偏瘫上肢复合运动康复训练机器人的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将机器人辅助治疗技术引入到偏瘫康复训练中,已经逐渐成为国内外热门课题之一。该技术不仅可以满足不同患者的训练要求,而且可以制定出更为客观的康复评价指标,从而为更加深入了解中枢神经康复规律提供了可能。本文就是对机器人用于偏瘫患者上肢复合运动康复训练的相关技术进行研究。通过机器人辅助患者康复治疗,从而找到一种更为有效的治疗方法,制定出基于机器人的定量的康复评价指标,为最终实现机器人辅助康复训练和评价的闭环体系奠定了基础。为此,本文主要进行了如下工作:
    1、依据偏瘫康复理论和实际临床康复训练方法,确定了机器人的设计目标为辅助患者进行多关节、大幅度的复合运动训练,其运动域应涵盖正常人上肢全部运动范围,在能实现主动、被动、抗阻、助力这四种基本训练模式的基础上,要求机器人系统具有尽可能多的康复运动训练功能,并能及时、准确地采集到训练中患者的运动功能参数,为建立康复定量评价体系提供依据。
    2、将整个机器人系统分为若干个相对独立的模块,主要包括机构模块、控制模块和数据采集模块等,确定了各模块之间的相互关系、主要功能以及具体实现方法。
    3、对机器人系统中的关键技术进行了研究和论述,包括用机器人运动学理论来论证和解算操作臂的运动域;根据机器人控制系统的特点和优势,确定在训练平面内实现力场控制的方法,并设计四种康复训练模式的具体实施策略。
    4、通过机器人辅助正常人进行训练的实验,初步论证了机器人辅助康复训练的可行性,并通过对机器人所采集到的数据进行处理和分类,确定了在不同训练模式下可用于评价运动功能的量化指标。
    5、通过机器人辅助患者进行康复训练的实验,说明了机器人辅助训练存在一定的治疗效果,并且基于机器人做出的评价结果能够反映出不同患者间,以及同一患者在不同康复时期的运动功能差异。
The therapy technology of hemiplegia rehabilitation aided by robot is becoming one of the hot native and abroad subject gradually. By this technology, not only the requirements for the different patients’ training can be satisfied, but also a more objective rehabilitation estimation criterion can be set down and the probability of a more in-depth study for neuro-rehabilitation can be offered. In this paper, we study the correlative technology of using robot to hemiplegia rehabilitation training for upper-limb multiple-motion. By robot aiding patients in rehabilitation therapy, we can find a more effective therapy method, establish the quantitative rehabilitation estimation criterion, and forms a solid base for finally realization of a close-loop therapy system. The main results in this dissertation are as follows:
    1. According as the hemiplegia rehabilitation theory and the actual clinic rehabilitation training method, it is confirmed that the main design purpose for the robot is to aid patients in large-scale, multi-joint multiple-motion training, and the robot’s motion region can cover the total area where the healthy people’s upper-limb can move. The robot system can not only realize four kinds of basic training mode, including initiative motion mode, passiveness motion mode, resistance motion mode and assistant motion mode, but also have additional rehabilitation motion training function as many as possible. In order to offer the evidence for establishing the quantitative rehabilitation estimation system, the robot can manage to exactly record the patients’ motion function parameters during the training in time.
    2.The whole robot system is divided into several relative independent modules, including machine module, control module, data record module, etc. And we confirm the correlativity between the different modules, the modules’ main function and the material realization method.
    3. The key technologies of the robot system are researched and presented, including using the robot kinematics theory to demonstrate and calculate the motion
    
    
    region of robot’s operation arm, confirming the control method of the force field in a plane according to characters and advantages of the robot control system, and designing the material actualization strategy for the four rehabilitation training mode.
    4. Through training the healthy subjects by robot, the feasibility of rehabilitation training with robot’s aid is proved elementarily. After processing and classification to the data recorded by robot, the quantificational index used to estimate motion functions for different training mode is established.
    5. Through training the hemiplegia patients by robot, it is demonstrated that the training aided by robot have definite therapy effect. And the estimate result made by robot can show the motion function difference between the different patients and one patient in different rehabilitation period.
引文
史玉泉. 神经病学新理论与新技术. 上海:上海科技教育出版社,1998
    张子明. 中风临床指南. 北京:中国医药科技出版社,1993
    Krebs H I, Volpe B T, Aisen M L, Hogan N. Increasing productivity and quality of care: robot-aided neuro-rehabilitation. Journal of Rehabilitation Research and Development, 2000, 37(6): 639-652
    Lum P S, Reinkensmeyer D J, Lehman S.L. Robotic assist devices for bimanual physical therapy: preliminary experience. IEEE Transactions on Rehabilitation Engineering, 1993, 1(3): 185-191
    Reinkensmeyer D J, Lum P S. A bimanual therapy robot: controller design and prototype experiments. Proceedings of the Annual Conference on Engineering in Medicine and Biology, 1993, 15: 938-939
    Lum P S, Lehman S L, Reinkensmeyer D J. The bimanual lifting rehabilitator: an adaptive machine for therapy of stroke patient. IEEE Transaction on Rehabilitation Engineering, 1995, 3(2): 166-174
    Reinkensmeyer D J, Kahn L E, Averbuch A, et al. Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM guide. Journal of Rehabilitation Research and Development, 2000, 37(6): 653-662
    Hogan N, Krebs H I, Charnnarong J, Srikrishna P, Sharon A. MIT-MANUS: A Workstation for Manual and TrainingⅠ. IEEE International Workshop on Robot and Human Communication. 1992, 161 –165
    Krebs H I, Hogan N, Aisen M L, Volpe B T. Robot-aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering, 1998, 6(1): 75-87
    Burgar C G, Lum P S, Shor P C, Van der Loos H F M. Development of robot for rehabilitation therapy: The PALO Alto VA/Stanford experience. Journal of Rehabilitation Research and Development, 2000, 37(6): 663-673
    Lum P S, Burgar C G., Kenney D E, Van der Loos H F M. Quantification of force
    
