卧式下肢康复机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人们生活水平的提高和饮食结构的改变,脑血管病在世界上大多数国家已成为多发病,其发病率明显增高并日趋年轻化,目前已被公认是危及人类生命的主要疾病之一。脑血管病患者在病情稳定后,受到损害的神经会开始逐渐恢复,但是这种自然恢复的过程很慢,并且不能完全恢复。神经科学家和康复医学家在长期临床实践中,发现脑在损伤后,通过康复训练可以使神经系统完成功能重组和代偿,恢复肢体失去的运动功能,改善患者的生活自理能力。康复机器人是辅助肢体运动功能障碍患者完成临床上要求的康复训练内容,并能向患者和治疗师提供反馈信息的辅助康复治疗自动化设备。与传统治疗方式相比,机器人辅助治疗既能保证训练强度和康复效率,又能对康复过程和康复效果进行客观评价,因此,康复机器人越来越多的受到人们的关注,在康复工程与康复医学方面具有很好的应用前景。
     本文是在国家自然科学基金项目:下肢康复训练机器人关键技术研究(60575053)的资助下,针对如何利用下肢康复机器人,使脑血管病所导致的下肢运动功能障碍患者实现运动功能的康复问题,在人机系统的康复运动规划、人体下肢动力学分析、康复策略等方面进行了较深入的理论分析和实验研究。
     综述了国内外卧式下肢康复机器人及相关领域的研究现状,在对现有卧式下肢康复机器人的机构、工作原理以及控制策略进行分析和比较的基础上,依据运动康复机理,提出了一种新型卧式下肢康复机器人的机构方案,设计了机器人的控制方案。该机器人适合于不同身高和体重的患者使用,可以根据不同阶段的康复目的提供临床上所需要的训练模式。
     对卧式下肢康复机器人人机系统进行正逆运动学分析,确定了机器人系统的工作空间。利用MATLAB/SimMechanics软件对正逆运动学模型进行检验,验证了模型的正确性。从不同康复阶段的训练需求出发,对下肢关节的康复训练进行规划,以人机系统运动学模型为基础,获得对康复机器人的运动规划,为提高康复效率及重建正常的行走运动模式打下基础。
     利用拉格朗日法和牛顿-欧拉法分别建立了人体下肢动力学模型、机器人动力学模型和人机系统动力学模型。通过实验研究分析了人体动力学模型中的弹簧系数和阻尼系数,并对下肢的康复训练进行仿真研究,获得了康复过程中人机系统的动力学参数,一方面根据人体生物力学数据来评估患者康复训练的安全性和舒适性,另一方面为控制系统的设计提供理论依据。
     根据脑血管病后患者的康复治疗过程选择了主被动控制策略和助力运动控制策略,利用位置控制、阻抗控制、模糊变阻抗控制三种控制方法实现临床上所需要的被动训练、主动训练和主被动训练模式,利用电流环控制方法实现助力训练模式。建立了基于MATLAB/Simulink的控制仿真模型,对控制策略进行仿真分析。分析结果表明各种控制策略的可行性和有效性,为实验研究提供理论依据。
     研制了卧式下肢康复机器人实验样机,介绍了机器人的测量系统和控制系统。利用dSPACE平台对人体下肢的康复训练进行实验研究,包括被动训练实验、助力训练实验、主动训练实验、模拟痉挛实验以及主被动实验。实验研究验证了机器人机构的合理性,控制系统中各种控制策略的有效性。
With the improvement of people's living standards and the changes in diet in recent years, cerebrovascular diseases have become frequently-occurring diseases in most countries in the world. The disease's incidence significantly increased and has younger trend. This disease has been recognized as one of main diseases that endanger the life at present. After the patients with cerebrovascular disease were in stable disease stage, injured nerve shall recover gradually. But recovery process is very slow and the nerve can't recover entirely. Neurologist and rehabilitation doctor find that the function of injured nerve system can recombine and compensate, lost motion function can recover and the self-care ability of patient shall improve by rehabilitation training in long clinical practice. Rehabilitation training robot is a kind of assistant rehabilitation therapy automatic equipment that can assist patient with lower limbs motion dysfunction in completing clinical rehabilitation training content, and can provide feedback information for patient and doctor. Compared with traditional treatment method, robot assistant treatment method can guarantee training intensity and rehabilitation efficiency. The rehabilitation process and effect also are evaluated objectively. Hence, people pay more attention to rehabilitation robot that has application prospect in rehabilitation project and medicine.
