基于sEMG信号的外骨骼式机器人上肢康复系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上肢康复训练机器人是医疗机器人的一个重要分支,它以偏瘫上肢的运动再学习理论为依据,融合了康复医学、人体解剖学、机械学、计算机科学及机器人学等诸多学科技术,是当前国内外研究的热点。康复机器人作为以人体,尤其是以病患个体为作用对象,辅助或替代医师执行患肢康复训练为目的的机器人系统,不同于传统工业机器人,在实现基本功能的条件下,其设计和控制须充分考虑人体安全性、临床操作的可行性、系统功效性、患者可接受性及患者主动参与性等因素。论文在黑龙江省科技攻关重点项目支持下,针对临床康复应用需求,对上肢康复机器人系统设计、上肢康复机器人的表面肌电控制、上肢康复机器人的力控制及偏瘫上肢康复训练策略等方面进行研究,为康复机器人系统设计及康复训练奠定理论及技术基础。
     论文首先以人体上肢解剖学及运动理论为依据,从临床康复的安全性、有效性、实用性及舒适性角度提出对上肢康复机器人机构、控制、传感器等方面的设计要求。结合临床应用设计适用于不同身高、不同患侧、不同损伤程度的上肢偏瘫患者的新型5DOF外骨骼式上肢康复机器人系统,并详细阐述其机械结构、控制体系、驱动硬件、传感器的设计及运动学分析。
     表面肌电信号作为神经—肌肉运动产生的电信号富含了肌肉的运动状态信息,因此将表面信号引入康复机器人系统,实现人体上肢运动的辨识,预测人体主动运动意图。首先,基于表面肌电信号的短时平稳假设,提出了表面肌电信号的分段自回归建模方法,并利用主成分分析与多特征融合实现四通道表面肌电信号的特征提取。通过不同样本集训练条件下的单一BP神经网络分类测试实验,以错误率和网络训练迭代次数为指标,证明了提出的特征提取算法较传统自回归模型描述方法更具有优越性,并得到了提出的特征提取算法在非线性特征空间可分性更强的结论。在此基础上,针对单一BP神经网络分类器的识别率不稳定特点,基于Adaboost集成分类思想提出度量输出信息自适应加权的表面肌电动作模式集成分类算法。实验结果表明集成分类器由于综合考虑了多个基分类器间的互补信息,较单一神经网络分类器具有更强的泛化、推广能力,可提高康复机器人系统对人体上肢运动意愿的判断准确率。
     上肢主动运动对偏瘫患者的康复进程具有较强的推动作用,而关节力矩信号是康复过程中人体上肢主动运动意图的直接体现。基于阻抗控制理论研究基于关节力矩信号的上肢主动康复训练方法。首先建立上肢康复机器人静力学模型,研究关节力矩电压信号的预处理及空载力矩去除方法。然后根据末端力阻尼控制策略和关节刚度控制策略提出“阻尼式”和“弹簧式”两种上肢主动训练策略:阻尼式上肢康复训练将“人—机”作用关系建模为机械阻尼,患者上肢主动运动、康复机器人被动跟随并以速度阻尼形式为人体上肢提供康复所需的运动阻力;“弹簧式”主动抗阻训练中康复机器人以关节弹簧形式为上肢偏瘫患者提供刚性抗阻力,通过设置虚拟弹簧的刚度系数,可以达到患者“拉”动不同刚度的虚拟弹簧的训练效果。
     针对临床偏瘫患者的康复进程提出进阶交互式上肢康复训练策略。康复早期采用基于表面肌电信号的自主性被动康复训练,训练方式为患者健侧上肢控制患侧上肢,达到双臂镜像协调训练的目的。康复中后期采用基于关节力矩信号的主动康复训练。最后基于5DOF外骨骼式上肢康复机器人平台,以多个受试者进行实验研究,实验结果一方面验证了提出的上肢康复机器人系统能够实现不同的康复训练模式,可满足临床康复需要,另一方面验证了表面肌电控制方法与关节力矩阻抗控制方法的正确性。
As an important branch of medical robot, rehabilitation training robot for hemiplegic upper limbs is a hot research topic both at home and abroad. Based on motor relearning programme, it combines many technology fields such as rehabilitation medicine, human anatomy, mechanics, computer science, and robotics, etc. Different from traditional industrial robots, rehabilitation robots work for human bodies, especially for diseased ones, to assist or displace therapists to carry out rehabilitation exercises. Meanwhile, on the basis of basic functions, human safety, feasibility of clinic operating, system efficiency as well as acceptability and active participation of the patients must be taken into consideration while designing and controlling rehabilitation robots. According to clinic application demands, this dissertation makes researches on system design, surface electromyogram control, force control of rehabilitation training robot for hemiplegic upper limbs and rehabilitation training strategies supported by Heilongjiang Key Science and Technology Project, and lies the theoretical and technical foundation for rehabilitation robot design and training.
