复杂海况下新型水下航行器设计与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代自主式水下航行器是一个能在复杂海洋环境下执行各种军民用任务的智能化无人平台,能够较好地满足科学研究、军事行动和商业应用等需求,充分开发和利用海洋资源。随着使命需求的不断复杂化和多样化,水下航行器正朝着系统化、多功能化及集群技术方向发展。现有功能单一的水下航行器已无法满足目前任务需求的变化,更重要的是复杂海况下水下航行器的设计理论也亟待进一步完善,以适应水下航行器的概念设计,保证多功能水下航行器具有抵抗环境扰动、机动灵活地完成各种任务的能力。因此,复杂海况下多运动态新型水下航行器的总体设计及相应关键技术问题的研究对于推进我国自主式水下航行器的发展具有重要的理论意义和工程应用价值。本文密切追踪自主式水下航行器的国际发展前沿,以小型化、模块化、经济性和可靠性为设计目标,研制了一种具有水下矢量推进航行、海底着陆坐底、地面轮式行驶和地面爬行功能的多运动态新型水下航行器,并针对其在复杂海况下的运动学与动力学、航行控制以及绕流场特性等若干关键理论问题进行了系统深入地研究,为进一步制作试验样机提供了重要的理论依据和技术指导。概括起来,论文的主要成果有以下几个方面:
     (1)提出了多运动态新型水下航行器的总体设计方案。采用主附体可分离的总体结构,分别设计了升沉系统、矢量推进装置、测量和通讯模块、操纵模块以及控制系统,并详细分析了其系统结构及工作原理,保证了新型水下航行器具有水下矢量推进航行、海底着陆坐底、地面轮式行驶和地面爬行的多动态功能。其中活塞式升沉系统完成重力与浮力的分布调节,矢量推进装置实现轮、腿、推进和航向控制四种功能的完全统一,测量与通讯模块应用经济性设计的复用调节系统,操纵模块采用正交设计和传动精度高的齿轮传动机构,控制系统采用分布式控制系统结构。该新型水下航行器采用舵和矢量推进器联合进行航向控制,实现了高、低速下不同航向控制方式的多种运动模式。其各主要功能机构的创新性设计和运动学分析表明,所设计的新型水下航行器完全符合设计目标和功能要求。
     (2)研究了新型轮式螺旋桨的参数化设计及其力学性能。螺旋桨是一种特殊的复杂曲面零件,根据其结构特点和工艺要求定义参数化变量,推导出螺旋桨叶切面局部坐标系到全局坐标系的坐标转换公式。采用Matlab编程技术解决将不同图谱形式提供的叶切面几何参数应用到三维CAD建模过程的问题。通过Solidworks软件曲面放样、曲面缝合和曲面加厚等命令完成复杂曲面螺旋桨的实体造型。两种形式螺旋桨图谱的造型实例表明,螺旋桨参数化设计过程简单实用、提高了系列螺旋桨的生成效率。在此基础上,运用计算流体动力学(CFD)理论,采用分区混合网格方案,将RANS方程分别与标准k-ε、标准k-w及RSM三种湍流模型相结合探索了螺旋桨粘性流场的数值计算方法。通过DTMB4119桨、DTRC3745桨和D4-70桨敞水性能预报值与试验数据的对比,验证了螺旋桨造型方法的准确性和其敞水性能数值计算方法的正确性。其中,DTMB4119桨的敞水性能计算值中,RSM、标准k-ε和标准k-w模型的最大误差分别为5.47%、7.41%和11.21%,这表明RSM湍流模型更适合螺旋桨粘性流场的数值计算,且具有较高的预报精度,为复杂旋转机械粘性流场计算中湍流模式的选取提供了参考意见。通过对螺旋桨粘性流场计算结果的分析,给出了螺旋桨粘性流动所特有的流动分离、梢涡的形成与结构以及尾流场等一些重要现象和特征,为新型高效螺旋桨的设计提供了理论指导。在导管螺旋桨和梢载螺旋桨(CLT)特性分析的指导下,通过一系列螺旋桨的敞水性能计算与对比,提出了一种具有推力大、结构强度高、流体动力性能稳定及抗桨叶颤振等优点的新型轮式螺旋桨(WPD4-70)设计方案,突破了螺旋桨功能单一的设计瓶颈。为保证新型水下航行器着陆行驶的安全性和稳定性,通过有限元方法对WPD4-70进行非线性屈曲分析得到了其最大许用载荷为3975N。同时,对WPD4-70进行的模态分析得到了其固有频率和振型,各阶固有频率均小于模型Ⅳ的相应值,这表明在行驶状态下其隔振能力得到增强。从前四阶振型图看,一阶振型(主振型)表现为桨叶的扭曲,其余振型则表现为轮边的径向伸缩。最终设计的WPD4-70具有较好的敞水性能和强度特性,完全满足新型水下航行器的多运动态功能要求。
     (3)研究了复杂海况下新型水下航行器的非线性动力学问题。根据新型水下航行器的结构特点和运动特性,运用欧拉角法建立了六自由度运动学模型。采用四元数法解决了欧拉角法中奇异点(纵倾角θ=±90)影响任意姿态角运动仿真问题。基于随机波浪理论,分别基于牛顿第二定律和拉格朗日方法建立了复杂海况下新型水下航行器的六自由度非线性动力学模型,两种理论方法所推导的动力学模型完全一致,验证了数学模型的正确性。在此基础上,建立了新型水下航行器复杂海况下低频运动和高频运动的数学模型。采用四阶五级龙格-库塔积分算法进行动力学方程求解,不仅可以模拟航行器巡航、悬停等运动模式,还可以描述航行器的低频和高频运动状态,解决了复杂海况下新型水下航行器的耦合非线性空间运动方程运算难和显示难的问题。通过新型水下航行器无环境干扰条件下空间运动性能的计算以及有环境干扰条件下位姿信号的分析,进一步验证了其运动学和动力学模型的有效性,并表明低速航行时采用矢量推进器控制航向和高速航行时采用舵控制航向可以较大地提高水下航行器的机动性能,同时,复杂海况下有必要对新型水下航行器的测量位姿信号进行滤波处理,仅对滤波后的低频位姿信号进行控制可以有效避免能源浪费和推进器磨损等问题。
     (4)研究了复杂海况下新型水下航行器轨迹跟踪控制问题。新型水下航行器在复杂海况下的快速性和稳定性需要具有较强鲁棒性的控制系统来实现,针对其姿态控制中存在的非线性项和未建模动态,以及外界海洋环境所带来的扰动,采用动态边界层法设计了一种考虑舵执行器动力学特性的二阶双环结构滑模控制器,采用李雅普诺夫稳定性理论验证了控制器的稳定性,并分五种情况分析了系统参数、舵执行器限制条件和边界层等对滑模控制器的影响,证明了基于动态边界层滑模控制器可以有效解决舵执行器幅值和速率限制所导致的姿态控制中滑动模态丧失的问题,并能够避免因理论设计与实际应用条件不符而导致的滑模控制失效。基于潜艇理论,将新型水下航行器的六自由度运动学和动力学方程分解成互不耦合的水平面子系统和纵平面子系统。针对位移无法直接测量而仅能获得偏航角和偏航角速度的水平面子系统,采用基于横向轨迹误差法和视线法相结合的滑模控制器实现了其在不同海况下的高精度轨迹跟踪控制,并保证了航向误差过大时滑模控制器的鲁棒性和控制精度。而针对新型水下航行器纵向位移可测的纵平面子系统,基于单输入多状态系统设计了一种性能稳定的滑模控制器,计算中考虑了水平舵动力学特性以及水平舵偏摆角幅值和速率的限制,采用动态边界层提高了系统的鲁棒性和控制精度,实现了新型水下航行器在不同海况下按照期望姿态准确跟踪时变深度指令信号的能力。通过对比不同海况下新型水下航行器的轨迹跟踪效果,定性和定量上分析了海流和波浪对新型水下航行器滑模控制器的影响,为真实复杂环境下新型水下航行器控制系统的设计提供了理论指导。
     (5)研究了复杂海况下新型水下航行器的粘性流场特性。基于滑移网格技术,结合RANS方程和SST k-w湍流模型,运用PISO算法对无环境干扰条件下带桨航行器的非定常粘性流场进行了数值求解,计算结果具有较好的收敛性,能够反映新型水下航行器绕流场的真实情况。通过对无环境干扰条件下螺旋桨/航行器艇体流场整体计算与独立计算所得的阻力、速度、压强等进行比较与分析,定性和定量上预报了新型水下航行器艇体伴流与轮式螺旋桨抽吸作用之间的相互作用机理,为真实环境下新型水下航行器艇体和螺旋桨的优化设计、振动与噪声的研究提供了理论依据。新型水下航行器通常需要在复杂海况下完成海面航行状态时的通信任务,因此,有必要对其在海面上高速迎浪航行时的运动形式和绕流场特性进行研究。根据其在波浪中的运动特点,考虑动升力影响,基于切片理论建立了新型水下航行器在微幅规则波中高速迎浪运动的数学模型,并采用高斯消元法计算出了新型水下航行器垂荡和纵摇的运动规律。基于动网格技术,采用以DEFINE_CG_MOTION宏编制的UDF函数程序源代码实现了新型水下航行器在绕流场计算域内高速迎浪航行状态下的运动形式。根据新型水下航行器纵向运动系统的坐标转换原理,采用以DEFINE宏编制UDF函数程序源代码的纯数值造波技术,通过自定义非定常入口边界实现了新型水下航行器绕流场计算域的三维数值造波。在此基础上,运用CFD技术,结合RANS方程、SST k-w模型以及VOF模型建立了新型水下航行器带自由液面的非定常粘性绕流场数学模型。通过数值计算得到了新型水下航行器的阻力、升力、纵倾力矩、速度、压强以及兴波等流场参数,较好地反映了航行器高速迎浪航行时绕流场的真实情况。自由液面的波形刻画总体上与试验中穿浪航行器的兴波轮廓完全相符,有效验证了数值计算方法的正确性。
