliability. 1978. R-27(3): p. 233-236.
    [16] Hudson, J.C., Kapur, K.C. Reliability theory for multistate systems with multistate components[J]. Microelectronics Reliability. 1982. 22(1): p. 1-7.
    [17] Charlesworth, W.W., Rao, S.S. Reliability analysis of continuous mechanical systems using multi-state fault trees[J]. Reliability Engineering and System Safety. 1992. 37(3): p. 195-206.
    [18] Zang, X., Wang, D., Sun, H., Trivedi, K.S. A BDD-Based Algorithm for Analysis of Multistate Systems with Multistate Components[J]. IEEE Transactions on Computers. 2003. 52(12): p. 1608-1618.
    [19] Remenyte-Prescott, R., Andrews, J.D. An enhanced component connection method for conversion of fault trees to binary decision diagrams[J]. Reliability Engineering & System Safety. 2008. 93(10): p. 1543-1550.
    [20] Miller, D.M., Muranaka, N. Multiple-valued decision diagrams with symmetric variable nodes. in Proceedings of The International Symposium on Multiple-Valued Logic. 1996. Santiago de Com-postela, Spain: IEEE.
    [21] Feinstein, D.Y., Thornton, M.A., Miller, D.M. On the data structure metrics of quantum multi-ple-valued decision diagrams. in Proceedings of The International Symposium on Multiple-Valued Logic. 2008. Dallas, TX.
    [22] Papazoglou, I.A. Mathematical foundations of event trees[J]. Reliability Engineering and System Safety. 1998. 61(3): p. 169-183.
    [23]江荣汉,江晓岳,田英杰.事件树与故障树相结合的系统可靠性分析法[J].湖南大学学报(自然科学版). 1995(01): p. 103-108.
    [24]杨红义,徐銤,黄祥瑞.中国实验快堆一级概率安全评价——事件树的建立[J].原子能科学技术. 2004(05): p. 385-390.
    [25]郭明友.事故树技术在HSE风险识别与评估中的应用[J].石油化工安全技术. 2006(02): p. 8-11+5.
    [26]李华敏.基于事件树法的高校学生宿舍电器火灾分析[J].中国西部科技. 2008(01): p. 62-63+50.
    [27]郑荣跃,简小生,俞凯磊,杨银赞.基于事件树分析法的大跨斜拉桥施工事故分析[J].工程力学. 2008(S1): p. 203-208.
    [28]周忠宝,周经伦,董豆豆.动态事件树的导弹安全自毁系统安全性评估[J].火力与指挥控制. 2008(04): p. 37-40.
    [29]俞文生,王少飞,陈建忠,涂耘.事故树分析法在公路隧道防火安全中的应用[J].公路交通技术. 2009(03): p. 129-132.
    [30]田宏,陈宝智,吴穹,高永庭.广义多态事件树模型[J].中国安全科学学报. 2000(06): p. 38-42.
    [31]田宏,陈宝智,吴穹,高永庭.多态系统可靠性及元素的不确定性重要度[J].东北大学学报. 2000(06): p. 634-636.
    [32]田宏,陈宝智,吴穹,高永庭.具有不确定性的多态系统可靠性[J].系统工程与电子技术. 2001(04): p. 99-102.
    [33]陈光宇.不完全覆盖多阶段任务系统的静态和动态故障树综合研究. 2005.
    [34]陈光宇,黄锡滋,张小民,唐小我.不完全覆盖的多阶段任务系统可靠性综合分析[J].系统工程学报. 2007(05): p. 539-545.
    [35] Coudert, O., Madre, J.C. Implicit and incremental computation of primes and essential primes of Boolean functions. in Proceedings - Design Automation Conference. 1992. Anaheim, CA, USA: Publ by IEEE.
    [36] Coudert, O., Madre, J.C. Fault tree analysis. 1020 Prime implicants and beyond. in Proceedings of the Annual Reliability and Maintainability Symposium. 1993. Atlanta, GA, USA: Publ by IEEE.
