康复机器人样机研制及步态控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国因老龄化、交通事故、自然灾害(如汶川、玉树大地震)等因素造成的肢体损伤人数越来越多,及时、科学的康复训练对肢体康复起到极其重要的作用,康复训练机器人在提供持续、定量的康复训练方面有很强的优越性。
     本文研制一种下肢康复训练机器人,可为患者提供平地行走训练、上下楼梯训练、沙地行走训练等多种训练模式,可以满足多种步态训练的需要,具有广阔的市场前景。本文以康复机器人为研究对象,主要研究内容包括康复机器人机构方案和控制方案研究,人体步态测量及康复机器人运动学分析,康复机器人人机系统控制特性分析等,并研制了机器人实验样机,基于DS1103对康复机器人进行了不同路况、不同步速下的轨迹跟踪实验研究。
     在总结国内外下肢康复机器人的基础上,提出了一种康复机器人机构方案,机器人共有六个自由度,分为左步态控制机构和右步态控制机构,并且两者对称,单侧机构又由位置机构和姿态机构组成;通过左、右步态机构之间的运动协调控制,可以帮助使用者做不同路况下的行走训练。
     通过搭建的人体步态测量系统,得到了正常人在上楼梯、平地行走和下楼梯时的步态规律。对康复机器人进行了运动学分析和运动空间分析,将测得的步态轨迹嵌入到机器人的运动空间里,验证了机器人结构参数的合理性,并通过运动学仿真进一步验证了机器人结构方案的可行性。
     应用牛顿-欧拉法,基于MATLAB对康复机器人进行了动力学性能分析。通过列写机器人的运动约束方程和牛顿-欧拉方程,构成了机器人的约束矩阵方程,利用MATLAB工具箱建立了机器人动力学仿真模型,并对机器人跟踪直线和椭圆轨迹进行负载特性分析,为实现机器人的控制及性能改进提供了理论依据。
     对康复机器人人机系统的控制特性进行研究,并通过仿真实验对三种控制策略进行验证。轨迹跟踪控制实现人在平地、上楼梯、下楼梯三种步态的轨迹跟踪,使得轨迹跟踪的快速性、准确性均满足要求;在阻抗控制中研究刚度系数Kd、阻尼系数Bd、惯量系数Md对柔顺性的影响并得到变化规律;研究模拟沙土承压特性控制方法,并验证该方法的可行性和有效性。
     研制康复机器人实验样机,基于DS1103对康复机器人进行了不同路况、不同步速下的轨迹跟踪实验研究。结果表明,机器人实现了人在平地、上、下楼梯三种步态的模拟,步速、步长、承载能力和控制精度均满足康复训练的要求。
There are currently more and more people have physical injury due to aging, accidents, natural disasters, etc., such as Wenchuan Earthquake, Yushu Earthquake. Timely and scientific rehabilitation training played an important role in physical rehabilitation. Rehabilitation training robot had a strong advantage of continuous and quantitative rehabilitation training.
     A kind of lower limbs rehabilitative robot was researched, which had a broad market prospect and can provide several kinds of training models and scenes for the patients, such as going on ground, walking up and down stairs, walking on sand. In this paper, rehabilitative robot was researched. The research mainly included, study on mechanism and controlling scheme of rehabilitative robot, human gait regular measurement, kinematics analysis, human-computer system controlling properties and simulation, etc.. In the meantime, an experimental prototype robot was developed. Based on DS1103, the experimental study on different road conditions and different walking speed of trajectory tracking was carried.
     On the basis of the research results of the lower-limb rehabilitation robot at home and abroad, a kind of rehabilitative robot which had six degrees of freedom was proposed to help the patients walk on different terrains through motor coordination controlling between the left and right gait mechanism. It had two symmetrical gait mechanism both side, each side was made of position and posture mechanism.
     Through the human gait measurement system, the gait regular rules of normal human walking on ground, up and down stairs was achieved. Based on the rehabilitative robot, the kinematics and motion space was analyzed. The measured gait trajectory was embedded in the robot motion space to verify the reasonableness of the robot's structure parameters. The feasibility of robot structure scheme was demonstrated through kinematics simulation.
     With the Newton-Euler method, the dynamics simulation of the rehabilitative robot was analyzed based on the software MATLAB. The motion constraint equation and Newton-Euler equation constituted the restricted matrix equation of the robot. Robot dynamics simulation model was established with MATLAB Toolbox. The straight and elliptical trajectory were tracked respectively to provide the theoretical basis for realization of controlling and performance improvement.