     Taking safety, validity, practicability and comfort into consideration, the design rules for mechanism, control and sensor of rehabilitation for upper limbs is proposed on the basis of human upper limb anatomy and motion mechanism. Under the guidance of rules, a novel 5 DOF exoskeletal upper limb rehabilitation robot for patients in various heights, disable side, impaired degree is developed. The mechanical structure, drive hardware, sensor and kinematics of rehabilitation is described in detail.
     Surface electromyogramm signal contains motion condition information as the electric signal generated with nerve-muscle motion. It is introduced into rehabilitation robot system to recognize upper limb motions for extracting human active motion intention. Combining with Principal component analysis and multi-features fusion, subsection auto-regressive model method for sEMG signal was proposed to extract four channels sEMG features base on short time stationary hypothesis firstly. The classification test experiment of single BP neural network with different training sample set proves its stronger splittability than traditional AR model method in nonlinear feature space. Refer to instability of single BP neural network classifier, adaptive weighted motion mode ensemble classification algorithm according to output information was proposed based on Adaboost ensemble classification concept. Experiments showed that ensemble classifier has greater generalization than single ones by integrating complement information between each single ones. It can improve judging accuracy of upper limb motion intention for rehabilitation robot.
     Upper limb active motions have great promotion for rehabilitation course of hemiplegic patients. Joint torque is the direct reflection of active motion intention. So, active rehabilitation training method for upper limbs based on joint torque is studied on the basis of impedance control theory. Static model of rehabilitation robot for upper limbs is built and preprocessing method for joint torque voltage and no load torque removal method are discussed. Then, two active training methods-“damping”and“springing”are proposed base of damping control strategy and joint stiffness control strategy respectively. The former modeled the human-machine interaction as mechanical damping. Rehabilitation robot follows patients’active motion and provides needed resistance with velocity damp. In“springing”anti-resistance training, rehabilitation robot provides rigid resistance for upper limbs with pattern of spring. Patients fell like pull different virtual spring by setting rigid coefficient.
     The stepping and interactive rehabilitation strategy for upper limbs of hemiplegic patients is proposed. sEMG based self passive rehabilitation exercises is for early recovery stage. The disable limb is controlled by healthy one for harmonious mirror image exercises of all two. Active rehabilitation exercises based on torque signal is for middle to late period. At last experiments are carried on with healthy people as trails on the flat of 5DOF exoskeletal rehabilitation robot for upper limbs. The result of experiments verifies that developed rehabilitation robot can satisfy clinical rehabilitation by various rehabilitation exercise modes, and validates the control method based on sEMG and force.
引文
1陈景藻.康复医学.北京:高等教育出版社. 2001
    2常俊玲,孙波.运动再学习对偏瘫患者上肢功能恢复的影响.现代康复. 2000, 14(5): 684-685.