Modern autonomous underwater vehicle (AUV) is an intelligent unmannedplatform to perform a variety of military and civilian mission in complex marineenvironment, which can better meet the needs such as scientific research, militaryoperations and commercial applications and full utilize the marine resources. With themission needs of increasingly complex and diverse, the AUV is developing in thedirection of systematism, multifunction, and clustering technology. Existing AUV withsingle function has been unable to meet the needs of the current mission. Moreimportantly, the design theory of the AUV in complex sea conditions also need to befurther improved to adapt to the conceptual design of the AUV, which ensures that themulti-function AUV can resist environmental disturbances and be ability to completevarious tasks flexibly. Therefore, the overall design and the corresponding key technicalissues of a multi-moving state AUV in complex sea conditions has important theoreticalsignificance and engineering value for promoting the development of the domesticAUV. The international development forefront of the AUV is closely followed in thispaper. The smallness, modularity, economization and reliability are the design goals ofa new AUV. A multi-moving state AUV provided with the functions such as thesubmarine vectorial thrust, landing on the sea bottom, wheel driving on the ground andcrawling on the ground is developed and a number of key theoretical issues such askinematics and dynamics, navigation control and the ambient flow field in complex seaconditions are studied systematically, which provides an important theoretical basis andtechnical guidance for the further production of the experimental prototype. To sum up,the main results in this paper contain the following areas:
     (1) The overall design of a multi-moving state AUV is proposed. The main andaccessory structures adopt the separable form. The heave system, vectorial thruster,measurement and communication module, manipulation module and control system aredesigned. The structure and working principle of each system are made a detailedanalysis, which guarantees that the multi-moving state AUV has the functions such asthe submarine vectorial thrust, landing on the sea bottom, wheel driving on the groundand crawling on the ground. The piston-type heave system completes the distributionregulation of gravity and buoyancy. The vectorial thruster achieves four functions suchas wheels, legs, thrusters and course control. The measuring the communication moduleapplies the economical design reuse-conditioning systems. The manipulation moduleuses the orthogonal-design and high-precision transmission gear as drive mechanism.The control system uses the distributed control system architecture. The new AUV isequipped with rudders and vectored thrusters, which are combined to control the coursefor realizing multi-motion modes in different control modes of high speed and low speed respectively. The innovative design and kinematic analysis of each majormachine show that the new AUV designed in this paper is fully in accord with thedesign goals and functional requirements.