    [37] Coudert, O., Madre, J.C. MetaPrime: an interactive fault-tree analyzer[J]. Ieee Transactions on Reliability. 1994. 43(1): p. 121-127.
    [38] Sinnamon, R.M., Andrews, J.D. Fault tree analysis and binary decision diagrams. in Proceedings of the Annual Reliability and Maintainability Symposium. 1996: IEEE.
    [39] Sinnamon, R.M., Andrews, J.D. New approaches to evaluating fault trees[J]. Reliability Engineer-ing and System Safety. 1997. 58(2): p. 89-96.
    [40] Reay, K.A., Andrews, J.D. A fault tree analysis strategy using binary decision diagrams[J]. Reli-ability Engineering and System Safety. 2002. 78(1): p. 45-56.
    [41] Beeson, S., Andrews, J. Calculating the Failure Intensity of a Non-coherent Fault Tree Using the BDD Technique[J]. Quality and Reliability Engineering International. 2004. 20(3): p. 225-235.
    [42] Remenyte, R., Andrews, J.D. A simple component connection approach for fault tree conversion to binary decision diagram. in Proceedings - First International Conference on Availability, Reliabil-ity and Security, ARES 2006. 2006. Vienna.
    [43] Remenyte-Prescott, R., Andrews, J.D. An enhanced component connection method for conversion of fault trees to binary decision diagrams[J]. Reliability Engineering and System Safety. 2008. 93(10): p. 1543-1550.
    [44] Prescott, D.R., Remenyte-Prescott, R., Reed, S., Andrews, J.D., Downes, C.G. A reliability analy-sis method using binary decision diagrams in phased mission planning[J]. Proceedings of the In-stitution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2009. 223(2): p. 133-143.
    [45] Dutuit, Y., Rauzy, A. Efficient algorithms to assess component and gate importance in fault tree analysis[J]. Reliability Engineering and System Safety. 2001. 72(2): p. 213-222.
    [46]武小悦,沙基昌.网络系统可靠度的BDD算法[J].系统工程与电子技术. 1999(07).
    [47]杨意,潘中良.一种用二元判决图求网络可靠度的方法[J].华南师范大学学报(自然科学版). 2004(03).
    [48]张旭,张东华. BDD在网络系统可靠度算法中的应用[J].科技信息(科学教研). 2007(25).
    [49]李东魁.网络系统可靠度计算的CUT-BDD算法[J].电子测量技术. 2008(08).
    [50]张涛,郭波,谭跃进,刘芳.一种基于BDD的多阶段任务系统可靠度新算法[J].系统工程与电子技术. 2005(03).
    [51] Matsuoka, T., Kobayashi, M. GO-FLOW: A NEW RELIABILITY ANALYSIS METHODOL-OGY[J]. Nuclear Science and Engineering. 1988. 98(1): p. 64-78.
    [52] Matsuoka, T., Kobayashi, M., Takemura, K. Go-flow methodology: A reliability analysis of the emergency core cooling system of a marine reactor under accident conditions[J]. Nuclear Tech-nology. 1989. 84(3): p. 285-295.
    [53] Matsuoka, T., Kobayashi, M. Development of the GO-FLOW reliability analysis methodology for nuclear reactor system[J]. Senpaku Gijutsu Kenkyusho Hokoku/Papers of Ship Research Institute. 1994. 31(6): p. 1-75.
    [54] Matsuoka, T., Kobayashi, M. The GO-FLOW reliability analysis methodology - Analysis of com-mon cause failures with uncertainty[J]. Nuclear Engineering and Design. 1997. 175(3): p. 205-214.
    [55]徐文征. GO法与故障树可靠性建模的比较研究[J].北京轻工业学院学报. 1999(02): p. 41-45.