    3缪鸿石.中枢神经损伤后功能恢复理论.中国康复理论与实践. 1997, 3(3): 98-105
    4李大年.缺血性脑血管病治疗进展.山东医药. 2000. 40(1): 35-42
    5吴德昌.人体机能解剖学.北京:科学出版社. 1983: 262-314
    6张子明,李惠兰.中风临床与康复.北京:华夏出版社. 2007: 1-35
    7马南,路来金,张敬莹等.周围神经损伤后神经系统的可塑性.中国临床康复. 2006, 10(22): 128-130
    8 J. H. Carr, R. B. Shepherd. A motor relearning programme for stroke. London: Batterworth-Heinemann Press, 1987
    9 J. H. Carr, R. B. Shepherd. A motor learning model for stroke rehabilitation. Physiotherapy, 1989, 75: 372-380
    10 D.J. Reinkensmeyer, S.L. Lehman, P.S. Lum. A bimanual therapy robot: controller design and prototype experiments. Proceedings of the 15th IEEE International Conference on Engineering in Medicine and Biology Society. 1993: 938-939
    11 P.S. Lum, D.J. Reinkensmeyer, S.L. Lehman. Robotic assist devices for bimanual physical therapy: preliminary experiments. IEEE Transactions on neural systems and rehabilitation. 1993, 1(3): 185-191
    12 P.S. Lum, S.L. Lehman, D.J. Reinkensmeyer. The bimanual lifting rehabilitator: an adaptive machine for therapy of stroke patients. IEEE Transactions on rehabilitation engineering. 1995, 3(2): 166-174
    13 P. S. Lum, C. G. Burgar, D. E. Kenney, et al. Quantification of force abnormalities During passive and active-assisted upper-limb reaching movements in post-stroke hemipatesis. IEEE Transaction on biomedical engineering. 1999, 46(6): 652-662
    14 C. G. Burgar, P. S. Lum, P. C. Shor, et al. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. Journal ofrehabilitation research and development. 2000, 37(6): 663-673
    15 P. S. Lum, C. G. Burgar, P. C. Shor. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME Robotic System in subjects with Post-stroke hemiparesis. IEEE Transactions on neural systems and rehabilitation engineering. 2004, 12(2): 186-194
    16 P. S. Lum, C. G. Burgar, P. C. Shor. Use of the MIME robotic system to retrain multi-joint reaching in post-stroke hemiparesis: why some movement patterns work better than others. Proceeding of the 25th IEEE International Conference on Engineering in Medicine and Biology Society. 2003: 1475-1478
    17 P. S. Lum, C. G. Burgar, H. F. M. Van der Loos, et al. The MIME robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke. Proceeding of the 9th IEEE International Conference on Rehabilitation Robotics. 2005: 511-514
    18 D. J. Reinkensmeyer, L. E. Kahn, M. Averbuch, et al. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. Journal of rehabilitation research and development. 2000, 37(6): 653-662
    19 L. E. Kahn, M. L. Zygman, W. Z. Rymer, et al. Effect of robot-assisted and unassisted exercise on functional reaching in chronic hemiparesis. Proceeding of the 23th IEEE International Conference on Engineering in Medicine and Biology Society. 2001: 39-44
    20 H. I. Krebs, B. T. Volpe, M. L. Aisen, et al. Increasing productivity and quality of care:Robot-aided neuro-rehabilitation. Journal of Rehabilitation Research and Development. 2000, 37 (6): 639–652
    21 T. Nef, R. Riener. ARMin-design of a novel arm rehabilita-rehabilitation robot. Proceeding of the 9th IEEE Conference on Rehabilitation Robotics. 2005: 57-60
    22 M. Mihelj, T. Nef, R. Riener. ARMin II-7 DOF rehabilitation robot: mechanics and kinematics. Proceeding of the 2007 IEEE International Conference on Robotics and Automation. 2007: 4120-4125
    23 J. A. Cozens. Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Transactions on RehabilitationEngineering. 1999, 7(2): 254-256
    24 A. Toth, G. Fazekas, G. Arz, et al. Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB: report of the first clinical test and the follow-up system improvement. Proceeding of the 9th IEEE International Conference on Rehabilitation Robotics. 2005: 127-130