     This work is supported by National Natural Science Foundation of China. The project is called key technologies for lower limbs rehabilitation training robot (60575053). According to how to rehabilitate lower limbs motion function of patient that has lower limbs motion dysfunction caused by cerebrovascular disease using lower limbs rehabilitation robot, theoretical analysis and experimental research of man-machine system's rehabilitation motion planning, lower limbs mechanics characteristic analysis, and rehabilitation strategy are made.
     Research status of horizontal lower limbs rehabilitation robot and related fields is presented at home and abroad. Based on lower analyzing and comparing limbs rehabilitation robot's machine, working principle and control strategy at home and abroad, the machine scheme of novel horizontal lower limbs rehabilitation robot is proposed and the robot's control scheme is designed. This robot is suitable for patient with different statures and weights. The required training mode is chosed according to the different purposes in different rehabilitation phase.
     Forward and inverse kinematics of horizontal lower limbs rehabilitation robot's man-machine system is analyzed. Work range of robotic system is determined. The forward and inverse kinematics model is verified by MATLAB/SimMechanics software. The results show that the model is correctness. Aiming to rehabilitation training in different rehabilitation phases, rehabilitation training of lower limb joint is planned and the motion planning of rehabilitation robot is obtained based on Kinematics model of man-machine system. Thus all the work above has made the basis for rehabilitating natural walk motion.
     Lower limb's dynamic model, robot dynamic model and man-machine dynamic model are established respectively using Lagrange method and Newton-Euler method. The spring coefficient and damping coefficient of human body dynamic model are analyzed using experiment research. The rehabilitation train of lower limbs is also simulated. Thus the dynamics parameters of man-machine system are obtained. These parameters are not only used for evaluating security and comfort of patient as rehabilitation training according to the data of human biomechanics, but also provide the theory basis for designing control system.
     Active-passive control strategies and power-assisted control strategies are chose according to the rehabilitation curing process of cerebrovascular patients. To achieve the passive training, active training and active-passive training in clinical training, the position control, impedance control and fuzzy impedance control are used. Power training mode is achieved using current loop control. These control strategies are simulated based on simulation model in MATLAB/Simulink software. The results show that all control strategies are feasible and effective. Thus all the work above has provided the theory basis for the experiment research.
     The experiment prototype of horizontal lower limbs rehabilitation robot is designed. Measuring system and control system of the robot are introduced. Lower limbs rehabilitation train experiments are completed using dSPACE platform. These experiments include passive training experiment, power-assisted training experiment, active training experiment, the experiment of simulating spasm and active-passive experiment of lower limbs. The results show that the robot's machine is rationality, and the all control strategies presented in control system is effective.