    [56]沈祖培,郑涛.复杂系统可靠性的GO法精确算法[J].清华大学学报(自然科学版). 2002(05): p. 569-572.
    [57]彭巧玲,沈祖培,唐辉.基于GO法的配电网可靠性评估
    [58] Xu, J., Li, Y. Reliability evaluation of complex distribution system based on GO method. in IET Conference Publications. 2006. Beijing.
    [59] Guo, Q., Zhao, X.W., Cai, Q. Reliability analysis of safety injection system of nuclear reactor in GO methodology[J]. Hedongli Gongcheng/Nuclear Power Engineering. 2007. 28(2): p. 91-94.
    [60] Xu, J., Li, Y. Reliability assessment of complex distribution system using GO method[J]. Dian-gong Jishu Xuebao/Transactions of China Electrotechnical Society. 2007. 22(1): p. 149-153.
    [61]徐荆州,李扬.基于GO法的复杂配电系统可靠性评估[J].电工技术学报. 2007(01): p. 149-153.
    [62] Huang, T., Cai, Q., Zhao, X.W., Shang, Y.L. Application of GO-FLOW methodology to RHS reli-ability analysis in PWR[J]. Hedongli Gongcheng/Nuclear Power Engineering. 2009. 30(4): p. 55-58.
    [63] Zhang, X.S., Wang, C., Chang, Y., Gao, P. Reliability analysis of UHVDC system by the GO methodology[J]. Gaodianya Jishu/High Voltage Engineering. 2009. 35(2): p. 236-241.
    [64]周忠宝.基于贝叶斯网络的概率安全评估方法及应用研究[博士学位论文].长沙:国防科学技术大学. 2006.
    [65] Kitchin, J.F. PRACTICAL MARKOV MODELING FOR RELIABILITY ANALYSIS. in Pro-ceedings of the Annual Reliability and Maintainability Symposium. 1988. Los Angeles, CA, USA: IEEE.
    [66] Dugan, J.B., Bavuso, S.J., Boyd, M.A. Fault trees and Markov models for reliability analysis of fault-tolerant digital systems[J]. Reliability Engineering and System Safety. 1993. 39(3): p. 291-307.
    [67] Sharma, T.C., Bazovsky, I. Reliability analysis of large system by Markov techniques. in Proceed-ings of the Annual Reliability and Maintainability Symposium. 1993. Atlanta, GA, USA: Publ by IEEE.
    [68] Islamov, R.T. Using Markov reliability modelling for multiple repairable systems[J]. Reliability Engineering and System Safety. 1994. 44(2): p. 113-118.
    [69] Lindemann, C., Malhotra, M., Trivedi, K.S. Numerical methods for reliability evaluation of Markov closed fault-tolerant systems[J]. Ieee Transactions on Reliability. 1995. 44(4): p. 694-704.
    [70] Susova, G.M., Petrov, A.N. Markov model-based reliability and safety evaluation for aircraft maintenance-system optimization. in Proceedings of the Annual Reliability and Maintainability Symposium. 1997. Philadelphia, PA, USA: IEEE.
    [71] Schoenig, R., Aubry, J.F., Cambois, T., Hutinet, T. An aggregation method of Markov graphs for the reliability analysis of hybrid systems[J]. Reliability Engineering and System Safety. 2006. 91(2): p. 137-148.
    [72] Bucci, P., Kirschenbaum, J., Mangan, L.A., Aldemir, T., Smith, C., Wood, T. Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability[J]. Reliability Engineering and System Safety. 2008. 93(11): p. 1616-1627.
    [73] Dugan, J.B., Bavuso, S.J., Boyd, M.A. Dynamic fault-tree models for fault-tolerant computer sys-tems[J]. Ieee Transactions on Reliability. 1992. 41(3): p. 363-377.
    [74] Patterson-Hine, F.A., Dugan, J.B. Modular techniques for dynamic fault-tree analysis. in Proceed-ings of the Annual Reliability and Maintainability Symposium. 1992. Las Vegas, NV, USA: Publ by IEEE.