    25 Jiping He, E. J. Koeneman, R. S. Schultz, et al. RUPERT: a device for robotic upper extremity repetitive therapy. Proceeding of the 27th IEEE International Conference on Engineering in Medicine and Biology Society. 2005: 6844-6847
    26 T. G. Sugar, Jiping He. E. J. Koeneman. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15(3): 336-346
    27 Liyun Guo, Linhong Ji. Relation between patients’active force and effect of robotic therapy for rehabilitation. Proceeding of the 27th IEEE international Conference on Engineering in Medicine and Biology Society. 2005: 6840-6843
    28胡宇川,季林红.一种偏瘫上肢复合运动的康复训练机器人.机械设计与制造. 2004, (6): 47-49
    29 Xiufeng Zhang, Linhong Ji, Liyun Guo. A novel robot neurorehabilitation for upper limb motion. Proceedings of the 27th IEEE International Conference on Engineering in Medicine and Biology Society. 2005: 5040-5043
    30董宪奇.肘关节神经康复用机器人之改进与临床应用.国立成功大学. 2002
    31佟杰.手臂康复训练机器人控制及实验研究.哈尔滨工程大学. 2007
    32张立勋,杨勇,张今瑜等.手臂康复机器人阻抗控制实验研究.哈尔滨工程大学学报. 2008, 26(1): 69-72
    33 D. Constantinescu, I.Chau, S. P. Dimaio, et al. Haptic rendering of planar rigid-bogy motion using a redundant parallel mechanism. Proceeding of the 2000 IEEE International Conference on Robotics and Automation. 2000: 2440-2445
    34 C. A. Avizzano, S. Marcheschi, M. Angerilli, et al. A multi-finger haptic interface for visually impaired people. Proceedings of the 2003 IEEE International Workshop on Robot and Human Interactive Communication.2003: 165-170
    35 M. Uro? , M, Marko. HIFE-haptic interface for finger exercise. IEEE Transactions on Mechatronics. 2006, 11(1): 93-102
    36 B. Bigland-Ritchie, E. F. Donovan, C. S. Roussos. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts. Journal of Applied Physiology. 1981, 51(5): 1300-1305
    37杨春红,王健,王笃明.基于准稳态信号的动态肌肉疲劳表面肌电信号变化特征.体育科学. 2005, 25(7): 16-20
    38张海红,王健,杨春红.肱二头肌离心和向心收缩的肌电信号特征.浙江大学学报. 2006, 40(11): 1937-1941
    39 M. A. Carary, G. D. Carnaby, M. E. Groher, et al. Functional benefits of dysphagia therapy using adjunctive sEMG biofeedback. Dysphagia. 2004, 19(3): 160-164
    40 R. Merletti, L. R. Conte, C. Orizio. Indices of muscle fatigue. Journal of Electromyography and Kinesiology. 1991, 1(1): 20-33
    41 D. Farina, R. Merletti. Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions. Journal of Electromyography and Kinesiology. 2000, 10(5): 337-349
    42 Y. Liu, M. Kankaanpaa, J. P. Zbilut, et al. EMG recurrence quantifications in dynamic exercise. Biological Cybernetics. 2004, 90(5): 337-348
    43 F. Del Santo, F. Gelli, A. Schmied, et al. Motor unit synchronous firing as revealed by determinism of surface myoelectric signal. Journal of Neuroscience Methods. 2006, 155(1): 116-121
    44 P. Padmanabhan, S. Puthusserypady. Nonlinear analysis of EMG signals-A chaotic approach. Proceeding of the 2004 IEEE International Conference on Engineering in Medicine and Biology. 2004: 608-611
    45 D. Dorcas, R. N. Scott. A three state myoelectric control. Medical and Biological Engineering. 1966, 4: 367-372
    46 D. A. Childress. A myoelectric three state controller using rate sensitivity. Proceeding of the 8th IEEE International Conference on Medical and Biological Engineering. 1969: S4-S576
    47 B. Hudgins, P. Parker, R. N. Scott. A new strategy for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering. 1993,40(1): 82-94
    48 I. Moon, M. Lee, J. Chu. Wearable EMG-based HCI for Electric-Powered Wheelchair users with motor Disabilities. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. 2005: 2649-2654
    49 D. Graupe. Function separation of EMG signal via ARMA identification methods for prosthesis control purposes. IEEE Transactions on System, man, and Cybernetics. 1975, 5(2): 252-259