     (2) The parameterized design and mechanical properties of a new wheel propellerare studied. The propeller is a special kind of complex surface parts. The parametricvariables are defined according to the structural characteristics and process requirements,and then the coordinate transformation formula of transforming the local coordinates ofthe points on section planes to the global coordinates is deduced. The problem ofapplying different geometric parameter atlases to solid modeling is resolved usingMatlab process. Then demands of surface-loft, knit surface, thicken and so on are usedto complete the solid modeling. Two forms of modeling examples show that the processof parameterized design is simple and practical, which improves the efficiency of serialmodeling. On this basis, the computational fluid dynamics (CFD) method is applied toexplore the numerical methods of the propeller open-water performance by using theRANS equation and three different turbulence models including standard k-ε, standardk-w and RSM based on sub-domains hybrid meshes. The computational results ofopen-water performance of the propellers including DTMB4119, DTRC3745and D4-70are in good agreement with the experimental data, which verifies the correctness ofsolid modeling and numerical methods. The maximum error of RSM, standard k-ε andstandard k-w in the computational results of DTMB4119open-water performance are5.47%,7.41%and11.21%, which shows that the numerical method using RSM hasgood accuracy in the prediction of propeller open-water performance. This conclusionmay guide the selection of turbulence models in viscous flow computation aroundcomplex rotating machine. Some important viscous flow characteristics of the propellersuch as flow separation, tip vortex and trailing wake are got, which provides aneffective reference for the design of new efficient thruster. A new wheel propeller(WPD4-70) with the advantages of a large thrust, high structural strength, stablehydrodynamic performance and anti-blade flutter is present through a series of propelleropen-water performance computation and comparison under the guidance of thecharacteristic analysis of the ducted propeller and the contracted and loaded tip (CLT)propeller, which breaks the design bottleneck of the single function propeller. In orderto ensure the security and stability of the AUV when it is moving on the ground,nonlinear buckling analysis based on finite element method is used to compute themaximum allowable load of WPD4-70, the computational result is3975N. Meanwhile,the natural frequencies and vibration modes are got through the modal analysis ofWPD4-70, each natural frequency is less than the corresponding value of the model Ⅳ,which indicates that the ability of its vibration insulation in the driving state is enhanced.The past four vibration modes show that the first vibration mode (main vibration mode) is the distortion of the blades and the remaining modes are the radial stretching the edgeof the wheel. The final WPD4-70has preferable open-water performance and intensitycharacteristics, which can realize the functional requirements of the multi-moving stateAUV.
     (3) The nonlinear dynamics of the new AUV is studied in complex sea conditions.Euler angles representation is applied to establish six-DOF nonlinear kinematic modelaccording to the structural characteristics and motion characteristics of the new AUV. Inorder to achieve the satisfactory performance with arbitrary angles, the quaternionmethod is used to solve the especial singularities when the pitch angles are±90o. TheNewton second law and Lagrangian approach are used to deduce the vectored thrusterAUV’s nonlinear dynamic equations with six degrees of freedom (DOF) respectively incomplex sea conditions based on the random wave theory, the dynamic models of thetwo methods are same, which shows that the dynamic model of the vectored thrusterAUV is accurate. On this basis, the mathematical model of the new AUV’slow-frequency motion and high-frequency motion in complex sea conditions areestablished. The Runge-Kutta arithmetic is used to solve the dynamic equations, whichnot only can simulate the motions such as cruise and hover but also can describe thevehicle’s low-frequency and high-frequency motion, so this method clears up thedifficulties of computation and display of the coupled nonlinear motion equations incomplex sea conditions. The kinematic model and dynamic model are proved to bevalid through the computation and analysis of its spatial motion’s performance ininterference-free environment and the analysis of the integrated signals includinglow-frequency motion signal and high-frequency motion signal in environmentaldisturbance, which shows that the maneuverability of the vectored thruster AUVequipped with rudders and vectored thrusters is enhanced. Furthermore, it is necessaryto filter the measurement of the new AUV’s position and orientation signal in complexsea conditions, and the low-frequency motion signal control can effectively avoid theproblem of energy waste and propeller wear.
     (4) The trajectory tracking control problem of the new AUV in complex seaconditions is studied. The fastness and stability of the new AUV in complex seaconditions need the control system with strong robustness to complete. In order to solvethe nonlinear term and unmodeled dynamics existing in the new AUV’s attitude controland the disturbances caused by the external marine environment, a second-order slidingmode controller with double-loop structure that considering the dynamic characteristicsof the rudder actuators is designed. Then Lyapunov stability theory is used to verify thestability of the controller. the impacts of system parameters, rudder actuator’sconstraints and boundary layer on the sliding mode controller are computed andanalyzed to verify that the sliding mode controller based on dynamic boundary layer can effectively resolve sliding mode loss in the attitude control caused by the rudderactuator amplitude and rate limiting and avoid the control failure caused by that thedesign theory does not match with the actual application conditions. According to thesubmarine theory, six-DOF motion equations of the new AUV are decomposed into twomutually non-coupled subsystems, namely the horizontal plane subsystem and thevertical plane subsystem. As the yaw angle and yaw angle rate rather than thedisplacement of the new AUV can be measured directly in the horizontal plane, thesliding mode control algorithm combining cross track error method and line of sightmethod is used to fulfill its high-precision trajectory tracking control in different seaconditions, which ensures the robustness and accuracy of the sliding mode controllerwhen the heading error is too large. As the vertical displacement of the new AUV canbe measured, a stable sliding mode controller is designed based on the single-inputmulti-states system,which takes into account the characteristic of the hydroplane andthe amplitude and rate constraints of the hydroplane angle. Moreover, the using ofdynamic boundary layer improves the robustness and control accuracy of the system,which realizes the accurate tracking of time-varying depth signal with the desiredattitude in different sea conditions. The impacts of currents and waves on the slidingmode controller of the new AUV are analyzed qualitatively and quantitatively bycomparing the trajectory tracking performance of the new AUV in different seaconditions, which provides an effective theoretical guidance for the control systemdesign of the new AUV in real complex environment.
