基于生物酶“聚氮富氧”效应的汽车节能减排技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“与交通有关的生态学问题”包括交通系统与环境系统之间相互影响、相互融合、协调可持续发展的问题,一直以来是人们研究的热点。本研究基于生物工程技术,将生物酶技术应用于汽车发动机进气系统,研究固氮生物酶的“聚氮富氧”效应,探讨固氮生物酶在汽车进气系统应用后的节能减排效果。研究结果显示:
     1.固氮生物酶通过对氮气的富集作用,显著影响了汽车进气系统氧气的分布。随着管壁(酶处理界面)垂直距离的增加,O2的浓度逐渐增大,离管壁越近,O2浓度越小,离管壁越远,O2浓度越大。随着管进气口距离(水平距离)的增加,该变化更加显著,变幅也逐渐增大。以标准汽车进气管为对照,在进气管壁涂施固氮生物酶后,当采气深度距离管壁2cm时,O2浓度小于空气中的平均浓度;当采气深度为4cm时,O2浓度与空气中的保持基本一致;当采气深度为6cm时,O2浓度高于空气中的平均浓度。随着离进气口距离的增大上述现象更为明显,但随着固氮生物酶处理时间的延长,生物酶的作用效果逐渐减弱,失效时间大约为30d。
     2.实验结果与对照相比,实验车辆经酶处理后,无论将生物酶涂施于距离燃烧室较远的空气滤清器内壁F,还是涂施于距离燃烧室较近的载体P,实验汽车的油耗量均小于进气系统未经改装条件下的油耗量;将酶涂施于距离燃烧室较近的载体P后,汽车的耗油量小于将生物酶涂刷于距离燃烧室较远的空气滤清器内壁F时汽车的耗油量。
     经酶涂施的不同载体分别改装实验车辆的进气系统与原装进气系统进行实验比较,经生物酶不同载体改装后的车辆在不同的工况下均表现出节油效果,其效果(节油率)表现为:普通PVC塑料管作为载体内壁涂施生物酶P<蜂窝状多孔陶瓷管作为载体内壁涂施生物酶C<丝瓜瓤状金属纤维丝作为载体表面涂生物酶M。
     M载体处理的桑塔纳车辆不同工况的节油效果与其他载体处理相比,不论那种工况均表现出较好的节油效果;M载体在不同工况下的节油率与对照相比:静态700r/min的节油10.5%、静态1500r/min节油21.8%、静态2500r/min节油6.6%、动态50km/h节油17.8%和动态100km/h节油6.6%。
     3.进气系统采用M酶载体处理后,实验车辆在不同工况均表现出节油的效果;相比较而言,车辆在中低转速工况下的节油率比高转速工况下的节油率大。在高转速工况下,节油率下降较为明显。对温度、湿度、车型、工况因子进行研究发现,节油率仅与车辆工况有显著相关关系,这说明生物酶处理载体在不同温度、湿度条件下效能具有稳定性。
     4.汽车进气系统经生物固氮酶处理后,汽车减排效应显著。在NO的减排效应方面,M的平均减排率为17.25%,C的平均减排率为14.83%,P的平均减排率为13.7%。在HC的减排效应方面,M的平均减排率为27.14%,C的平均减排率为24.32%,P的平均减排率为7.08%。对于CO的减排效应分为,M的平均减排率为19.27%,C的平均减排率为15.74%,P的平均减排率为12.08%。汽车进气管经生物固氮酶处理后,NO、HC、CO减排顺序均表现为M>C>P。
     5.汽车进气系统经固氮生物酶处理后,不同的处理方式间VOCs排放效应有一定差异,表现为M>C>P,以M的效果最佳,其排放的总烃体积积分数分别是P的7.70%、C的7.87%。从VOCs的成分看,除了没有检测到2-甲基丙基-苯、1,2,5-三甲苯、1-甲基-3-丙基-苯、二乙苯、1-乙基-2,4-二甲基-苯、2-乙基-1,4-二甲基-苯等芳香性VOCs的成分外,还没有检测到烷烃中的2,2-甲基-丁烷、2-甲基-戊烷、3-甲基-戊烷、己烷、癸烷、4-甲基-癸烷、5-甲基-癸烷和十一烷;烯烃中的2-甲基-1-丁烯、2-戊烯、环戊烯和甲基-环戊烯;芳香烃中的乙苯、1-乙基-2-甲基-苯和1,2,4-三甲苯。苯系物的排放特征排为:对照和酶处理后的均数相比较苯为其2.9倍、甲苯为其3.4倍、二甲苯3.7倍。可见生物酶处理后的汽车尾气中的苯系物的排放大大降低了。A
     本研究尝试将生物酶技术应用于汽车进气系统,经过适当生物酶处理的汽车,发动机燃料燃烧效率将得到有效提高,实现节约能源、减少有害气体排放的目标,有着很好的经济、社会和生态效益。
"Ecological questions about traffic" consisted of problems about the interplay, integrationand balanced and sustainable development between the transportation system and theenvironment system which was a hot issue all the time.