    [75] Gulati, R., Dugan, J.B., Ieee. A modular approach for analyzing static and dynamic fault trees. in Annual Reliability and Maintainability Symposium on Meeting the Needs of the 21st Century. 1997. Philadelphia, Pa: I E E E.
    [76] Ou, Y., Dugan, J.B. Modular solution of dynamic multi-phase systems[J]. Ieee Transactions on Reliability. 2004. 53(4): p. 499-508.
    [77] Amari, S., Dill, G., Howald, E. A new approach to solve dynamic fault trees. in Proceedings of the Annual Reliability and Maintainability Symposium. 2003. Tampa, FL.
    [78] Tang, Z., Dugan, J.B. Minimal cut set/sequence generation for dynamic fault trees. in Proceedingsof the Annual Reliability and Maintainability Symposium. 2004. Los Angeles, CA.
    [79] Liu, D., Xing, W.Y., Zhang, C.Y., Li, R., Li, H.Y., Cut sequence set generation for fault tree analy-sis, in Embedded Software and Systems, Proceedings. 2007. p. 592-603.
    [80] Liu, D., Zhang, C.Y., Xing, W.Y., Li, R., Li, H.Y. Quantification of cut sequence set for fault tree analysis[J]. High Performance Computing and Communications, Proceedings. 2007. 4782: p. 755-765.
    [81]叶俊, A,龙志强.基于动态故障树的中低速磁悬浮列车供电系统可靠性分析[J].机车电传动. 2007(01).
    [82] Lo, H.K., Huang, C.Y., Chang, Y.R., Huang, W.C., Chang, J.R. Reliability and sensitivity analysis of embedded systems with modular dynamic fault trees. in IEEE Region 10 Annual International Conference, Proceedings/TENCON. 2007. Melbourne.
    [83]袁静, A,李恩有,龙勇.基于动态故障树的仿真系统可靠性建模研究[J].控制工程. 2007(S3).
    [84]张超, A,马存宝,宋东,许家栋.基于动态故障树分析的容错系统机内测试诊断策略设计[J].兵工学报. 2008(05).
    [85] Joller, J.M. Reliability block diagrams and "Petri" nets[J]. Microelectronics Reliability. 1980. 20(5): p. 613-624.
    [86] Barkaoui, K., Florin, G., Fraize, C., Lemaire, B., Natkin, S. Reliability analysis of non repairable systems using stochastic Petri nets. in Digest of Papers - FTCS (Fault-Tolerant Computing Symposium). 1988. Tokyo, Jpn: Publ by IEEE.
    [87] Leu, S.W., Fernandez, E.B., Khoshgoftaar, T. Fault-tolerant software reliability modeling using Petri nets[J]. Microelectronics Reliability. 1991. 31(4): p. 645-667.
    [88] Qin, X., Chen, Z. Reliability of fault-tolerant computer systems based on Petri nets[J]. Jisuanji Gongcheng/Computer Engineering. 2005. 31(24): p. 33-35.
    [89]耿传智,赵.A.陆.A.基于Petri网的城市轨道交通系统运营可靠性模型[J].同济大学学报(自然科学版). 2006(03): p. 355-358.
    [90]徐晟,郭.A.孙.A.一类基于随机着色Petri网的多级供应链可靠性模型研究[J].运筹与管理. 2006(06): p. 66-70.
    [91]张娣,张.A.何.A.孙.A.,郑伟.基于Petri网的地铁信号系统可靠性分析
    [92]黄解军.贝叶斯网络结构学习及其在数据挖掘中的应用研究[J].武汉大学. 2005.
    [93]张晓丹.汽车发动机故障诊断中不确定性问题的贝叶斯网络解法[J].东北大学. 2005.
    [94]林春漪.基于混合贝叶斯网络的医学图像语义建模及其检索的研究[J].华南理工大学. 2006.