     (5) The hydrodynamic characteristics of the viscous flow field around the newAUV in complex sea conditions are studied. The CFD method is used to simulatenumerically the unsteady viscous flow around the new AUV with propellers innon-environmental interference conditions by using the RANS equations, SST k-wmodel and pressure implicit with splitting of operators (PISO) algorithm based onsliding mesh. The computational results have good convergence, which reflects well thereal ambient flow field of the new AUV with propellers. The interaction between AUVhull and wheel propellers is predicted qualitatively and quantitatively by comparing thehydrodynamic parameters such as resistance, pressure, velocity and so on that fromintegral computation and partial computation of the viscous flow around the AUV withpropellers in non-environmental interference conditions, which provides an effectivereference to the optimization design, vibration and noise of the AUV hull and propellersin real environment. The communication tasks usually require the new AUV to navigateon the sea surface in complex sea conditions. Therefore, the movement forms and flowfield characteristics of the new AUV navigating in head sea at high speed are necessaryto be studied. The mathematical model of the high-speed AUV in head sea isestablished with considering the hydrodynamic lift based on strip theory according to the motion characteristics of the new AUV in waves, which is solved to get the heaveand pitch of the AUV by Gaussian elimination method. Then the motion processes ofthe AUV’s heave and pitch are realized in the numerical computation of the flow fieldaround the AUV based on the dynamic mesh that driven by the UDF function sourcecode compiled with DEFINE_CG_MOTION macro. According to the coordinatetransformation principle of AUV’s longitudinal motion theory and the technique ofpurely numerical wave based on the UDF function source code compiled with DEFINEmacro, the three-dimensional numerical wave of the computational field is realizedthrough defining the unsteady inlet boundary condition. On this basis, the CFD theory isused to establish the mathematical model of the unsteady viscous flow around the AUVwith considering free surface effort by using the RANS equations, SST k-w model andVOF model. The hydrodynamic parameters of the AUV such as drag, lift, pitch torque,velocity, pressure, and wave profile are got by numerical computation, which predictwell the real flow field around the high-speed AUV in head sea. The computationalwake of the AUV is in good agreement with the experimental phenomenon of awave-piercing surface vehicle, which verifies effectively the correctness of thenumerical method.
引文
[1]马伟锋,胡震. AUV的研究现状与发展趋势[J].火力与指挥控制,2008,33(6):10~13.
    [2]许伟伟,孟昭香.新兴的水下作战平台[J].指挥控制与仿真,2006,28(3):16~19.
    [3] Marani G, Choi S K, Yuh J. Underwater autonomous manipulation forintervention missions AUVs [J]. Ocean Engineering,2009,36(1):15~23.
    [4] Young J K, Hyung T K, Young J C, et al. Development of a power controlsystem for AUVs probing for underwater mineral resources [J]. Journal of MarineScience and Application,2009,8(4):259~266.
    [5] Liu S Y, Wang D W, Engkee P. Output feedback control design for stationkeeping of AUVs under shallow water wave disturbances [J]. International Journal ofRobust and Nonlinear Control,2009,19(13):1447~1470.
    [6]李锡群,王志华.无人水下航行器技术综述[J].船电技术,2003,6:12~14.
    [7] Annati M. UUVs and AUVs Come of Age [J]. Military Technology,2005,29(6):72~80.
    [8]钱东,孟庆国,薛蒙,等.美国海军UUV的任务与能力需求[J].鱼雷技术,2005,13(14):7~12.
    [9]道红.“海马”航行器倍受青睐[J].海洋世界,2003,8:29.
    [10] http://auvac.org/configurations/view/13. AUVAC.
    [11]陈强,张林根.美国军用UUV现状及发展趋势分析[J].舰船科学技术,2010,7:129~134.
    [12] Stokey R, Allen B, Austin T, et al. Enabling technologies for REMUSdocking: an integral component of an autonomous ocean-sampling network [J]. IEEEJournal of Oceanic Engineering,2001,26(4):487~497.
    [13]孙碧娇,何静.美海军无人潜航器关键技术综述[J].鱼雷技术,2006,14(4):7~10.
    [14]王永寿.先进海洋机器人开发现状与动向[J].飞航导弹,2002,7:28~33.
    [15] Mchale J. BAE Systems funds own development of unmanned underseavehicles [J]. Military and Aerospace Electronics,2007,8(12):7~9.
    [16] http://news.mod.gov.cn/tech/2010-02/23/content_4126004.htm.中华人民共和国国防部.
    [17]张淑芝."Theseus"加拿大自持式水下潜器[J].海洋技术,2000,1:90~94.
    [18] http://www.people.com.cn/GB/junshi/1077/3011401.html.人民网.
    [19] Tamaki U. Development of autonomous underwater vehicles in Japan [J].Advanced Robotics,2002,16(1):3~15.
    [20]冯正平.国外自治水下机器人发展现状综述[J].鱼雷技术,2005,13(1):5~9.
    [21]赵涛,刘明雍,周良荣.自主水下航行器的研究现状与挑战[J].火力与指挥控制,2010,35(6):1~6.
    [22]张大涛.温差能驱动的水下监测平台系统设计与实验研究[D].天津:天津大学,2005:11~21.
    [23]侯巍.具有着陆坐底功能的水下自航行器系统控制与试验研究[D].天津:天津大学,2006:14~23.
    [24]刘柱,孟凡立.船舶喷水推进技术发展[J].航海技术,2004,4:42~44.
    [25] Rinaldo C M, Emanuele C. Operation assessment of self-compensating,vectored thruster AUV [C]∥The Fourteenth International Offshore and PolarEngineering Conference. Toulon, France,2004:243~251.