     Energy conservation and environmental protection should be the dual pressures of thedevelopment of the current internal-combustion engine based on petroleum."Nitrogen collection&Oxygen enrichment" of the bio-enzyme were put forward, and the bio-enzyme technology wasused to the automobile on it's air intake system. At the same time, reseachs on energyconservation and emission reduction of automobiles had been studied in this study. The resultswere as follows.
     1.Resech on "Nitrogen collection&Oxygen enrichment" of the bio-enzyme
     The distribution of the oxygen were enriched significantly by "Nitrogen collection&Oxygen enrichment" of the bio-enzyme. O2concentration was increased with the increasingvertical distance to interface processed by the bio-enzyme. O2concentration in the place of2cmfrom the above interface was less than O2concentration in the air, O2concentration in the placeof4cm from the above interface was almost equal to the O2concentration in the air, and whenthe depth reaches to6cm, O2concentration in the place of6cm from the above interface wasmore than the O2concentration in the air. At the same time, the biological effect of thebio-enzyme decreased gradually with the time, and the failure time of the bio-enzyme was about30d.
     2.Screening on the places and carriers treated with the bio-enzyme on it's air intake system
     All fuel consumption of the experimental vehicle treated by the bio-enzyme both in the farplace of the air filter and the near place of the motor were reduced in all working conditions, atthe same time, the fuel consumption of the near place treated by the bio-enzyme of the motorwere less than that of the far place of the air filter. Three carriers treated with the bio-enzymewere as follows: the PVC plastic pipe wall brushed with the bio-enzyme (it was called P in thisstudy, the same below), the honeycomb ceramic pipe wall brushed with the bio-enzymes (it wascalled C in this study, the same below), and the metal filaments brushed with the bio-enzyme (itwas called M in this study, the same below). The results showed that all fuel consumption of theexperimental vehicle treated by the bio-enzyme were reduced, and exhibited as follows: P﹤C﹤M.
     Comparation the fuel saving ratio of Santana treated by M carrier in all working conditionswith other bio-enzyme carriers, those were better than any other bio-enzyme carriers. Comparedwith the control, the fuel saving ratio of Santana treated by M carrier was10.5%of700r/min,21.8%of1500r/min,6.6%of2500r/min,17.8%of50km/h and6.6%of100km/h3.Resech on energy conservation of the automobile treated by M carrier on it's air intake system
     All fuel consumption of the experimental vehicle treated by M carrier were reduced, and thefuel consumption of the middle and hight work condition were less than that of the low workcondition by contrast. There were significant correlationships between the fuel consumption ofcars and it's work conditions by SPSS, and the temperature, humidity and automobile type werenot exhibited any correlationship between with the fuel consumption of the automobile whichwere demonstrated that the activity of M carrier treated by the bio-enzyme were stable underdifferent temperatures and humidities.4.Resech on environmental protection of the automobile treated with the bio-enzyme on it's airintake system
     The results showed that the NO emission changing rate was17.25%by M,14.83%by C,and13.7%by P, the HC emission changing rate was27.14%by M,24.32%by C and7.08%by P, and the CO emission changing rate was19.27%by M,15.74%by C and12.08%by P. The emission changing rate of NO, HC and CO were orderly: M>C>P.5.Resech on VOCs reduction of the automobile treated with the bio-enzyme on it's air intakesystem