     The control characteristics of the rehabilitative robot's human-machine system were researched, and three kinds of control strategy were validated by simulation experiment. Gaits trajectory tracking was achieved by tracking control, such as going on ground, walking up and down stairs, which making the celerity and accuracy of tracking meet the requirements. In the impedance control the impact to position offset was studied, included the coefficients of stiffness Kd, damping Bd, inertia Md, and got the movement rules. Control methods of simulating sand bearing characteristic were researched, and the feasibility and effectiveness of them were verified.
     The experimental prototype of rehabilitative robot was developed, Based on DS1103 trajectory tracking experiments were done of the rehabilitative robot for different terrains and different walking speed. Results show that the gait simulation of going on ground, walking up and down stairs is certified by the robot and walking speed, step length, carrying capacity and control accuracy all meet the requirements of rehabilitation.
引文
[1]中国人口老龄化发展趋势预测研究报告,2007:2-4页
    [2]张济川,金德闻.我国康复工程事业发展面临的机遇和挑战.中国康复医学杂志,2005,20(4):288-289页
    [3]张济川,金德闻.新技术在康复工程中的应用和展望.中国康复医学杂志,2003,18(6):352-354页
    [4]康复治疗专业技术人才准入标准.中国康复医学杂志,2004,19(6):413-415页
    [5]http://www.most.gov.cn/tztg/t20061001_36446.htm
    [6]Shimizu S, Momose N,Oshima T,ed.Development of robot leg which provided with the bi-articular actuator for training techniques of rehabilitation. Proceedings of the 2009-18th IEEE International Workshop on Robot and Human Interactive Communication.2009,921-926P
    [7]赵春禹,张通,钮竹.平衡训练在脑血管病康复中的机制及问题.中国康复理论与实践,2007,13(8):727-729页
    [8]Krebs H I, Volpe B T, Aisen M L,ed. Increasing productivity and quality of care:Robot-aided neuro rehabilitation. Journal of Rehabilitation Research and Development,2000,37(5):156-164P
    [9]David J, Rares B. Virtual reality-enhanced strocke rehabilitation. IEEE Transaction on neural systems and rehabilitation engineering,2001,9(3): 308-318P
    [10]涂春兰,曾萍,徐海玲.下肢骨折患者早期康复依从性的评估及护理.现代护理,2006,12(16):1525-1526页
    [11]张付祥,付宜利,王树国.康复机器人研究进展.河北工业科技,2005,22(2):100-102页
    [12]杜志江,孙传杰,陈艳宁.康复机器人研究现状.中国康复医学杂志,2003,18(5):293-294页
    [13]Laterz F. Analysis of EMG signals by means of the matched wavelet transform. Electronics Letters,2002,5:357-359P
    [14]Dario P, Guglielmelli E, Laschi C. Humanoids and personal robots:Design and experiments. Journal of Robotic Systems,2004,18(12):673-690P
    [15]杜志江,孙立宁.外科机器人技术发展现状及关键技术分析.哈尔滨工业大学学报,2003,35(7):773-777页
    [16]Prior S D, Warner P R. A review of world rehabilitation robotics research.Colloquium on High-Tech Help for the Handicapped,1999(4):1-3P
    [17]Seo Kap-Ho, Lee Ju-Jang.The development of two mobile gait rehabilitation systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2009,17(2):156-166P
    [18]Lungarella M, Metta G, Pfeifer R, ed.Developmental robotics:a survey. Connection Science,2003,15 (4):151-190 P
    [19]Tobias N, Matjaz M, Gery C, ed.ARMin-Robot for rehabilitation of the upper extremities. Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida,2006:3152-3157P
    [20]Charles S K, Krebs H I, ed. Wrist rehabilitation following stroke:Initial clinical results. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics,2005:13-16P
    [21]Riener R, Nef T, Colombo G. Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing,2005,43(1): 2-10P