    50 D. Graupe. Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single site myoelectric signals. Journal of Biomedical Engineering. 1982, 4: 17-22
    51 D. Graupe. Patient controlled electrical stimulation via EMG signature discrimination for providing certain paraplegics with primitive walking functions. Journal of Biomedical Engineering. 1983, 5: 220-226
    52 J. J. Luh, G. C. Chang, C. K. Cheng, et al. Using time-varying autoregressive filter to improve EMG amplitudeestimator. Proceeding of the 17th IEEE International Conference on Engineering in Medicine and Biology Society. 1995: 1343-1344
    53 G. C. Chang, W. J. Kang, J. J. Luh, et al. Real-time implementation of electromyogram pattern recognition as a control command of man-machine interface. Medical Engineering and Physics. 1996, 18(7): 529-537
    54 W. J. Kang, J. R. Shiu, C. K. Cheng, et al. The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition [movements classification]. IEEE Transactions on Biomedical Engineering. 1995, 42(8): 777-785
    55 S. H. Park, S. P. Lee. EMG pattern recognition based on artificial intelligence techniques. IEEE Transactions on Rehabilitation Engineering. 1998, 6(4): 400-405
    56 E. Lamounier, A. Soares, A. Andrade, et al. A virtual prosthesis control based on neural networks for EMG pattern classification. Proceeding of the Artificial Intelligence and Soft Computing. 2002
    57 J. D. Zhao, Z. W. Xie, L. Jiang, et al. Levenberg-Marquardt based neural network control for a five-fingered prosthetic hand. Proceeding of the 2005 IEEE International Conference on Robotics and Automation. 2005: 4482-4487
    58 K. Englehart, B. Hudgins, P. A. Parker, et al. Classification of the myoelectric signal using time-frequency based representations. Medical Engineering and Physics. 1999, 21: 431-438
    59 K. Englehart, B. Hudgin, P. A. Parker. A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering. 2001, 48(3): 302-311
    60 K. Englehart, B. Hudgin, A. D. C. Chan. Continuous multifunction myoelectric control using pattern recognition. Thechnology and Disability. 2003, 15(2): 95-103
    61 K. Englehart, B. Hudgin. A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering. 2003, 50(7): 848-854
    62姜明文,王人成,王敬章等.基于多通道肌电信号小波变换的人手运动识别.中国康复医学杂志. 2006, 21(1): 22-24
    63蔡立羽,王志中,张海虹.基于小波变换的肌电信号识别方法研究.数据采集与处理. 2000, 15(2): 255-258
    64蔡立羽,王志中,张海虹.小波变换在表面肌电信号分类中的应用.生物医学工程学杂志. 2000, 17(3): 281-284
    65 M. Khezri, M. Jahed. An inventive quadratic time-frequency scheme based on Wigner-Ville distribution for classifi'cation of sEMG signals. Proceeding of the 6th IEEE International Special Topic Conference on Information Technology Applications in Biomedicine. 2007: 261-264
    66 J. D. Zhao, Z. W. Xie, L. Jiang, et al. EMG control for a five-fingered underactuated prosthetic hand based on wavelet transform and sample entropy. Proceeding of the 2006 IEEE International Conference on Intelligent Robots and System. 2006: 3215-3220
    67 C. Castellini, P. Van Der Smaqt, G. Sandini, et al. Surface EMG for force control of mechanical hands. Proceeding of the 2008 IEEE International Conference on Robotics and Automation. 2008: 725-730
    68 J. G. Cui, X. Wang, Z. H. Li, et al. Application of support vector machine in pattern classification of surface EMG. Journal of Northeastern University. 2006, 27(3): 280-283
    69 M. Ivana. Radial Basis Function (RBF) networks for improved gait analysis.Proceeding of the 9th Symposium on Neural Network Applications in Electrical Engineering. 2008: 129-132
    70 K. K. Jung, J. W. Kim, H. K. Lee, et al. EMG pattern classification using spectral estimation and neural network. Proceeding of the 2007 Annual Conference on Society of Instrument and Control Engineers. 2007: 17-20