引文
[1]http://wenku.baidu.com/view/b590161aa8114431b90dd898.html
    [2]http://blog.sina.com.cn/s/blog_48f3b9390100d26i.html
    [3]李俊英.中风偏瘫患者的家庭护理.内蒙古中医药.2006,25(2):48页
    [4]王依群,王松涛,李卫萍.对依从性差的53例偏瘫病人原因分析及护理对策.中国自然医学杂志.2007,9(4):360页
    [5]梅树利.脑血管病偏瘫患者的康复治疗.吉林医学信息.2008,25(1-2):4-5页
    [6]金德闻,季林红,张济川.康复工程研究的新进展.中国康复医学杂志.2001,16(6):328-330页
    [7]张济川,金德闻.新技术在康复工程中的应用和展望.中国康复医学杂志.2003,18(6):352-354页
    [8]谢湘华,陈文华,杨蓉等.康复训练对发病后不同时期脑卒中患者生活质量的影响.中国临床康复.2005,9(32):47-49页
    [9]王桂茂,齐瑞,严隽陶.中风偏瘫步态的生物力学及其运动学特征分析.中国组织工程研究与临床康复.2007,11(40):8169-8172页
    [10]余炳坚,刘殷红,李二娟.345例复发性脑血管病临床分析.中国动脉硬化杂志.1998,6(4):351-352页
    [11]胡宇川,季林红.从医学角度探讨偏瘫上肢康复训练机器人的设计.中国临床康复.2004,8(34):7754-7756页
    [12]徐国政,宋爱国,李会军.康复机器人系统结构及控制技术.中国组织工程研究与临床康复.2009,13(4):717-720页
    [13]胡宇川.偏瘫上肢复合运动康复训练机器人的研制.清华大学硕士学位论文.2004:2-4页
    [14]倪朝民.脑卒中的康复研究.中国康复医学杂志.2005,20(1):3页
    [15]胡永善.脑卒中三级康复治疗方案的探讨.中华全科医师杂志.2005,4(12):712-714页
    [16]http://www.heb.chinanews.com.cn/news/2008-08-01/55746.shtml
    [17]胡永善.中国脑血管病后三级康复治疗的研究.中国临床康复.2002,6(7):935-937页
    [18]朱玉连,胡永善,吴毅等.规范三级康复治疗中不同时期卒中患者运动功能改善规律的分析.中国运动医学杂志.2004,23(4):377-379页
    [19]任宇鹏.辅助上肢运动功能康复机器人的控制和评价系统研究.清华大学硕士学 位论文.2004:2-7页
    [20]朱镛连.神经康复学.北京:人民军医出版社,2003,3-12页
    [21]胡永善.运动疗法在脑血管疾病康复中的应用.中国康复医学杂志.2007,22(12):1122-1124页
    [22]李华,姚红华,刘利辉.肌力训练对偏瘫步态的影响及下肢功能评定与步态分析间的相关性.中华物理医学与康复杂志.2003,25(1):34-36页
    [23]http://baike.baidu.com/view/1296343.htm?fr=ala0_1
    [24]马志平,张辉,毛克正等.脑血管病早期诊断及康复治疗.中国实用医药.2006,1(4):1122-1124页
    [25]http://www.tcssy.com/kf7.asp
    [26]潘雷,迟越.结合Brunnstrom理论探讨卒中后偏瘫体针的选穴思路.中国康复医学杂志.2006,21(11):1037-1038页
    [27]阳期望,王升旭.脑卒中后偏瘫的针刺分期治疗概述.针灸临床杂志.2010,26(9):73-74页
    [28]于维东.偏瘫康复的理论与实践.现代康复.2001,5(2):5-8页
    [29]http://www.haodf.com/zhuanjiaguandian/maxiaoleikf_183945.htm
    [30]汪健,罗兰,董军立等.对脑卒中患者神经康复的再认识.中国老年保健医学.2009,7(2):101-102页
    [31]Taisuke Sakaki. TEM:therapeutic exercise machine for recovering walking functions of stroke patients. Industrial Robot.1999,26(6):446-450P
    [32]Taisuke Sakaki, Seiichiro Okada, Yasutomo Okajima, et al. TEM:Therapeutic Exercise Machine for hip and knee joints of spastic patients.1999 IEEE International Conference on Rehabilitation Robotics (ICORR). California, USA,1999:183-186P
    [33]Ryokichi Hirata, Taisuke Sakaki, Seiichiro Okada, et al. BRMS:Bio-Resposive Motion System (Rehabilitation System for Stroke Patients). Proceedings of the 2002 IEEE/RSJ Intl:Conference on Intelligent Robots and Systems EPFL. Lausanne, Switzerland,2002:1344-1348P
    [34]http://www.kk-j.org/robot.html
    [35]http:/www.med.kyushu-u.ac.jp/reha/yaskawa/LX2/index.html
    [36]http://www.e-mechatronics.com/support/catalog/robot/kaepc94072001 b_1_0/data/kae pc94072001b_1_0.pdf
    [37]http://medgadget.com/archives/2005/03/tem_lx2_typed.html