     VOCs was detected by PID, and the results showed that VOCs reduction effect was M> C>P according to the total volumetric fraction of VOCs, VOCs reduction effect of M was better thanthose of the others. and the total volumetric fraction of VOCs by M was7.70%of P and7.87%ofC. Aromatic VOCs (2–methyl propyl–benzene,1,2,5-trimethylbenzene,1-methyl-3-propyl-benzene, diethylbenzene,1-ethyl-2,4-dimethyl-benzene and2-ethyl-1,4-dimethyl-benzene),alkane (2,2-methyl-butane,2-methyl-pentane,3-methyl-pentane, hexane, decane,4-ethyl-decane,5-methyl-decane and undecane) and olefins (2-methyl-1-butene,2-pentene, cyclopentene andmethyl-cyclopentene), aromatic hydrocarbon (ethylbenzene,1-ethyl-2-methyl-benzene,1-ethyl-2-methyl-benzene and1,2,4–mesitylene) were not detected in M. Exhaust BTEXemissions of the automobile treated with the bio-enzyme on it's air intake system were greatlyreduced. Exhaust BTEX emissions of the control was benzene2.9times, toluene3.4times anddimethylbenzene3.7times of the means of the automobile treated with the bio-enzyme on it's airintake system, respectively.
     The bio-engineering techniques were used in mechanical engineering for the first timewhich would expand the application space of bio-engineering technology in the field ofmechanical engineering. The combustion efficiency of the automobile treated with thebio-enzyme on it's air intake system was improved that reduced harmful gas emissions and savedenergy. The technical measure (automobiles treated with bio-enzyme on it's air intake system)had exhibited great benefits which could not only produce economic effect but also giveecological effect.
引文
Annemans L, Strens D, Lox E, et a1. Cost. effectiveness analysis of aprepitant in the preventionof the motherapy-induced nausea and vomiting in Belgium[J]. Supportive Care in Cancer,2008,16(8):905-915
    Babatunde, Olatunji, Odusami To consume or not: How oil prices affect the comovement ofconsumption and aggregate wealth[J]. Energy Economics,32(2010):857-867
    Bishop PE, Jarlenski DML, Hetherington DR. Evidence for an alternative nitrogen fixationsystem in Azotobacter vinelandii[J]. Proc Natl Acad Sci USA,1980,77:7342-7346
    Choi BC, Foster DE. State of the art of de-NO technology using zeolite catalysts in automobileengines[J]. J ind eng chem.,2005,1:1-9
    Clamelli P, Corbo P, Gambino M. Catalysis in environmental applications selected papers fromthe international symposium on catalysis and zeolites[J]. Catal Toda,1995,26(1):33-39
    Cocker DR, Shah SD, Johnson KC, et al.2004. Development and application of amobilelaboratory formeasuring emissions from diesel engines,2, samp ling for toxics andparticulate matter[J]. Environ Sci Technol,38:6809-6816
    Dean DR, Jacobson MR. Biochemical genctics of nitrogenase. In Biological nitrogen fixation(Eds. Stacey G., Burns RH&Evans HJ), New York: Chapman and Hall,1992,763-834
    Dos Santos PC, Dean DR, Hu Y, et al. Formation and insertion of the nitrogenaseiron-molybdenum cofactor [J]. Chem Rev2004,104:1159-1173
    Evangelos Bakeas, Georgios Karavalakis, Georgios Fontaras, Stamos Stournas An experimentalstudy on the impact of biodiesel origin on the regulated and PAH emissions from a Euro4light-duty vehicle Fuel2011,90:3200–3208
    Georgiadis MM, Komiya H, Chakrabarti P, et al. Crystallographic structure of the nitrogenaseiron protein from Azotobacter vinelandii [J]. Science,1992,257:1653-1659
    Georgios Fontaras, Marina Kousoulidou, Georgios Karavalakis Impact of straight vegetableoilediesel blends application on vehicle regulated and non-regulated emissions overlegislated and real world driving cycles biomass and bioenergy,2011,35:3188-3198
    Georgios Karavalakis, Vasiliki Boutsika, Stamoulis Stournas Biodiesel emissions profle inmodern diesel vehicles. Part2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH andoxy-PAH emissions Science of the Total Environment,2011,409:738–747