    [26] Emanuele C, Vladimir F F, Rinaldo C M, et al. Path guidance and attitudecontrol of a vectored thruster AUV [C]∥Proceedings of the7th Biennial Conference onEngineering Systems Design and Analysis, Manchester, UK,2004:325~332.
    [27] Emanuele C, Rinaldo C M. Conceptual design of an AUV equipped with athree degrees of freedom vectored thruster [J]. Journal of Intelligent and RoboticSystems,2004,39:365~391.
    [28]潘存云,温熙森.基于渐开线球齿轮的机器人柔性手腕结构与运动分析[J].机械工程学报,2005,41(7):141~146.
    [29] Pien P C. The calculation of marine propellers based on lifting surface theory[J]. Journal of Ship Research,1961,5(2):38~45.
    [30] Yamazaki R. On the theory of screw propellers in non-uniform flows [C]∥Proc. of4th ONR Symp. On Hydrodynamics.1962:94~107.
    [31] Tsakonas S, Jacob W R, Rank P H. Unsteady propeller lifting-surface theorywith finite number of chordwise modes [J]. Journal of Ship Research,1968,12(1):247~255.
    [32] Jacob W R, Tsakonas S. A new procedure for solution of lifting surfaceproblems [J]. Journal of Hydronautics,1969,3(1):161~167.
    [33] Hughes M J, Kinas S A. An analysis method for a ducted propeller withpre-swirl stator blades [C]∥Proc. of Symp. of propeller/shafting’91. Virginia,1991:825~841.
    [34] Kerwin J E, Keenan D P, Black S D, et al. A coupled viscous/potential flowdesign method for wake-adopted, multi-stage, ducted propulsors using generalizedgeometry [J]. Transactions-Society of Naval Architects and Marine Engineers,1994,102:23~56.
    [35] Kerwin J E. A Design procedure for marine vehicles with integratedpropulsors [C]∥Proc. of Symp. of propeller/shafting’97. Virginia,1997:16~21.
    [36]董世汤.前置或后置定子的升力面设计方法[R]. CSSRC技术报告,2002:205~213.
    [37] Wang G Q, Liu X L. A potential based panel method for prediction of steadyand unsteady performances of ducted propeller with stators [J]. Journal of ShipMechanics,2007,11(3):333~340.
    [38] Kawakita C. Hydrodynamic analysis of a ducted propeller in steady flowusing a surface panel method [J]. The West-Japan Society of Naval Architects,1992,84:11~22.
    [39] Ye J M, Xiong Y. Prediction of podded propeller cavitation using an unsteadysurface panel method [J]. Journal of Hydrodynamics,2008,20(6):790~796.
    [40] Li D Q. Validation of RANS predictions of open water performance of ahighly skewed propeller with experiments [J]. Journal of Hydrodynamics,2006,18(3):520~528.
    [41] Amoraritei M. Prediction of Marine Propeller Performances using RANSApproaches [J]. AIP Conference Proceedings,2008,1048(1):771~774.
    [42]刘志华,熊鹰,叶金铭,等.基于多块混合网格的RANS方法预报螺旋桨敞水性能的研究[J].水动力学研究与进展,2007,22(4):450~456.
    [43] Fossen T I, Fjellstad O E. Position and attitude tracking of AUV: Aquaternionfeedback approach [J]. IEEE Journal of Oceanic Engineering,1994,19(4):512~518.
    [44] Fossen T I, Fjellstad O E. Nonlinear modelling of marine vehicles in6degreesof freedom [J]. International Journal of Mathematical Modelling of Systems,1995,1(1):17~28.
    [45]严卫生,徐德民,李俊,等.远程自主水下航行器建模研究[J].西北工业大学学报,2004,22(4):500~504.
    [46]严卫生.某新型远程自主水下航行器建模研究[J].西北工业大学学报,2006,24(4):457~462.
    [47]张宏伟,侯巍,王晓明.可着陆式水下机器人的多体动力学建模与仿[J].海洋技术,2006,25(4):6~10.
    [48]于华男.开架式水下机器人辨识与控制技术研究[D].哈尔滨:哈尔滨工程大学,2003:41~58.
    [49]傅慧萍.潜射导弹运载器水弹道动力学系统建模及其应用研究[D].西安:西北工业大学,2000:38~56.
    [50] Joonyoung K, Kihun K C. Estimation of hydrodynamic coefficients for anAUV using nonlinear observers [J]. IEEE Journal of Oceanic Engineering,2002,27(4):830~840.
    [51] Marc D B, Martins O A, Healey A J. Surge motion parameter identificationfor the NiX5Phoenix AUV [C]∥International Advanced Robotics Program (IARP’98).Lafayette,1998:197~210.
    [52]日本造船学会.日本造船学会论文集[C].日本造船学会,1990:47~62.
    [53] Ishii K, Ura T, Fujii T. A feed forward neural net work for identification andadaptive control of autonomous underwater vehicles [C]∥Proc. IEEE ICNN94,Orlando F L,1994:152~164.
    [54]张铭钧.基于神经网络和遗传算法的水下机器人运动建模、规划与控制技术研究[D].哈尔滨:哈尔滨工程大学,1997:35~61.
    [55]张铭钧.水下机器人非完全回归型神经网络运动模型的研究[J].船舶工程,19991:39~42.
    [56]张铭钧.基于神经网络的无人无缆水下机器人运动建模与控制技术研究[J].中国造船,1999,2:87~90.
    [57]冯铁城,朱文蔚,顾树华.船舶操纵与摇荡[M].北京:国防工业出版社,1989:23~52.
    [58] Nayfeh A H, Sanchez N Z. Stability and complicated rolling responses of shipin regular beam seas [J]. International Shipbuilding Progress,1990,37(410):177~198.
    [59] Panpanikolaou A, Zaraphonitis G. Computer-aided simulations of largeamplitude roll motions of ships in waves and of dynamic stability [J]. InternationalShipbuilding Progress,1987,34(392):55~68.
    [60] Nayfeh A H. Nonlinear oscillations [M]. New York: Wiley, Interscience,1979:31~64.
    [61]郑俊武.船舶横摇与纵摇运动的非线性耦合方程[J].天津大学学报,1998,32(11):738~740.