    [38]Yosuke Hashimoto, Satoshi Komada, Junji Hirai. Development of a Biofeedback Therapeutic Exercise Supporting Manipulator for Lower Limbs. Proceedings of the IEEE International Conference on Industrial Technology. Mumbai, India,2006: 352-357P
    [39]Satoshi Komada, Yosuke Hashimoto, Noboru Okuyama, et al. Development of a biofeedback therapeutic-exercise-supporting manipulator. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.2009,26(10):914-3920P
    [40]Murakami Yosukel, Komada Satoshil, Hirai Junjil. Setting of training load using theory of functional effective muscle.2009 IEEE International Conference on Rehabilitation Robotics(ICORR 2009). Kyoto, Japan,2009:946-949P
    [41]Colombo Gery, Schreier Reinhard, Mayr Andy, et al. Novel tilt table with integrated robotic stepping mechanism:Design principles and clinical application. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. Chicago, United states,2005:227-230P
    [42]http://www.conjointech.com/Html/ProductView.sk.asp?ID=112&SortID=41.html
    [43]http://www.fsc-sfc.org/
    [44]Bouri Mohamedl, Stauffer Yvesl, Schmitt Carl, et al. The WalkTrainer:A Robotic system for walking rehabilitation.2006 IEEE International Conference on Robotics and Biomimetics(ROBIO 2006). Kunming, China,2006:1616-1621P
    [45]Metrailler Patrick, Blanchard Vincent, Perrin Ismael, et al. Improvement of rehabilitation possibilities with the MotionMaker. Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa, Italy,2006:359-364P
    [46]K J Hunt, B Stone, N O Negard, et al. Control strategies for Integration of Electric Motor Essist and Functional Electrical Stimulation in Paraplegic Cycling:Utility for Exercise Testing and Mobile Cycling. IEEE Transactions on Neural Systems and Rehabilitation Engineering.2004,12(1):89-101P
    [47]C. Acosta-Marquez, D. Bradley, P. Enderby, et al. Design Requirements and User Interfacing for a Rehabilitation Robot for the Lower Limbs.2006 IEEE Conference on Robotics, Automation and Mechatronics(RAM 2006). Bangkok, Thailand,2006: 828-833P
    [48]D. Bradley, C. Acosta-Marquez, M. Hawley, et al. NeXOS-The design, development and evaluation of a rehabilitation system for the lower limbs. Mechatronics.2009, 19(2):247-257P
    [49]Roman Kamnik, Tadej Bajd. Human Voluntary Activity Integration into the Control of Standing-Up Rehabilitation Robot.7th International Workshop on Advanced Motion Control. Maribor, Slovenia,2002:402-407P
    [50]Roman Kamnik, Tadej Bajd. Robot Assistive Device for Augmenting Standing-Up Capabilities in Impaired People. IEEE International Conference on Intelligent Robots and Systems. Nevada, United states,2003:3606-3611P
    [51]Roman Kamnik, Tadej Bajd, John Williamson, et al. Rehabilitation Robot Cell for Multimodal Standing-Up Motion Augmentation. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain,2005: 2277-2282P
    [52]Roman Kamnik, Tadej Bajd. Human voluntary activity integration in the control of a standing-up rehabilitation robot:A simulation study. Medical Engineering & Physics. 2007,29(9):1019-1029P