    Grosjean D, Groslean E, Gertler A W. On2road emissions of carbonyls from light-duty andheavy-duty vehicles[J]. Environ Sci Technol,2001,35:45-53
    Howard JB, Davis R, Moldenhauer B, et al. Fe:S cluster ligands are the only Cysteines requiredfor nitrogenase Fe-protein activities [J]. J Biol Chem,1989,264:11270-11274
    Hyung-Ju Kim, Gregory A. Keoleian, and Steven J. Skerlos Economic Assessment ofGreenhouse Gas Emissions Reduction by Vehicle Lightweighting Using Aluminum andHigh-Strength Steel Journal of Industrial Ecology,2010,15(1):64-80
    I. Schifter, L. Díaz, R. Rodríguez, L. Salazar Oxygenated transportation fuels. Evaluation ofproperties and emission performance in light-duty vehicles in Mexico Fuel,2011,90:779–788
    Ioannidis I, Buck M. Nucleotide sequence of the Klebsiella pneumoniae nifD gene and predictedamino acid sequence of the α-subunit of the nitrogenase MoFe protein[J]. J Biochem1987,247:287-291
    Jing-Quan Li, Guoyuan Wu, Ning Zou Investigation of the impacts of signal timing on vehicleemissions at an isolated intersection Transportation Research Part D,2011,16:409-414
    Joerger RD, Wolfinger ED, Bishop PE. The gene encoding dinitrogenase reductase2is requiredfor expression of the second alternative nitrogenase from Azotobacter vinellandii[J]. JBacteriol,1991,173,4440-4446
    Kai Zhang, Stuart Batterman, Fran ois Dion Vehicle emissions in congestion: Comparison ofwork zone, rush hour and free-flow conditions Atmospheric Environment,2011,45:1929-1939
    Kean A J, Grosjean E, Grosjean D, et al. On-road measurement of carbonyls in Californialight-duty vehicle emissions[J]. Environ Sci Technol,2001,35:4198-4204
    Kim J, Rees DC. Crystallographic structure and functional implications of the nitrogenaseiron-molybdenum protein from Azotobacter vinelandi[J]. Nature,1992,360:553-560
    Kim J, Rees DC. Structural models for the metal centers in the nitrogenase iron-molybdenumprotein[J]. Science,1992,257:1677-1682
    Kyung Soo Cha, Jeong Hwan BaeDynamic impacts of high oil prices on the bioethanol andfeedstock markets[J]. Energy Policy,2011,39:753-760
    Liang B S, Zhou Y. Study on emission characteristics of volatile organic compounds in theexhaust of different types of vehicles[J]. Environmental Monitoring in China,2005,21(1):8-11
    Lu S H, Bai Y H, Zhang G S, et al. Source apportionment of anthropogenic emissions of volatileorganic compounds[J]. Acta Scientiae Circumstantiae,2006,26(5):757-763
    Lu S H, Bai Y H, Zhang G S. Study on the characteristics of VOCs source p rofiles of vehicleexhaust and gasoline emission[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2003,39(4):507-511
    Luo J,Meng M,Zha Y. A comparative study of Pt/Ba/AI2O3and Pt/Fe-Ba/A12O3NSRcatalysts: New insights into the interaction of Pt-Ba and the function ofFe[J]. Appl Catal B,2008,78(1/2):38-52
    Melisande FM, Liu. Till Pistorius Coping with the energy crisis: Impact assessment andpotentials of non-traditional renewable energy in rural Kyrgyzstan[J]. Energy Policy,44(2012):130-139
    Natalia Fonseca, Jesús Casanova, Manuel Valdés Influence of the stop/start system on CO2emissions of a diesel vehicle in urban traffc Transportation Research Part D,2011,16:194-200
    Qiao Zhang, Xiao Feng, Guilian Liu, et al. A novel graphical method for the integration ofhydrogen distribution systems with purification reuse[J]. Chemical Engineering Science,2011,66:797-809
    Rehder D. Vanadium nitrogenase [J]. J Inorg Biochem,2000,80:133-136
    Ribbe M, Gadkari D, Meyer O. N2fixation by Streptomyces thermoautotrophicus involves amolybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2reduction to the oxidation of superoxide from O2by a molybdenum-CO dehydrogenase[J]. JBiol Chem,1997,272:26627-26633
    Seefeldt LC, Hoffman BM, Dean DR.The mechanism of the Mo-dependent nitrogenase[J]. AnnuRev Biochem,2009,78:701-722.
