步态训练机器人控制及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将机器人辅助治疗技术引入到康复训练中,已经逐渐发展成为国内外热门课题之一。步态训练机器人属于康复机器人领域,可以模拟正常人在不同路况下的行走步态,帮助病人进行下肢康复训练。课题主要研究了机器人系统伺服控制技术,因此更具有实际应用意义。
     本文从国内外下肢康复训练机器人的发展现状及应用、机器人机构设计和控制模式等方面,分析了机器人辅助下肢运动功能康复的可行性和方法的实现,具体研究如下:
     本文依据步态训练机器人的应用对象和步态康复理论,确定了机器人的设计目标和控制系统方案。在实际测量步态轨迹的基础上,采用三次样条插值法进行了机器人三种基本步态的轨迹规划,包括平地行走步态、上楼梯步态和下楼梯步态,并对三种步态进行了运动学仿真验证。应用MATLAB/Si-mMechanics进行了步态训练机器人的动力学分析,并在分析动力学数据、人体步态和系统非线性因素的基础上,确定了步态训练机器人的控制算法和策略,建立系统的控制模型,并进行了轨迹控制仿真研究。
     基于理论研究,利用dSPACE实时仿真平台进行了步态训练机器人的半物理仿真设计。将步态训练机器人系统引入控制回路,将位置初始化模型、限位保护模型、各种训练模式的控制模型等转化为Simulink与RTI联系的仿真模型,并令其成为相对独立的模块,确定各模块间的相互关系,同时对关节伺服系统进行了模型辨识。此后,对正常人进行了机器人辅助训练的实验。分别对各种训练模式进行实验研究,并验证轨迹规划的合理性;实时调整控制参数,监测得到机器人系统的运动信息,对实验结果进行分析和评价,实验结果验证了系统控制方案的可行性和正确性。
The therapy technology of rehabilitation aided by robot has gradually become one of the hottest subjects at home and abroad. Gait training robot belongs to rehabilitative robot, and can simulate the walking gait of normal human on different road conditions to help patients take lower limbs rehabilitative training. The project mainly focused on the servo control technology of gait training robot, and the research is practical.
     This paper systematically overviews the development situation and application of the lower limbs rehabilitation robot. Together with the mechanism design and control mode, it analyzes the feasibility of the aided-robot for lower -limb-motor rehabilitation and the way to realize it. The concrete researches are as follows:
     According as the application objects and gait rehabilitation theory, the design target and the control system scheme were confirmed. Three kinds of gait orbits to this robot were planed adopting cubic spline method based on the measured orbits, including normal gait, upstairs gait and downstairs gait, and they were validated through kinematics simulation. Dynamics analysis was carry out through MATLAB/SimMechanics, and the control algorithm and the strategy of rehabilitation robot were confirmed based on the analysis of dynamics data, gaits and system nonlinearity, and the control model was established, and the simulation of trajectory tracking control was carried out.
     Based on the dSPACE real-time platform, The HIL simulation was designed according to the theoretical research. Here the robot system was located in the control loop. Position initialization model, limit protecting model, control model actualizing all kinds of training modes were all translated into the simulation models. These models were independent to each other and related the Simulink with the RTI, and the system was identified.
     Finally, through training the healthy subjects by robot, all kinds of training modes were researched, and the orbits were validated. With the control parameters momentarily adjusted and the feedback information, the results of the experiments were attained. Then the results were analyzed and estimated, and the feasibility of the control system scheme was validated.