    [22]Patten C, Lexell J, Brown H E. Weakness and strength training in persons with poststroke hemiplegia:Rationale, method, and efficacy. Journal of Rehabilitation Research & Development,2004(41):293-312P
    [23]Khalili K, Zomlefer M. An intelligent robotic system for rehabilitation of Joints and rstimation of nody degment parameter. IEEE Transaction on Biomedical Engineering,1998,35(2):138-146P
    [24]Hesse S, Uhlenbrock D.A mechanized gait trainer for restoration of gait. Journal of Rehabilitation Research and Development,2000,37(6),702-703P
    [25]Schmidt H, Sorowka D, Hesse S, ed.Design of a robotic walking simulator for neurological rehabilitation. IEEE International Conference on Intelligent Robots and Systems,2002(2):1487-1492P
    [26]Schmidt H, Piorko F, Bernhardt R, ed.Synthesis of perturbations for gait rehabilitation robots. Proceedings of IEEE International Conference on Rehabilitation Robotics,2005:74-77P
    [27]Pathak P M,Mukherjee A, Dasgupta A. Impedance control of space robot. International Journal of Modelling and Simulation,2006,26(4): 316-322P
    [28]Schmidt H, Sorowka D, Piorko F, ed.Control System for a Robotic Walking Simulator.Proceedings of IEEE International Conference on Robotics and Automation,2004,20(2):2055-2060P
    [29]Jezernik S ed. Robotic orthosis Lokomat:a rehabilitation and research tool. Neuromodulation,2003 (6):108-115P
    [30]Jezernik S, Colombo G, Morari M. Automatic gait-pattern adaptation algorithms for rehabilitation with a 4 DOF robotic orthosis.IEEE Transactions on Robotics and Automation,2004,20(3):574-582
    [31]Ann M, Simon R, Brent G, ed.Symmetry-based resistance as a novel means of lower limb rehabilitation. Journal of Biomechanics.2007,40(6):1286-1292 P
    [32]Jezernik S, Jezernik K, Morari M. Impedance control based gait-pattern adaptation for a robotic rehabilitation device. Proceedings of the Second IFACC onference on Mechatronic Systems,2005:417-421P
    [33]Jezernik S, Morari M. Controlling the human-robot Interaction for Robotic Rehabilitation of Locomotion. In:Proceedings of the Seventh International Workshop on Advanced Motion Control,2006:133-135P
    [34]http://www.lokohelp.net
    [35]http://www.newenglandrehab.com
    [36]Kine A, ed.A robotic over ground gait and balance training device. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics,2005:241-246P
    [37]Patton J L, Brown D, ed.Motility evaluation of a novel over ground functional mobility tool for post stroke rehabilitation. International Conference on Rehabilitation Robotics,2007:1049-1054P
    [38]http://www.balancephysio.com/videos/113/g-trainer-treadmill
    [39]Boian R F,Bouzit M,Burdea G C, ed.Dual stewart platform mobility simulator. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics,2005:550-555P
    [40]Nigel W.Tierney, Jessica Crouch, Hector Garcia.Virtual Reality in Gait Rehabilitation. Journal of Biomechanics,2007,40(2):208-211P
    [41]http://altacro.vub.ac.be/info/project.htm
    [42]Furusho J. Mechatronics system using ER fluids. Journal of Japan Hydraulics and Pneumatic Society,2003,32(6):390-395P
    [43]http://intron.kz.tsukuba.ac.jp/gaitmaster/gaitmaster_e.html
    [44]Yoon J w, Ryu J. A novel locomotion interface with independent planar and footpad devices for virtual walking. International Journal of Robotics Research,2006,25(7):689-708P
    [45]胡宇川.偏瘫上肢复合运动康复训练机器人的研制.清华大学工学硕士学位论文.2004:9-11,25-33页
    [46]任宇鹏.辅助上肢运动功能康复机器人的控制和评价系统研究.清华大学工学硕士论文.2004:16-22页
    [47]王婷.减重式步态康复训练机器人控制及实验研究.哈尔滨工程大学硕士论文.2008:15-19页
    [48]颜庆.下肢康复机器人控制及实验研究.哈尔滨工程大学硕士学位论文.2004:14-15页