    Sounak R, Baiker A. NO storage—reduction catalysis:From mechanism and materials propertiesto storage-reduction performance[J]. Chem Rev,2009,109(9):905-915
    Srivastava Anjali. Source apportionment of ambient VOCs in Mumbai city[J]. AtmosphereEnvironment,2004,38:6829-6843
    Steve Hankey, Julian D. Marshall Energy Policy,2010,38:4880-4887
    Tennison P, Lambert C, Levin M. NOxControl develop-ment with urea SCR on a dieselpassenger car[J]. SAETechnical Papers,2004,(1):1291
    Thorneley RNF, Lowe DJ. Kinetics and mechanism of the nitrogenase enzyme system. InMolybdenum Enzymes (Eds. Spiro TG)[M].1985,221-284
    U S EPA. Technical descrip tion of the toxic module forMOB ILE6.2and guidance on its use foremission inventory p reparation[R]. EPA4202R2022029,USA: EPA,2002,1-12
    Vichitphan K. Azotobacter vinellandii Nitrogenase: Effect of Amino-Acid Substitutions at theαGln-191Residue of the MoFe Protein on Substrate Reduction and CO Inhibition [D]. phDthesis, Virgina Polytechnic Institute and State University,2001
    W. Ross Morrow, Kelly Sims Gallagher, Gustavo Collantes, et., al Analysis of policies to reduceoil consumption and greenhouse-gas emissions from the US transportation sector[J]. EnergyPolicy,2010,38:1305-1320
    Wang BG, ShaoM, Zhang YH, et al. A study of volatile organic compounds and its emissionfactors from city vehicles[J]. Research of Environmental Sciences,2006,19(6):75-80
    Watson JG, Chow J C, Fujita E M. Review of volatile organic compound source apportionmentby chemical mass balance [J]. Pheric Environment,2001,35:1567-1584
    William F. Schmitt, Alexandre Szklo, Roberto Schaeffer Policies for improving the effciency ofthe Brazilian light-duty vehicle fleet and their implications for fuel use, greenhouse gasemissions and land use Energy Policy,2011,39:3163-3176
    Xiaoyu Yan, Roy J. Crookes Energy demand and emissions from road transportation vehiclesin China[J]. Progress in Energy and Combustion Science,2010,36:651-676
    Xu DQ, Liu CM, Li Z. Study on benzene, toluene, xylene pollution resulted from vehicleemission[J]. Journal of Environment and Health,2004,21(5):305-307