引文
[1]张济川,金德闻.我国康复医学工程事业发展面临的机遇和挑战.中国康复医学杂志.2005,20(4):288-289页
    [2]寄婧,王兴武,杨瑞芳.被动训练对脑卒中恢复期患者运动功能的影响.中国临床康复.2003,7(16):2380页
    [3]金德闻,季林红,张济川.康复工程研究的新进展.中国康复医学杂志.2001,16(6):328-330页
    [4]张付祥,付宜利,王树国.康复机器人研究进展.河北工业科技.2005,22(2):100-105页
    [5]PRIOR S D,WARNER P R.A review of world rehabilitation ro-botics research.Colloquium on High-Tech Help for the Handicapped,1990,(4):1-3P
    [6]Banala,S.K.,Agrawal,S.K..Gait Rehabilitation with an Active Leg Othosis.In:Proceedings of IDETC/CIE 2005,ASME 2005,International Design Engineering Technical Conferences and Computers and Information in Engineering,Long Beach,California,USA,2005(74):102-108P
    [7]Hesse Stefan,Uhlenbrock,Dietmar.A mechanized gait trainer for restoration of gait.Journal of Rehabilitation Research & Development,2000,37(6):701P
    [8]Henning Schmidt,Cordula Werner,Rolf Bernhardt,Stefan Hesse.Gait rehabilitation machines based on programmable footplates.Journal of Neuro Engineering and Rehabilitation,2007(2):25-28P
    [9]H.Schmidt,D.Sorowka,S.Hesse,R.Bernhardt.Robotic Walking Simulator for Neurological Gait Rehabilitation.EMBS/BMES Conference,2002(3):2356-2357P
    [10]Henning Schmid,Stefan Hesse,Rolf Bernhardt,J(o|¨)rg Kr(u|¨)ger.HapticWalker-A Novel Haptic Foot Device ACM Transactions on Applied Perception. 2005, 2(2): 166-180P
    [11] A. Fattah, S.K.Agrawal. Gravity Balancing Rehabilitative Robot for the Human Legs.Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE, 2004(4): 2695 - 2698P
    [12] Jungwon Yoon, Jeha Ryu. A Novel Locomotion Interface with Independent Planar and Footpad Devices for Virtual Walking. Computer Human Interaction. 6th Asia Pacific Conference, APCHI, 2004: 560 -569P
    [13] S.Moughamir, N. Manamanni, M.A. Gasmi, J. Zaytoon. On Gravity Correction for Training and Rehabilitation Lower Limbs Machine. Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference, 2005: 6721 - 6724P
    [14] Hesse Stefan, Schmidt Henning, Werner Cordula. CordulaMachines to support motor rehabilitation after stroke: 10 Years of experience in Berlin. Journal of Rehabilitation Research and Development, 2006, 43(5): 671-678P
    [15] Catherine E. Bauby, Arthur D. Kuo. Active control of lateral balance in human walking. Journal of Biomechanics, 2000, 33(11): 1433-1440P
    [16] Colombo Gery (Univ Hospital Balgrist), Joerg Matthias, Schreier Reinhard, Dietz Volker. Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, 2000, 37(6): 693-700P
    [17] Emken, J.L Reinkensmsyer, D.J. Adapting with smaller errors: A robotic motor training strategy that assists only as needed. Society for Neuroscience, Washington D.C, 2005: 56-70P
    [18] Kathryn J. Siranosian, M. S. Unique Combination of Body-Weight Supported Ambulation And Robotics Helps Patients Recover Natural Walking Motion. Special Hospital Feature, 2006: 43-47P