    [62] Ortega R, Antonio L, Per J N, et al. Passivity-based control of Euler-Lagrangesystems: mechanical, electrical and electromechanical applications [M]. London:Springer-Verlag,1998:153~198.
    [63] Romeo O, Mark W S. Adaptive motion control of rigid robots: a tutorial [J].Automatics,1989,25(6):877~888.
    [64] Slotine J E, Weiping L. Adaptive manipulator control: a case study [J]. IEEETransactions on Automatic Control,1988,33(11):995~1003.
    [65] Fossen T I. Comments on "Hamiltonian adaptive control of spacecraft"[J].IEEE Transactions on Automatic Control,1993,38(4):671~672.
    [66] Slotine J E, Benedetto M D. Hamiltonian Adaptive Control of Spacecraft [J].IEEE Transactions on Automatic Control,1990,35(7):848~852.
    [67] Yoerger D R, Slotine J E. Robust trajectory control of underwater vehicles [J].IEEE Journal of Oceanic Engineering,1985,10:462~470.
    [68] Hawkinson T D. Multiple input sliding mode control for autonomous steeringof underwater vehicles [D]. California: Naval Postgraduate School,1990:36~62.
    [69] Cristi R, Papoulias F A, Healey A J. Adaptive sliding mode control ofautonomous underwater vehicles in the dive plane [J]. IEEE Journal of OceanicEngineering,1990,15(3):152~160.
    [70] Healey A J, Lienard D. Multivariable sliding mode control for autonomousdiving and steering of unmanned underwater vehicles [J]. IEEE Journal of OceanicEngineering,1993,18(3):327~338.
    [71] Jalving B. The NDRE-AUV flight control system [J]. IEEE Journal ofOceanic Engineering,1994,19(4):497~501.
    [72] Goheen K R, Jefferys E R. Multivariable self-tuning autopilots forautonomous and remotely operated underwater vehicles [J]. IEEE Journal of OceanicEngineering,1990,15:144~151.
    [73] Fossen T I, Sagatun S I. Adaptive control of nonlinear underwater roboticsystems [C]∥In Proceedings of the1991IEEE Conference on Robotics andAutomation. Sacramento. California,1991:1687~1695.
    [74] Yuh J. A neural net controller for underwater robotic vehicles [J]. IEEE J.Oceanic Engineering.1990,15(3):161~166.
    [75] Fossen T I, Fjellstad O E. Robust adaptive control of underwater vehicles: acomparative study [C]∥Proceedings of the3rd IFAC Workshop on ControlApplications in Marine Systems(CAMS'95). Trondheim, Norway,1995:66~76.
    [76] Bull P, Watson S. The scaling of high Reynolds number viscous flowpredictions for appended submarine geometries[C]∥Proceedings of22nd Symposiumon Naval Hydrodynamics. Washington, USA,1998:1000~1014.
    [77] Watson S, Bull P. The scaling of high Reynolds number viscous flowpredictions using CFD techniques[C]∥3rd Osaka colloquium on advanced CFDapplications to ship flow and hull form design. Osaka, Japan,1998:141~158.
    [78] Bull P. Validation of CFD for high Reynolds number ship flows[C]∥CFD2003: Computational Fluid Dynamics Technology in Ship Hydrodynamics. London,UK.2003:103~115.
    [79] Groves N C, Huang T T, Chang M. Geometric characteristics of DARPAmodels(DTRC model Nos.5490and5471)[R]. DTRC/SHD-1298-01,1989,3:6~17.
    [80] Huang T T, Liu H L, Groves N C. Experiments of the DARPS SUBOFFprogram [R]. DTRC/SHD-1298-02,1989:18~25.
    [81] Blanton J N, Forlini T J, Purtell L P. Hot-film velocity measurementuncertainty for DARPA SUBOFF experiment [R]. DTRC/SHD-1298-05,1990:61~73.
    [82] Gowing S. Pressure and shear stress measurement uncertainty for DARPASUBOFF experiment [R]. DTRC/SHE-1298-06,1990:74~86.
    [83] Crook L B. Resistance for DARPA SUBOFF as represented by Model5470[R]. DTRC/SHD-1298-07,1990:87~101.
    [84] Huang T, Liu H L, Groves N, et al. Measurements of flows over anaxisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFFexperimental program [C]∥Proceeding of19th Symposium on Naval Hydrodynamics.Seoul, Korea,1992:91~103.
    [85] Bull P. The validation of CFD predictions of nominal wake for the SUBOFFfully appended geometry [C]∥Proceedings of21st Symposium on NavalHydrodynamics. Trondheim, Norway,1996:1061~1076.
    [86] Yang C, Lohner R. Prediction of flows over an axisymmetric body withappendages [C]∥The8th International Conference on Numerical Ship Hydrodynamics.Busan, Korea,2003:1~15.
    [87] Rhee B, Sung C H, Koh I Y. Validation of the flow around an appendedSUBOFF body using parallelization and a new wall method[C]∥The8th InternationalConference on Numerical Ship Hydrodynamics. Busan, Korea,2003:223-232.
    [88] Bensow R E. Large eddy simulation of the viscous flow around submarinehulls [C]∥25th Symposium on Naval Hydrodynamics, Newfoundland, Canada,2004:161~208.
    [89]张楠,沈泓萃,姚惠之.潜艇阻力与流场的数值模型与验证及艇型的数值优化研究[J].2005,9(1):1~13.
    [90]黄振宇,缪国平.大涡模拟在水下航行体周围粘性流场计算中的初步应用[J].水动力学研究与进展,2006,21(2):190~197.
    [91] Moustafa A M, Karsten R. Unsteady numerical investigation of the turbulentflow around the container ship model with and without propeller [C]∥A Workshop onNumerical Ship Hydrodynamics Proceedings. Gothenburg,2000:261~274.
    [92] Chou S K, Chau S W, Chen W C, Hsin J Y. Computations of ship flow aroundcommercial hull forms with free surface or propeller effect [C]∥A Workshop onNumerical Ship Hydrodynamics Proceedings. Gothenburg,2000:47~59.