    Y.H. Zheng, Z.F. Li, S.F. Feng, et al. Biomass energy utilization in rural areas may contribute toalleviating energy crisis and global warming: A case study in a typical agro-village ofShandong, China[J]. Renewable and Sustainable Energy Reviews,2010,14:3132-3139
    Yao ZL, Ma YL, He KB, et al. A study on the real-world vehicle emission characteristics inNingbo [J]. Acta Scientiae Circumstantiae,2006,26:1229-1234
    曹桂军,欧阳明高.柴油串联式混合动力控制系统的试验研究[J].清华大学学报(自然科学版),2009,11
    董岩.车用小排量增压汽油机-传统汽油机动力总成CO2减排的有效方案[J].汽车工程师,2010(4):45-49
    冯国胜,吴文江,赵金生,等.汽车发动机排气污染物分析及对策[J].小型内燃机,1998,27(1):24-28
    高智强,陈丽娜,孙海平等.光催化在汽车节能减排中的研究与应用[J].机械设计与制造,2010,3:78-80
    耿学坚,范恩卓.汽车节能减排措施的探讨[J].科技信息,2011,7:369-370
    郭红松.利用PLIEF技术对重型柴油机类似环境条件下着火时刻柴油喷雾结构和浓度场的定量研究[J].燃烧科学与技术,4(2011)
    李骏,王永红,张蓉.汽车发动机排放污染的主要防治技术[J].华东交通大学学报,2001,18(2):13-15
    李宁,陈永光,白云.应用Na2O2吸收控制汽车尾气中CO2排放物[J].小型内燃机与摩托车,200837(6):69-72
    李薇,汝宜红,任福民.汽车燃油添加剂-清净分散剂排放影响研究[J].交通节能与环保,2008,2:14-17
    刘慧娴.“十一五”节能减排攻坚战[J].中国财政,2010,20:13-17
    楼狄明,张正兴,谭丕强等.车用柴油机选择性催化还原技术研究进展[J].环境科学与技术,2009,12
    陆思华,白郁华,张广山等.大气中挥发性有机化合物(VOCs)的人为来源研究[J].环境科学学报,26(5):757-763
    姜春生,刘凤军.新的发动机燃烧方式一一均质充量压燃燃烧(HCCI)[J].汽车技术,2005,(4):25-27
    马虎根,李美玲.汽车发动机冷却系统计算机辅助设计[J].汽车工程,2000,22(3):207-209
    聂祚仁,周美玲,陈颖等.二元复合稀土钨电极材料的性能[J].金属学报,1999,35(3):334-336
    宁波市环境监测中心.宁波市机动车尾气污染特征及防治对策研究[R].宁波:宁波市环境保护局,2007,50-55
    潘广宏,孟明.稀燃汽车尾气中氮氧化物的催化消除技术[J].化学工业与工程,2011,28(3):67-73
    平原,晓喻.节能减排有新措施[J].时代汽车,2009,7:22-25
    史重九.必须高度重视汽车节能减排[J].交通与运输,2011,6-8
    宋涛.汽油机排气污染物控制方法[J].小型内燃机与摩托车,2011,5
    苏静.海格G-BOS上榜交通运输部节能减排示范项目.2011,16,86
    田春芝,刘惠.汽油车排放控制措施[J].北京汽车,2000,5:20-24
    王伯光,邵敏,张远航,等.机动车排放中挥发性有机污染物的组成及其特征研究[J].环境科学研究,2006,19(6):75-80
    王芙蓉,孙风礼,高山.汽车尾气净化用蜂窝状催化剂的研究[J].材料工程,2003(2):41-42
    魏伟,史庆南,魏坤霞.汽车尾气三元净化催化剂的研究新进展[J].贵金属,2002,23(2):61-65
    吴咏,张尚娇.国外的汽车排放法规[J].汽车科技,2001(1):31-35
    熊云,胥立红,钟远利.汽车节能技术原理及应用[M].北京:中国石化出版社,2008年
    徐东群,刘晨明,李铮等.机动车尾气造成的苯系物污染状况调查[J].环境与健康杂志,2004,21(5):305-307
    徐红.菲亚特动力科技:展示Multiair等节能减排新技术[J].商用汽车,2009(4):112-113
    燕艳,任福民.生物燃料与交通碳减排的研究[J].环境与可持续发展,2010,4:6-8
    姚志良,马永亮,贺克斌,等.宁波市实际道路下汽车排放特征的研究[J].环境科学学报,2006,26(8):1229-1234
    逸锋.最新型的缸内多次喷射的直喷汽油机[J].汽车与配件2007,(7):36-38
    张东恒,狄泽超,连玉双.纳米CeO2柴油添加剂制备及改善内燃机节油与排放性能研究[J].石油炼制与化工,2011,42:66-72
    朱兵,李平.贫燃NOx选择性催化还原技术及其研究进展[J].化学世界,1999,6:283-287
    朱剑明,彭代勇.世界能源现状与内燃机的发展机遇[J].内燃机工程,2011,2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700