    [95]曹建亮, A,姜君娜,王宏.基于贝叶斯网络的网络安全态势评估方法研究[J].科技信息(科学教研). 2007(29).
    [96]王广彦,胡起伟,王润生.基于贝叶斯网络的装备战场损伤评估模型[J].兵工学报. 2007(11).
    [97] Berzuini, C., Bellazzi, R., Quaglini, S., Spiegelhalter, D.J. Bayesian networks for patient monitor-ing[J]. Artificial Intelligence in Medicine. 1992. 4(3): p. 243-260.
    [98] Borsuk, M.E., Reichert, P., Peter, A., Schager, E., Burkhardt-Holm, P. Assessing the decline of brown trout (Salmo trutta) in Swiss rivers using a Bayesian probability network[J]. Ecological Modelling. 2006. 192(1-2): p. 224-244.
    [99] Borsuk, M.E., Stow, C.A., Reckhow, K.H. Integrated approach to total maximum daily load de-velopment for Neuse River Estuary using Bayesian probability network model (Neu-BERN)[J]. Journal of Water Resources Planning and Management. 2003. 129(4): p. 271-282.
    [100] Borsuk, M.E., Stow, C.A., Reckhow, K.H. A Bayesian network of eutrophication models for syn-thesis, prediction, and uncertainty analysis[J]. Ecological Modelling. 2004. 173(2-3): p. 219-239.
    [101] Grois, E., Hsu, W.H., Voloshin, M., Wilkins, D.C. Bayesian network models for generation of crisis management training scenarios. in Innovative Applications of Artificial Intelligence - Con-ference Proceedings. 1998. Madison, WI, USA: AAAI.
    [102] Hautaniemi, S.K., Korpisaari, P.T., Saarinen, J.P.P. Target identification with Bayesian networks. in Proceedings of SPIE - The International Society for Optical Engineering. 2000. Orlando, FL, USA: SPIE.
    [103] Henriksen, H.J., Rasmussen, P., Bromley, J., Portillo, A.d.l.H., Llamas, M.R., Bayesian belief networks as a tool for participatory integrated assessment and adaptive groundwater management: The Upper Guadiana basin, Spain, in Geological Survey of Denmark and Greenland Bulletin, Sonderholm and A.K. Higgins, Editors. 2007. p. 69-72.
    [104] Pearl, J. Bayesian networks: A model of self-activated memory for evidential reasoning[J]. Pro-ceedings of the 7th Conference of the Cognitive Science Society. 1985: p. 329-334.
    [105] Sahely, B.S.G.E., Bagley, D.M. Diagnosing upsets in anaerobic wasterwater treatment using bayesian belief networks[J]. Journal of Environmental Engineering. 2001. 127(4): p. 302-310.
    [106] Varis, O. Bayesian dicision analysis for environmental and resource management[J]. Environ-mental Modelling and Software. 1997. 12(2-3): p. 177-185.
    [107] Varis, O. A belief network approach to optimization and parameter estimation: Application to resource and environmental management[J]. Artificial Intelligence. 1998. 101(1-2): p. 135-163.
    [108] Fenton N E, Littlewood B, Neil M, Strigini L, Wright D R, P-J, C. Bayesian Belief Network Model for the Safety Assessment of Nuclear Computer-based Systems[R]. 1998.
    [109] B, L., D, W., P-J, C. Examination of Bayesian Belief Network for Safety Assessment of NuclearComputer-based Systems[R]. 1998.
    [110] Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E. Comparing fault trees and Bayesian networks for dependability analysis[J]. Proceedings of SAFECOMP. 1999. 1698: p. 310-322.
    [111] Portinale, L., Bobbio, A. Bayesian networks for dependability analysis: An application to digital control reliability[J]. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelli-gence. 1999: p. 551-558.