    [93] Tahara Y, Ando J. Comparison of CFD and EFD for KCS container ship inwithout/with-propeller conditions [C]∥A Workshop on Numerical ShipHydrodynamics Proceedings. Gothenburg,2000:173~185.
    [94] Whitfield D L, Jameson A. Euler equation simulation of propeller-winginteraction in transonic flow [J]. Journal of Aircraft,1984,2l(11):835~839.
    [95] Pankajakshan R, Arabshahi A, Whitfield D L. Turbofan flow field simulationusing Euler equations with body forces [C]∥AIAA/SAE/ASME/ASEE29th JointPropulsion Conference and Exhibit. Monterey, l993:1~11.
    [96] Mcdonald H, Whitfield D L. Self-propelled maneuvering underwater vehicles[C]∥Proceedings of2lst Symposium on Naval Hydrodynamics. Trondheim, Norway,l996:478~489.
    [97] Arabshahi A, Beddhu M. A perspective on naval hydrodynamic flowsimulations[C]∥Proceedings of22st Symposium on Naval Hydrodynamics.Washington, D.C.,1998:1~15.
    [98] Allison N C. Computational studies of fully submerged bodies, propulsors andbody/propulsor interactions [D]. Mississippi State University,200l:47~72.
    [99] Streckwall H, Tigges K. Numerical propulsion for podded propeller drivenships[C]∥The l5th International Conference on Hydrodynamics in Ship Design Safetyand Operation. Gdansk, Poland,2003:132~144.
    [100]王涛,周连第,张鑫.轴对称体与导管推进器组合体的三维复杂流场的计算与分析[J].船舶力学,2003,7(2):2l~32.
    [101]张志荣.水面舰船综合粘性流场的实用化CFD研究[D].无锡:中国船舶科学研究中心,2004:39~62.
    [102]潘存云,温熙森.渐开线环形齿球齿轮传动原理与运动分析[J].机械工程学报,2005,41(5):1~9.
    [103]高富东,潘存云,杨政,等.多矢量推进水下航行器6自由度非线性建模与分析[J].机械工程学报,2011,47(5):93~100.
    [104] Xu H J, Pan C Y, Xie H B, et al. Dynamics modeling and simulation of abionic swim bladder system in underwater robotics [J]. Journal of Bionic Engineering,2008,5(suppl.):66~71.
    [105]张立杰,潘存云,李明宇,等.全方位偏摆关节机构运动分析及仿真[J].机械设计与研究,2007,23(3):27~36.
    [106]张立杰,潘存云,李明宇,等.基于仿生关节的新型轮-腿复合式移动系统[J].中国机械工程,2009,20(18):2142~2148.
    [107]李明宇,潘存云,张立杰.基于球齿轮的轮腿移动系统单侧越障过程运动学研究[J].机械科学与技术,2011,30(1):142~148.
    [108]张湘,张立杰,潘存云等.基于球齿轮的新型轮腿复合式移动平台设计研究[J].国防科技大学学报,2008,30(4):98~101.
    [109]徐海军,潘存云,方世鹏,等.柔性轴主动矢量推进装置螺旋桨轨迹求解与分析[J].机械传动,2009,33(3):4~10.
    [110]方世鹏,潘存云,徐海军.水下载运器矢量推进螺旋桨传动系统设计与分析[J].机械制造,2009,47(1):22~26.
    [111]潘存云,郭克希,杨俊,高富东.水下矢量推进器的动力学分析[J].机械设计与研究,2010,26(5):20~23.
    [112]方世鹏.水下矢量推进螺旋桨装置设计与研究[D].长沙:国防科技大学,2008:59~74.
    [113]高同兵,杨祥玮.船用螺旋桨模拟显示与自动化制造[J].航海工程,2002,(2):11~15.
    [114]罗光汉.螺旋桨叶的坐标方程描述及划线作图[J].铸造,1998,47(5):45~46.
    [115]李艳聪,郑清春,薛兆鹏.基于UG/Grip的螺旋桨三维设计技术研究[J].天津理工学院学报,2003,19(1):40~43.
    [116]王国强,董世汤.船舶螺旋桨理论与应用[M].哈尔滨:哈尔滨工程大学出版社,2007:234~253.
    [117]陈彦勇,夏雨.螺旋桨三维建模方法探讨[J].船舶工程,2006,28(1):21~24.
    [118]盛振邦,杨家盛,柴扬业.中国船用螺旋桨系列试验图谱集[M].中国造船》编辑部,1983:28~45.
    [119] Jessup S D. An experimental investigation of viscous aspects of propeller[D]. Washington:The Catholic University of America,1989:24~56.
    [120] Rhee S H, Joshi S. CFD validation for a marine propeller using anunstructured mesh based RANS method [C]∥Proceedings of FEDSM’03, the4thASME-JSME Fluids Engineering, Honolulu, Hawaii,2003:1~7.
    [121]龚吕,姚征,吴曼.船舶反弯扭螺旋桨水动力特性的数值模拟与分析[J].上海理工大学学报,2007,29(1):65~69.
    [122] Tahara Y, Himeno Y. Applications of isotropic and anisotropic turbulencemodels to ship flow computation [J]. Kansai Soc. N. A., Japan,1996,225:75~91.
    [123] LIU Xiaomin, NISHI M. Numerical study of flow in conical diffuser withvortex generator jets [J]. Chinese Journal of Mechanical Engineering,2007,20(1):5~9.
    [124] HU Xiaodong, ZHOU Yiqi, FANG Jianhua, et al. Computational fluiddynamics research on pressure loss of cross-flow perforated muffler [J]. Chinese Journalof Mechanical Engineering,2007,20(2):88~93.
    [125]陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2002:31~46.
    [126] Tahara Y, Himeno Y. Applications of isotropic and anisotropic turbulencemodels to ship flow computation [J]. Journal of the Society of Naval Architects of Japan,1996,225:75~91.
    [127]郭鹏程,罗兴锜,刘胜柱.基于三维紊流数值计算的离心泵叶轮优化设计[J].机械工程学报,2004,40(4):181~184.