    [19] J. Furusho. Mechatronics system using ER fluids(review paper). Japan Hydraulics and Pneumatic Society, 2001(6): 390-395P
    [20]Judith E.Deutsch,Jason Latonio,G.Burdea and R.Boian.Post-stroke Rehabilitation with the Rutgers Ankle System-A Case Study.Presence:Teleoperators & Virtual Environment,2001(4):416-430P
    [21]http://www.pim.tsinghua.edu.cn/units/shejisuo/REC/area/link3.htm
    [22]吕广明,孙立宁,彭龙刚.康复机器人技术发展现状及关键技术分析.哈尔滨工业大学学报.2004,36(9):1224-1227,1231页
    [23]周柳,王英华,刘强.虚拟现实技术在运动康复中的应用.中国组织工程研究与临床康复.2007,11(5):957-960页
    [24]魏丹.基于Internet的肢体康复训练机器人远程控制系统.哈尔滨工程大学学位论文.2007:14-16页
    [25]胡宇川,季林红.一种偏瘫上肢复合运动的康复训练机器人.机械设计与制造.2004(6):47-49页
    [26]张立勋,董玉红.机电系统仿真与设计.哈尔滨工程大学出版社,2006:201-205页
    [27]MobriA,Marushima S and Yamamoto M.Collision free trajeetory Planning for manipulator using Potential funetion.Robot and Automation,1995:3069-3074P
    [28]张凯,刘成良,付庄,曹其新.6R机器人轨迹规划及其在焊接中的应用.机械设计.2002,19(10):20-23页
    [29]王仲民,崔世钢,岳宏.机器人关节空间的轨迹规划研究.机床与液压.2005(2):63-64,84页
    [30]王鲁敏,李艳文,基于Matlab的教学型机器人空间运动轨迹仿真.机械与电子.2005(9):55-57页
    [31]易大义,沈云宝,李有法.计算方法.浙江:浙江大学出版社,2002:55-63页
    [32]许小勇,钟太勇.三次样条插值函数的构造与MATLAB实现.兵工自动化.2006,25(11):76-78页
    [33]陈文略,王子羊.三次样条插值在工程拟合中的应用.华中师范大学学报.2004,38f4):418-422页
    [34]王婷.减重式步态康复训练机器人控制及实验研究.哈尔滨工程大学硕士论文.2008:26-28页
    [35]罗家佳,胡国清.基于MATLAB的机器人运动仿真研究.厦门大学学报.2005,5(44):640-644页
    [36]董玉红,张立勋.基于双超越离合器和SimMechanics的合作机器人建模及仿真.哈尔滨工程大学学报.2005,26(5):596-602页
    [37]徐梓斌,闵剑青,黄小莹,沈国珍.基于MATLAB的单缸内燃机曲柄连杆机构动力分析.现代机械.2004(3):46-48页
    [38]李素敏,王杰,宋北光.一种改进的PID控制算法.控制系统.2006(09S):40-41,220页
    [39]温淑焕.不确定性机器人力/位置智能控制及轨迹跟踪实验的研究.燕山大学工学博士学位论文.2005:3-7页
    [40]Kiguchi,Kazuo,Watanabe.Two-stage adaptive robot position/force control using fuzzy reasoning and neural networks.Advanced Robotics,2000,14(3):153-168P
    [41]J.J.E.Slotine and W.Li On the adaptive control of robot manipulaters.IntJ.Robotics Research,1997,6(3):49-59P
    [42]张今瑜,王岚,张立勋.基于多传感器的实时步态检测研究.哈尔滨工程大学学报.2007,28(2):218-221页
    [43]张瑞红,金德闻,张济川.不同路况下正常步态特征研究.清华大学学报.2000,40(8):77-80页
    [44]杨年峰.人体运动协调规律及其参数化描述.清华大学博士学位论文.2001:25-27页
    [45]张晓超,张立勋,赵凌燕.一种下肢康复训练机器人足底力检测方法.哈尔滨工程大学学报.2007,28(4):447-451页
    [46]吴进华,刘洪兴,史贤俊.dSPACE仿真平台的实时仿真原理研究及其应用.电子测量与仪器学报.2004,18(z2):720-724页
    [47]潘峰,薛定宇,徐心和.基于dSPACE半实物仿真技术的伺服控制研究与应用.系统仿真学报.2004,16(5):936-939页
    [48]夏娟,周治平,纪志成.基于dSPACE电气传动控制系统的在线仿真.微特电机.2004,32(5):27-30页
    [49]田广来,谢利理.航空机轮刹车系统的半实物仿真实现.航空精密制造技术.2006,42(3):28-30,34页
    [50]田友明,戴先中,王新.基于dSPACE的感应电动机矢量控制系统.电气时代.2006(2):43-46,50页
    [51]张立勋,董玉红,王怀军.基于半物理仿真技术的机电伺服系统模型辨识研究.机电一体化.2006,12(2):30-32页
    [52]潘峰,张云洲,薛定宇,徐心和.微型足球机器人伺服控制实时仿真系统研究.系统仿真学报.2006,18(6):1601-1604页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700