    71 H. P. Huang, Y. H. Liu, L. W. Liu, et al. EMG classification for prehensile postures using cascaded architecture of neural networks with self-organizing maps. Proceeding of the 2003 IEEE International Conference on Robotics and Automation. 2003: 1497-1502
    72 C. Cortes, V. Vapnic. Support vector network. Machine Learning. 1995, 20: 273-297
    73颜志国.基于粗糙集和支持向量机的表面肌电特征约简和分类研究.上海交通大学博士学位论文. 2008
    74张玲.基于核函数的SVM机与三层前向神经网络的关系.计算机学报. 2002, 25(7): 696-700
    75 O. Fukuda, T. Tsuji, H. Shiqeyoshi, et al. An EMG controlled human supporting robot using neural network. Proceedings of the 1999 IEEE International Conference on Intelligent Robots and systems. 1999: 1586-1592
    76 M. Vuskovic, S. J. Du. Classification of prehensile EMG patterns with simplified fuzzy ARTMAP networks. Proceedings of the 2002 IEEE International Conference on Neural Network. 2002:2539-2544
    77 S. Bitzer, P. Van Der Smagt. Learning EMG control of a robotic hand: towards active prostheses. Proceeding of the 2006 IEEE International Conference on Robotics and Automation. 2006: 2819-2823
    78杨大鹏,赵京东,姜力等.一种3自由度仿人型假手的肌电控制.江苏大学学报. 2009, 30(1): 5-9
    79 Z. Bien, D. J. Kim, M. J. Chung, et al. Development of a wheelchair-based rehabilitation robotic system (KARESⅡ) with various human-robot interaction interfaces for the disabled. Proceedings of the 2003 IEEE International Conference on Advanced Intelligent Machatromics. 2003: 902-907
    80 Y. Yang, A. Koontz, S. Nogan, et al. Activation of the trunk muscles duringwheelchair propulsion. The 9th Annual Conference of the International FES Society. 2004:1032-1041
    81 C. Liu, H. Wang. The design of wheelchair based on sEMG control. The 2nd IEEE International Conference on Bioinformatics and Biomedical Engineering. 2008: 1721-1724
    82 Y. Oonishi, S. Oh, Y. Hori. New control method for power-assisted wheelchair based on upper extremity movement using surface myoelectric signal. The 10th IEEE International Workshop on Advanced Motion Control. 2008: 26-28
    83 K. Kiguchi, T. Fukuda. A 3DOF exoskeleton for upper-limb motion assist-consideration of the effect of bi-articular muscles. Proceeding of the 2004 IEEE International Conference on Robotics and Automation. 2004: 2424-2429
    84 K. Kiguchi, M. H. Rahman, T. Yamaguchi. Adaptation strategy for the 3DOF exoskeleton for upper-limb motion assist. Proceeding of the 2005 IEEE International Conference on Robotics and Automation. 2005: 2296-2301
    85 A. Soares, A. Andrade, E. Lamounier, et al. The development of a virtual myoelectric prosthesis controlled by and EMG pattern recognition system based on neural networks. Journal of Intelligent Information Systems. 2003, 21(2): 127-141
    86 G. R. Johnson, D. A. Carus, G. Parrini, et al. The design of a five-degree-of-freedom powered orthosis for the upper limb. Proceeding of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine. 2001, 215(3): 276-284
    87任宇鹏.辅助上肢运动功能康复机器人的控制和评价系统研究.清华大学. 2004
    88胡宇川.偏瘫上肢复合运动康复训练机器人的研制.清华大学. 2004
    89 S. Kousidou, N. G. Tsagarakis, D. G. Caldwell, et al. Assistive exoskeleton for task based physiotherapy in 3-dimensional space. Proceeding of the 1st IEEE International Conference on Biomedical Robotics and Biomechatronics. 2006: 266-271
    90 N. G. Tsagarakis, D. G. Caldwell. Development and control of a‘soft-actuated’exoskeleton for use in physiotherapy and training. AutomonousRobots. 2003, 15(1): 21-33
    91 H. I. Krebs, N. Hogan, M. L. Aisen, et al. Robot-aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering. 1998, 6(1): 75-87
    92范宏竹.设计发展机器手臂辅助系统与中风病人的上肢治疗训练.国立成功大学. 2004
    93佟杰.手臂康复训练机器人控制及实验研究.哈尔滨工程大学. 2007
    94 H. Schmidt, S. Hesse, C. Werner, et al. Upper and lower extremity robotic devices to promote motor recovery after stroke-recent developments. Proceedings of the 26th IEEE International Conference on Engineering in Medicine and Biology Society. 2004: 4825-4828