    [112] Bobbio, P., Minichino, Ciancamerla. Improving the analysis of dependable systems by mapping fault trees into Bayesian network[J]. Reliability Engineering & System Safety. 2001.
    [113] Boudali, H., Dugan, J.B. A new bayesian network approach to solve dynamic fault trees. in Pro-ceedings - Annual Reliability and Maintainability Symposium. 2005. Alexandria, VA.
    [114] Montani, S., Portinale, L., Bobbio, A. Dynamic bayesian networks for modeling advanced fault tree features in dependability analysis[J]. Proc. ESREL 2005. 2005.
    [115] Montani, S., Portinale, L., Bobbio, A., Varesio, M. A tool for automatically translating Dynamic Fault trees into Dynamic Bayesian Networks[J]. In: Proc RAMS'06. 2006.
    [116] Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D. Radyban: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks[J]. Reliability Engi-neering and System Safety. 2008. 93(7): p. 922-932.
    [117] Boudali, H., Dugan, J.B. A discrete-time Bayesian network reliability modeling and analysis framework[J]. Reliability Engineering and System Safety. 2005. 87(3): p. 337-349.
    [118] Boudali, H., Dugan, J.B. A continuous-time Bayesian network reliability modeling, and analysis framework[J]. Ieee Transactions on Reliability. 2006. 55(1): p. 86-97.
    [119]霍利民.基于贝叶斯网络的电力系统可靠性评估[J].华北电力大学(河北). 2005.
    [120]赵俊阁,张琪,付钰.贝叶斯网络推理在信息系统安全风险评估中的应用[J].海军工程大学学报. 2007(06).
    [121]刘文生,曾凤章.贝叶斯网络在煤矿生产系统安全评价中的应用[J].工矿自动化. 2008(01).
    [122] Nakaagawa, Y., Nakashima, K., Hattori, Y. OPTIMAL RELIABILITY ALLOCATION BY BRANCH-AND-BOUND TECHNIQUE[J]. Ieee Transactions on Reliability. 1978. R-27(1): p. 31-38.
    [123] Gurov, S.V., Utkin, L.V., Shubinsky, I.B. Optimal reliability allocation of redundant units and repair facilities by arbitrary failure and repair distributions[J]. Microelectronics Reliability. 1995. 35(12): p. 1451-1460.
    [124] Jacobson, D.W. Simultaneous allocation of reliability & redundancy using simplex search. in Proceedings of the Annual Reliability and Maintainability Symposium. 1996. Las Vegas, NV,USA: IEEE.
    [125] Charles Elegbede, A.O., Chu, C., Adjallah, K.H., Yalaoui, F. Reliability allocation through cost minimization[J]. Ieee Transactions on Reliability. 2003. 52(1): p. 106-111.
    [126]易宏,朱煜,林洲,袁远,李长春.舰船总体可靠性分配方法[J].上海交通大学学报. 1998(07).
    [127]周源泉,翁朝曦.可靠性评定.北京:科学出版社. 1990.
    [128]周源泉.成败型与指数型分系统可靠性的串联综合[J].福建师大学报. 1982. 1: p. 39-50.
    [129] Burnett, T.L., Wales, B.A. System reliability confidence limitts. in 7th Nat Symp.R& Q.c.,. 1961.
    [130]金星,洪延姬,沈怀荣,张峥.工程系统可靠性数值分析方法.北京:国防工业出版社. 2002.
    [131]肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法.北京:科学出版社. 2003.
    [132]沈国鉴,易宏.舰船可靠性设计探讨[J].舰船科学技术. 1990.
    [133]易宏,袁远.以最小割集为基础的可靠性数值仿真[J].上海交通大学学报. 1997(09).
    [134]褚卫明,易宏,张裕芳.基于故障树结构函数的可靠性仿真[J].武汉理工大学学报. 2004(10): p. 80-82.
    [135]中国船舶工业总公司可靠性中心.小子样复杂产品可靠性评定方法[R]. 1998.