    [53]Hung-Jung Ho, Tien-Chi Chen. Hybrid CPM/CAM Physiotherapy Device by Use of Active Feedback Control Loop. Proceedings of the First International Conference on Innovative Computing, Information and Control. Beijing, China,2006:146-149P
    [54]Hung-Jung Ho, Tien-Chi Chen. Hybrid CPM/CAM Physiotherapy by Use of the Slide-Mode Fuzzy Neural Network Control. The 3rd Intetnational Conference on Innovative Computing Informationand Control (ICICIC'08). Dalian, China,2008: 510-510P
    [55]Hung-Jung Ho, Tien-Chi Chen. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop. Computer methods and programs in biomedicine.2009,96(2):96-107P
    [56]Ann M. Simon, R. Brent Gillespie, Daniel P. Ferris. Symmetry-based resistance as a novel means of lower limb rehabilitation. Journal of Biomechanics.2007,40(5): 1286-1292P
    [57]Ann Marie Simon. Neural Mechanisms for Bilateral Force Asymmetry During Supine Lower Limb Extensions in Neurologically Intact Individuals and Individuals with Post-Stroke Hemiparesis. University of Michigan.2008:5-30P
    [58]Ann M Simon, Brian M. Kelly, Daniel P Ferris. Preliminary trial of symmtry-based resistance in individuals with post-stroke hemiparesis.31st Annual International Conference of the IEEE EMBS. Minnesota, USA,2009:5294-5299P
    [59]L. Seddiki, K. Guelton, S. Leteneur, et al. Concept and simulation of "Sys-Reeduc": Closed Muscular Chain Lower Limbs Rehabilitation Device. Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics. Noordwijk, Netherlands,2007:543-549P
    [60]A. Cullell, J.C. Moreno, E. Rocon, et al. Biologically based design of an actuator system for a knee-ankle-foot orthosis. Mechanism and Machine Theory.2009,44(4): 860-872P
    [61]GS Sawicki, DP Ferris. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. Journal of NeuroEngineering and Rehabilitation.2009,6(23)
    [62]黄靖远,李海燕,凌迪等.虚拟现实康复车的组成及功能.中国康复理论与实践.1998,4(4):163-166页
    [63]黄靖远,刘宏增,李海燕等.“虚拟现实”康复工程前景初探.生物医学工程学杂志.1999,16(2):203-208页
    [64]黄靖远,刘宏增,凌迪等.康复用虚拟现实健身车的技术基础.生物医学工程学杂志.1999,16(4):453-457页
    [65]孙建东,金德闻.一种下肢被动运动康复训练器.中国康复医学杂志.2001,16(5):298-299页
    [66]http://www.pim.tsinghua.edu.cn/units/shejisuo/REC/index.htm
    [67]夏昊听.下肢康复训练机器人的研究.哈尔滨工程大学硕士学位论文.2003:10-20页
    [68]夏昊听,张立勋,王岚.下肢康复训练机器人.应用科技.2004,31(2):3-4页
    [69]朱建瓴,刘成良.人体下肢康复机构设计及运动学仿真.计算机仿真.2007,24(3):145-148页
    [70]Hongbo Wang, Hongtao Liu, Xiaohua Shi, et al. Design and kinematics of a lower limb rehabilitation robot. Proceedings of the 2009 2nd International Conference on Biomedical Engineering and Informatics (BMEI). Tianjin, China,2009:1-4P
    [71]刘洪涛.截瘫患者下肢康复机器人设计与实验研究.燕山大学硕士学位论文.2010:70-75页
    [72]Erhan Akdogan, Ertugrul Tacgin, M. ArifAdli. Knee rehabilitation using an intelligent robotic system. Journal of Intelligent Manufacturing.2009,20(2):195-202P