    95 A. Gupta, A. K. Malley. Design of a haptic arm exoskeleton for training and rehabilitation. IEEE Transactions on Mechatronics. 2006, 11(3): 280-289
    96贾子善,吕佩源,闫彦宁.脑卒中康复.石家庄:河北科学技术出版社. 2006: 106-120
    97邵水金.实用躯体解剖学.上海:上海科学技术文献出版社. 2006: 19-23
    98汤晓芙.神经病学—神经系统临床电生理学(下)(肌电图学及其他).北京:人民军医出版社. 2002: 62-75
    99 O. Faust, R. U. Acharya, A. R. Allen, et al. Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. ITBM-RBM. 2008, 29(1): 44-52
    100姚文俊.自相关法和Burg法在AR模型功率谱估计中的仿真研究.计算机与数字工程. 2007, 35(10): 32-34
    101罗丰,段沛沛,吴顺君.基于Burg算法的短序列谱估计研究.西安电子科技大学学报(自然科学版). 2005, 32(5): 724-728
    102张旭东.离散随机信号处理.北京:清华大学出版社. 2005
    103边肇祺,张学工.模式识别.北京:清华大学出版社. 2000
    104邢杰,萧德云.基于PCA的概率神经网络结构优化.清华大学学报(自然科学版). 2008, 48(1): 141-144
    105 A. M. Bronstein, M. M. Bronstein, R. Kimmel. Expression invariant 3D face recognition. Lecture Notes in Computer Science. 2003, 26(88): 62-70
    106 R. Vidal, M. Yi, S. Sastry. Generalized principal component analysis (GPCA). IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005, 27(2): 1945-1959
    107 D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning internal representations by error propagations. Cambridge: MIT Press. 1986: 318-362
    108李士勇.模糊控制神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社. 1988
    109 P. E. Kneale, L. M. SEE, R. J. Abrahart. Why use neural networks? Neural Networks for Hydrological Modelling. 2004:1-13
    110 M. T. Hagan, M. B. Menhaj. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on neural networks. 1994, 5(6): 989-993
    111 S. J. Li, Y. X. Liu. Parameter identification approach to vibration loads based on regularizing neural networks. International Journal of Computer Science and Network Security. 2006, 6(2B): 29-34
    112 N. Ueda. Optimal linear combination of neural networks for improving classification performance. IEEE Transaction on Pattern Analysis and Machine Intelligence. 2000, 22(2): 207-215
    113 A. Verikas. Soft combination of neural classifiers: A comparative study. Pattern Recognition Letters. 1999, 20(4): 429-444
    114 L. Breiman. Bagging predictors. Machine Learning. 1996, 24(2): 123-140
    115 Y. Freund. Boosting a weak algorithm by majority. Information and Computation. 1995, 121(2): 256-285
    116 Y. Freund, R. E. Schapire. A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences. 1997, 55 (1): 119– 1391
    117琚旭,王浩,姚宏亮.基于Boosting的支持向量机组合分类器.合肥工业大学学报(自然科学版). 2006, 29(10): 1220-1222
    118王晓丹,孙东延,郑春颖.一种基于AdaBoost的SVM分类器.空军工程大学学报(自然科学版). 2006, 7(6): 54-57
    119 M. S. Arulampalam, S. Maskell, N. Gordon. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing. 2002, 50(2): 174-188
    120 S. Thrun, D. Fox, W. Burgard, et al. Robust Monte Carlo localization for mobile robots. Artificial Intelligence. 2001, 121 (1): 99-141.
    121徐士良. C常用算法程序集.北京:清华大学出版社. 2001:
    122 M. A. Fischler, R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. CACM, 1981, 24(6): 381? 395
    123卓志敏,杨莘元,杨雷。基于RANSAC + LS算法的红外成像全局运动估计.兵工学报. 2008, 29(3): 308-312
    124 N. Hongan. Impedance control an approach to manipulation: part I - theory, part II - implementation, part III - applcation. ASME Transactions on Dynamic Systems Measurement and Control.1985, 107(1): 1-24.
    125殷跃红,朱剑英.智能机器力觉及力控制研究综述.航空学报. 1999, 1 (1): 1-7
    126 S. Homayoun. Force tracking in impedance. International Journal of Robotics Research. 1997, 16(1): 97 - 117
    127 G. Ferretti. Impedance control for industrial robots. Proceeding of IEEE International Conference on Robotics and Automation. 2001: 4027– 4031
    128王东岩.上肢康复机器人力辅助训练及基于sEMG的康复评价研究.哈尔滨工业大学博士后出站报告. 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700