    [136]杨小军,易宏,张裕芳,梁晓锋.船舶机电系统可靠性评估方法研究[J].造船技术. 2006(04): p. 15-18.
    [137]马莹,张裕芳,易宏,倪绍徐.基于Bayes拟合法的船舶复杂系统总体任务可靠度评估[J].船舶工程. 2009(04): p. 84-87.
    [138]张连文,郭海鹏.贝叶斯网引论.科学出版社. 2006.
    [139] Cooper, G.F., Herskovits, E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning. 1992. 9(4): p. 309-347.
    [140]厉海涛,光,金.,周经伦,周忠宝,李大庆.贝叶斯网络推理算法综述[J].系统工程与电子技术. 2008. 30(5).
    [141] J.Pearl. Probabilistic Reasoning in Intelligent Systems. in Networks of Plausible Inference. 1988. San Francisco:Morgan Kaufmann.
    [142] Zhang, N.L., Poole, D. A simple approach to Bayesian network computations[J]. Proc. of the Tenth Canadian Conference on Artificial Intelligence. 1994: p. 171-178.
    [143] Zhang, N.L., Poole, D. Exploiting causal independence in bayesian network inference[J]. Artifi-cial Intelligence Research. 1996. 301-328.
    [144]龚庆祥,赵宇,顾长鸿.型号可靠性工程手册.北京:国防工业出版社. 2007.
    [145]鹿祥宾,李晓钢,林峰.复杂系统的可靠性分配和优化[J].北京航天航空大学学报. 2004. 4.
    [146] Admantios, M. Reliability allocation and optimization for complex system. in Proceeding Annual Reliability and Maintainability Symospium. 2000.
    [147]梅启智,廖炯生,孙惠中.系统可靠性工程基础.科学出版社. 1991.
    [148] GJB368A,装备维修性通用大纲. 1994.
    [149] GJB/Z91--97,维修性设计技术手册. 1997.
    [150] Murphy, K. The bayes net toolbox for matlab[J]. Computing Science and Statistics. 2001. 33: p. 331-351.
    [151] Jensen, F., Kj?rulff, U.B., Lang, M., Madsen, A.L. HUGIN - The Tool for Bayesian Networks and Influence Diagrams[J]. Proceedings of the First European Workshop on Probabilistic Graphi-cal Models. 2002: p. 212-221.
    [152] Bayesialab Bayesian network software. 2007; Available from: http://www.bayesia.com/.
    [153]吴和成.系统可靠性评定方法研究.科学出版社. 2005.
    [154]程皖民.基于小子样复杂信息集的可靠性评估方法及其应用研究[博士学位论文].长少: 2006.
    [155]冯静.小子样复杂系统可靠性信息融合方法与应用研究[博士学位论文].长沙: 2004.
    [156]刘琦,冯静,周经伦.基于专家信息的先验分布融合方法[J].中国空间科学技术. 2004(03): p. 68-71.
    [157]茆诗松,汤银才,王玲玲.可靠性统计.高等教育出版社. 2008.
    [158]孙有朝.成败型与指数型单元混合系统的可靠性嫡法评定[J].航空动力学报. 2007. 8.
    [159]郭奎,于丹.靠性综合评估L-M法推广[J].可靠性工程. 2003. 2(4).
    [160]梁晓峰,张裕芳,易宏.基于相当故障树的舰船复杂系统可用性评估方法研究[J].造船技术. 2006(05): p. 24-26+12.
    [161] wilks, s.s. Mathematics Statistics. Wiley. 1962.
    [162]潘吉安.可靠性维修性可用性评估手册.北京:国防工业出版社. 1995.
    [163]杨自强,魏公毅.任意分布随机变量抽样的通用算法与程序[J].数值计算与计算机应用. 2006. 3.
    [164]裴鹿成.任意分布的自动抽样方法[J].安徽大学学报,自然科学版,Monte Carlo专集. 200. 3A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700