    [73]Dangxiao Wang, Jiting Li, Chao Li. An Adaptive Haptic Interaction Architecture for Knee Rehabilitation Robot. Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation(ICMA). Changchun, China,2009:84-89P
    [74]Syh-Shiuh Yeha, Hung-Hsiu Yub. Motion Control Design of the Lower-Limb Mobile Training Robot. The IEEE International Conference on Industrial Informatics(INDIN 2008). Daejeon, Korea,2008:904-909P
    [75]Jungwon Yoon, Jeha Ryu, Kil-Byung Lim. Reconfigurable Ankle Rehabilitation Robot for Various Exercises. Journal of Robotic Systems.2006,22:15-33P
    [76]http://www.bdhkf.com/
    [77]吕广明,孙立宁,彭龙刚.康复机器人技术发展现状及关键技术分析.哈尔滨工业大学学报.2004,36(9):1224-1227页
    [78]Alexandre Deneve, Sald Moughamir, Lissan Afilal, et al. Control system design of a 3-DOF upper limbs rehabilitation robot. Comput Methods Programs Biomed.2008, 89(2):202-214P
    [79]孙立宁,何富君,杜志江等.辅助型康复机器人技术的研究与发展.机器人.2006,28(3):355-360页
    [80]VICTOR H.FRANKEL, MARGARETA NORDIN骨骼系统基本生物力学.黄庆森,单文文译.天津:天津科学技术出版社,1986:64-203页
    [81]Victor H.Frankel, Margareta Nordin.骨骼系统的生物力学基础.戴魁戎,王以进,周健等译.上海:学林出版社,1985:117-182页
    [82]顾晓松.人体解剖学.北京:科学出版社,2004:100-110页
    [83]赵玲燕.人体步态模型实验研究.哈尔滨工程大学博士学位论文.2008:48-52页
    [84]潘慧炬,马楚虹,沈水富.人体四肢各主要关节最大运动幅度的研究.浙江师大学报(自然科学版).1995,18(3):64-68页
    [85]朱序璋.人机工程学(第二版).西安:西安电子科技大学出版社,2006:19-26页
    [86]洪炳镕,蔡则苏,唐好选.虚拟现实及其应用.北京:国防工业出版社,2005:124页
    [87]刘静民.中国成年人人体惯性参数国家标准的制定.清华大学博士学位论文.2004:86-88页
    [88]刘静民,仰红慧.人体转动惯量的研究综述.体育科学.2001,21(4):81-86页
    [89]朱玉连,胡永善,谢臻等.脑卒中偏瘫患者规范化综合康复治疗方案研究.中国康复医学杂志.2005,20(1):68-69页
    [90]侯金华.脑血管疾病康复期的护理.齐齐哈尔医学院学报.2008,29(10):1269页
    [91]聂鹏.康复训练对偏瘫患者肢体功能恢复的影响.医药论坛杂志.2003,24(15):76页
    [92]黄永禧.中风偏瘫现代康复治疗.2007中国康复医学会第十届全国脑血管病康复学术会议.2007:78-87页
    [93]王广志.肌肉痉挛定量评估的研究进展.现代康复.2000,4(5):650-652页
    [94]瓮长水,毕胜,徐军等.脑卒中偏瘫患者下肢痉挛与步行速度的关系.中国康复理论与实践.2004,10(4):212-214页
    [95]刘体伟,李世昌.肌肉痉挛发生机制的探讨.辽宁体育科技.2006,28(4):135-136页
    [96]王岚,王婷,王劲松等.人体步态规律测量分析与研究.哈尔滨工程大学学报.2008,29(6):589-593页
    [97]徐力,郭巧,陈海英.虚拟人体运动系统建模方法研究.系统仿真学报.2004,16(8):1789-1793页
    [98]郭斌.基于肌肉功能模型的人机分析系统构建方法研究.浙江大学硕士学位论文.2008:26-30页
    [99]马和中.生物力学导论.北京:北京航空学院出版社,1987:156-157
    [100]B.M.扎齐奥尔斯基,A.C.阿鲁因,B.H.谢鲁扬诺夫.人体运动器官生物力学.吴忠贯,刘荣曾,易先俊译.北京:人民体育出版社,1981:93-100页
    [101]刘雷.人体运动仿真建模方法研究.计算机仿真.2009,26(1):166-168页
    [102]白士红,路敦勇,孔凌嘉等.生物力学与机构学的新发展.机械设计与研究.2002(增刊):71-73页
    [103]黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社,2005:143-146页
    [104]于红英,唐德威,王建宇.平面五杆机构运动学和动力学特性分析.哈尔滨工业大学学报.2007,39(6):940-943页
    [105]韩广才,李鸿,商大中.分析力学.哈尔滨:哈尔滨上程大学出版社,2003:82-84页
    [106]约翰·F·加德纳.机构动态仿真:使用MATLAB和SIMULINK.周进雄,张陵译.西安:西安交通大学出版社,2002
    [107]林成杰,梁娟.脑卒中痉挛状态的康复治疗.中国康复医学杂志.2009,24(2):179-182页
    [108]谢琴编译.痉挛的物理治疗.国外医学·物理医学与康复学分册.2003,23(2):83-86页
    [109]石辛民,郝整清.模糊控制及其MATLAB仿真.北京:清华大学出版社与北京交通大学出版社,2008:99-100页
    [110]张立勋,杨勇,张今瑜等.手臂康复机器人阻抗控制实验研究.哈尔滨工程大学学报.2008,29(1):69-72页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700