    
    abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Transaction on Rehabilitation Engineering, 1999, 46(6): 652-662
    Dijkers M, deBear P, Patti C. Patient and staff acceptance of robotic technology in occupational therapy: A pilot study. Journal of Rehabilitation Research & Development. 1991, 28(2): 33-44
    徐国崇,李俐俐. 偏瘫康复的理论与实践(续三)——偏瘫康复的理论基础. 现代康复. 2001, 5 (6): 10-16
    缪鸿石. 中枢神经系统(CNS)损伤后功能恢复的理论(一). 中国康复理论与实践, 1995, 1(1): 1~4
    朱镛连. 神经康复学. 北京:人民军医出版社, 2001: 1-335
    缪鸿石. 中枢神经损伤后功能恢复的理论. 中国康复, 1998, 13(3): 97~99
    缪鸿石. 中枢神经系统(CNS)损伤后功能恢复的理论(二). 中国康复理论与实践, 1996, 2(1): 1~5
    缪鸿石. 中枢神经损伤后功能恢复的理论(续). 中国康复, 1998, 13(4): 145-147
    Miltner W H, Bauder H, Sommer M, Dettmers C, Taub E. Effect of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke, 1999, 30: 586-592
    Taub E, Uswatte G, Pidikiti R. constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation——a clinical review. Rehabilitation of research and development, 1999, 38(3): 237-251
    Page S J, Sisto SueAnn, Levine P, et al. Modified constraint induced therapy: a randomized feasibility and efficacy study. Rehabilitation of research and development, 1999, 38(5): 583-590
    Butefisch C, Hummelsheim H, Denzler P, et al. Repetitive training of isolated movement improves the outcome of motor rehabilitation of centrally paretic hand. Journal of the neurological science, 1995, 130: 59-68
    陈彦洪. 偏瘫治疗与家庭康复. 北京:北京科学技术出版社,1997
    燕铁斌. 现代脑卒中康复及21世纪展望. 现代康复, 1999, 3(11): 1338-1341
    
    卓大宏. 中国康复医学. 北京:华夏出版社,1990. 314-320
    黄松波, 王茂斌. 急性脑卒中偏瘫的康复评价(续二). 现代康复, 1999, 3(3): 262-263
    沈钺. 脑卒中的康复治疗. 国外医学护理学分册, 2000, 19(11): 510-512
    缪鸿石. 中枢神经系统(CNS)损伤后功能恢复的理论(八). 中国康复理论与实践, 1997, 3(3): 97-107
    Taub E, Miller n, Novack T, et al. Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation, 1993, 74(4): 347-354
    史绍蓉. 多关节肌在上肢动作中的作用. 益阳市专学报. 1994, 11: Vol.11, No.6: 67-69
    赵钛,李恩江. 现代偏瘫治疗学. 北京:人民军医出版社,1996
    周士枋. 实用康复医学. 南京:东南大学出版社,1990
    南登昆,缪鸿石. 康复医学. 北京:人民卫生出版社,1993
    Turner-Stokes L, Jackson D. Shoulder pain after stroke: a review of the evidence base to inform the development of an integrated care pathway. Clinical Rehabilitation, 2002, 16: 276–298
    Reinkensmeyer D J. Rehabilitators. In: Kutz M, eds. Standard handbook of biomedical engineering & design, Milan: McGraw-Hill, 2003: 35.1–35.17
    Reinkensmeyer D J, Hogan N, Krebs H I, et al. Rehabilitators, robots, and guides: new tools for neurological rehabilitation. In: Winter J M and Crago P E, eds. Biomechanics and neural control of movement. New York: Springer-Verlag, 2000. 516-533
    任宇鹏,王广志. 机器人辅助运动功能康复中的控制和评估策略. 机器人技术与应用. 2003,4: 40-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700