    [49]魏丹.基于Internet的肢体康复训练机器人远程控制系统.哈尔滨工程大学硕士学位论文.2007:14-16页
    [50]钱振美.卧式下肢康复机器人的研究,哈尔滨工程大学硕士学位论文.2006:55-57页
    [51]胡伟佳.被动式步态康复训练器的设计与研究.哈尔滨工程大学硕士论文.2007:17-18页
    [52]孙建,余永等.可穿戴型下肢助力机器人感知系统研究.微纳电子技术,2007(7):353-357页
    [53]王东岩,李庆玲等.外骨骼式上肢康复机器人及其控制方法研究.哈尔滨工程大学学报,2007,28(9):1008-1013页
    [54]http://me.sjtu.edu.cn/xueshengyuandi_contact.asp?id=147
    [55]http://search.sipo.gov.cn/sipo/zljs/hyjs-jieguo.jsp?flag3=1&sign=0
    [56]http://search.sipo.gov.cn/sipo/zljs/hyjs-yx-new.jsp?recid=CN200710171696.4 &leixin
    [57]Parasuraman S, Oyong A W, Ganapathy V. Development of robot assisted stroke rehabilitation system of human upper limb.2009 IEEE International Conference on Automation Science and Engineering,2009:256-261P
    [58]Furuhashi Y, Nagasaki M, Aoki T, ed.Development of rehabilitation support robot for personalized rehabilitation of upper limbs.2009 IEEE International Conference on Rehabilitation Robotics,2009:787-792P
    [59]Parasuraman S, Zhen C C S.Development of robot assisted hand stroke rehabilitation system. Proceedings-2009 International Conference on Computer and Automation Engineering,2009:70-74P
    [60]Roy A, Krebs H I, Williams D J, ed.Robot-aided neurorehabilitation:A novel robot for ankle rehabilitation. IEEE Transactions on Robotics,2009,25(3): 569-582P
    [61]程方,王人成,贾晓红等.减重步行康复训练机器人研究进展.康复医学工程,2008,23(4):366-368页
    [62]Bradley D, Acosta-Marquez C, Hawley M, ed. NeXOS-The design, development and evaluation of a rehabilitation system for the lower limbs. Mechatronics,2009,19(2):247-257
    [63]韩雯,常钧.现代康复工程的发展概述.医疗装备,2007,20(4):13-15页
    [64]Cikajlo I, Matjacic Z.Virtual reality tasks to enhance the therapeutic options of the single-joint rehabilitation robot.2009 IEEE International Conference on Rehabilitation Robotics,2009:966-971P
    [65]Tong Xiang-qian,Shen Ming,Chen Gui-liang.Impedance control characteristic of active reactor.Journal of Xi'an University of Technology,2007,23(1): 25-28P
    [66]Pathak P M, Mukherjee A, Dasgupta A. Impedance control of space robot.International Journal of Modelling and Simulation,2006,26(4): 316-322P
    [67]XIAO Shu-jun, CHEN Chang-fu. Mechanical mechanism analysis of tension type anchor based on shear displacement method.J Cent South Univ Technol,2008,15(1):106-111P
    [68]Beyl P, van D M, van H R, ed. Design and control of a lower limb exoskeleton for robot-assisted gait training. Applied Bionics and Biomechanics,2009,6(2): 229-243P
    [69]Wang Yan-fei, Zhu Wei-bing, Li Na.Gait planning and simulation of ROBONOVA-1 robot.2009 2nd International Conference on Intelligent Computing Technology and Automation,2009(3):411-414P
    [70]冯国良,严利.一种新型PID控制算法及其仿真分析.重庆科技学院学报,2006(9):77-79页
    [71]Jiang Liang-Zhong, Yang Jin, Yang Zhi, ed.Design proposal for robot servo system based on MatlabRTW.Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science),2008,36(9):136-139P
    [72]Ren Zhi-Bin, Yu Zhong-An, Liang Jian-Wei.Study and implementation on high accuracy servo system for robot joint.2009 Chinese Control and Decision Conference,2009:1673-1676P
    [73]Huang Jian-bin, Xie Zong-wu, Jin Ming-he, ed. Hong Liu. Adaptive Impedance-controlled Manipulator Based on Collision Detection.Chinese Journal of Aeronautics,2009,22(1):105-112P
    [74]李趁前.手臂康复训练机器人系统控制研究,哈尔滨工程大学硕士学位论文.2008:15页
    [75]Hogan N.Impedance Control of Industrial Robots.Journal of Robotic and Computer Integrated Manufacturing,1984,1(1):107-113P
    [76]Hogan N.Impedance Control An Approach To Manipulation:Part 1-theory,Part 2-implementation,Part 3-Aplcation. J. Dyn Sys Meas Cont,1985:21-24P
    [77]Mohammad M.Optimization-Based robot Impedance control. Queen's University requirements for the degree of Master Science,2004:18-22P
    [78]张克健.车辆地面力学.北京:国防工业出版社,2002:156-178页
    [79]WONG J Y, Reece A R.Prediction of rigid wheel performance based on the analysis of soil wheel stresses.Journal of Terramechanics(Part Ⅰ),1967,4(1): 81-98P
    [80]Kong K, Tomizuka M.A gait monitoring system based on air pressure sensors embedded in a shoe. IEEE/ASME Transactions on Mechatronics,2009,14(3): 358-370P
    [81]Bae J, Kong K, By N; Tomizuka M.A mobile gait monitoring system for gait analysis.2009 IEEE International Conference on Rehabilitation Robotics,2009: 73-79P
    [82]王岚,王婷,王劲松等.人体步态规律测量分析与研究.哈尔滨工程大学学报,2008,29(6):589-593页
    [83]Zhang Li-xun, Wang Jin-song, Wang Lan, ed. Experimental research on human gait measurement.2007 IEEE International Conference on Robotics and Biomimetics,2008:167-171P
    [84]Pan G, Zhang Y, Wu Z.Accelerometer-based gait recognition via voting by signature points.Electronics Letters.2009,45(22):116-1118P
    [85]陈勇,佟金,陈秉聪.黄牛在松软地面行走步态的逆向动力学分析.农业机械学报,2007,38(10):165-169页
    [86]http://www.ccaowei.com/index.htm
    [87]Kim Byounghyun, Han Youngjoon, Hahn Hernsoo.Lower energy gait pattern generation in 5-Link biped robot using image processing.Proceedings of World Academy of Science, Engineering and Technology,2009,38:547-554P
    [88]王凤良.步态训练机器人机构设计及仿真研究,哈尔滨工程大学硕士学位论文.2009:12-13页
    [89]Echeverria J C, Rodriguez E, Velasco A, ed. Limb dominance changes in walking evolution explored by asymmetric correlations in gait dynamics. Physica A:Statistical Mechanics and its Applications,2010,389(8): 1625-1634P
    [90]Vundavilli P R, Pratihar D K.Dynamically balanced optimal gaits of a ditch-crossing biped robot. Robotics and Autonomous Systems,2010,58(4): 349-361P
    [91]Lin Yi-Chung, Walter J P, Banks S A, ed.Simultaneous prediction of muscle and contact forces in the knee during gait.Journal of Biomechanics,2010, 43(5):945-952P
    [92]Kim Chan-Young, Sin Bong-Kee.human gait analysis using Self Organizing Map.Proceedings of the 2009 Chinese Conference on Pattern Recognition, 2009:888-891P
    [93]张瑞红,金德闻,张济川等.不同路况下正常步态特征研究.清华大学学报,2000,40(8):77-80页
    [94]杨年峰.人体运动协调规律及其参数化描述,申请清华大学工学博士学位论文.2001:59-62页
    [95]Ho Meng-Fen, Chen Ke-Zen, Huang Chung-Lin.Gait analysis for human walking paths and identities recognition. Proceedings-2009 IEEE International Conference on Multimedia and Expo,2009:1054-1057P
    [96]Chen Meng, Yan Jing-yu, Xu Yang-sheng.Gait pattern classification with integrated shoes.2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,2009:833-839P
    [97]张立勋,董玉红.机电系统仿真与设计.哈尔滨:哈尔滨工程大学,2006:30-50页
    [98]Feng Zhi-you, Jin Guo-guang, Zhang Ce, ed. Inverse dynamic simulation of the limited-DOF parallel mechanism. Proceedings of the 27th Chinese Control Conference,2008:336-340P
    [99]Wang Li-ping, Wu Jun, Wang Jin-song.Dynamic formulation of a planar 3-DOF parallel manipulator with actuation redundancy. Robotics and Computer-Integrated Manufacturing,2010,26(1):67-73P
    [100]Eich Markus, Grimminger Felix, Kirchner Frank.Adaptive compliance control of a multi-legged stair-climbing robot based on proprioceptive data. Industrial Robot,2009(36)4:331-339P
    [101]http://www.sh-xinkuan.com
    [102]http://www.dspace.de/ww/zh/zho/home/products/hw/singbord/ppcconbo.cfm? nv=bc

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700