    [128] Versteeg H K, Malasekerkera W. An introduction to computational fluiddynamics: the finite volume method [M]. Wiley, New York,1995:15~32.
    [129]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:63~81.
    [130] Patanker S V, Spalding D B. A calculation processure for heat, mass andmomentum transfer in three-dimensional parabolic flows [J]. Int. J. Heat Mass Transfer,1972,15:1787~1806.
    [131] Difelice F. Experimental investigation of the propeller wake at differentloading conditions by particle image velocimetry [J]. JSR,2004,48(2):168~190.
    [132] Hughes M J, Kinnas S A, Kerwin J E. Experimental validation of a ductedpropeller analysis method [J]. Journal of Fluids Engineering,1992,114(6):214~219.
    [133] Fornells R G, Gomez G P. Full-scale results of the first TVP propeller [J].The Naval Architect,1983,11:291~295.
    [134] Andersen P, Schwanecke H. Design and model test of tip fin propellers [J].Transactions of the royal institution of naval architects,1992,134:315~320.
    [135]崔承根,施能继.叶梢带端板螺旋桨的性能研究[J].华中理工大学学报,1991,19(8):117~120.
    [136]蒋凤昌,朱慈勉,薛剑胜,等.基于ANSYS的锈蚀钢筋屈曲承载力非线性分析[J].同济大学学报,2008,36(8):1045~1049.
    [137]王勖成,有限单元法[M].北京:清华大学出版社,2003:468~518.
    [138] Yuh J. Design and control of autonomous underwater robots: A survey [J].Autonomous Robots,2000,8(1):7~24.
    [139]侯巍,王树新,张海根.小型水下自航行器动力学建模与控制[J].天津大学学报,2004,37(9):769~773.
    [140]曹永辉,石秀华.水下航行器轨迹跟踪控制与仿真[J].计算机仿真,2006,23(7):19~21.
    [141]严卫生,徐德民,李俊,等.远程自主水下航行器建模研究[J].西北工业大学学报,2004,22(8):500~504.
    [142]陈洪海,李一平.自治水下机器人全自由度仿真[J].控制工程,2002,9(6):72~74.
    [143] Fossen T I. Guidance and control of ocean vehicles [M]. New York: JohnWiley and Sons Ltd,1994:5~54.
    [144] Sheppard S W. Quaternion from rotation matrix [J]. Journal of Guidance andControl,1978,1(3):223~224.
    [145] Donald P B. A virtual world for an autonomous underwater vehicle [D].Washington:Naval Postgraduate School,1992:125~140.
    [146]高富东,潘存云,杨政,等.基于CFD的螺旋桨敞水性能数值分析与验证[J].机械工程学报,2010,46(8):133~139.
    [147] Healey A J, Lienard D. Multivariable sliding mode control for autonomousdiving and steering of unmanned underwater vehicle [J]. Journal of OceanicEngineering,1993,18(3):327~339.
    [148] Fossen T I. Marine control systems: guidance, navigation and control ofships, rigs and underwater vehicle [M]. New York: Marine Cybernetics AS, Trondheim,2002:26~43.
    [149] Pierosn W J, Moscowitz L. A proposed spectral from for fully developedwind seas based on the similarity theory of S. A. Kitaigorodskii.[J]. Geophys. Res.,1964,69(24):5181~5190.
    [150]侯巍.具有着陆坐底功能的水下自航行器系统控制与试验研究[D].天津:天津大学,2006:88~108
    [151]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003:7~17.
    [152] Young K D, Utkin V I. A control engineer’s guide to sliding mode control[J]. IEEE Transaction on Control Systems Technology,1999,7(3):328~342.
    [153] Yoerger D R, Slotine J J. Nonlinear trajectory control of autonomousunderwater vehicles using the sliding methodology [C]∥Proceedings of IEEE Oceans,1984:588~593.
    [154] Dougherty F, Sherman T, Woolweaver G. An autonomous underwatervehicle flight control system using sliding mode control [C]∥Proceedings of IEEEOceans,1988:1265~1270.
    [155] Rodrigues L, Travares P, Prado M. Sliding mode control of an AUV in thediving and steering planes [C]∥Proceedings of MTS/IEEE Oceans,1996:576~583.
    [156] Healy A J, Lienard D. Multivariable sliding mode control for autonomousdiving and steering of unmanned underwater vehicles [J]. IEEE Journal of OceanicEngineering,1993,18(3):327~339.
    [157] Macro D B, Healey A J. Command control and experiment results with theNPS ARIES AUVs [J]. IEEE Journal of Oceanic Engineering,2001,26(4):466~475.
    [158] Innocenti M, Campa G. Robust control of underwater vehicle: sliding modecontrol vs. LMI synthesis [C]∥Proceedings of the American Control Conference, SanDiego,1999,3422~3426.
    [159] Salgado J T, Spiewak J M, Fraisse P, et al. A robust control algorithm forAUV: based on a high order sliding mode [C]∥Proceedings of MTS/IEEE OCEANS,2004,276~281.
    [160]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407~418.
    [161]曹永辉.执行器受限下水下航行器滑模控制[J].弹箭与制导学报,2009,29(5):294~300.
    [162]刘波,严卫生,崔荣鑫.自主水下航行器的二阶滑模变结构控制[J].弹箭与制导学报,2005,25(4):321~323.
    [163]高剑,徐德民,李俊,等.自主水下航行器轴向运动的自适应反演滑模控制[J].西北工业大学学报,2007,25(4):552~555.
    [164]严卫生,高剑,杨立,等.一种远程自主水下航行器纵向滑模控制研究[J].西北工业大学学报,2007,25(4):538~542.
    [165] Chen M S, Hwang Y R, Tomizuka M. A state-dependent boundary layerdesign for sliding mode control [J]. IEEE Transactions on Automatic Control,2002,47(10):1677~1681.
    [166] Vicente P V, Gerd H. Chattering-free sliding mode control for a class ofnonlinear mechanical systems [J]. International Journal of Robust and NonlinearControl,2001,11(12):1161~1178.
    [167] Seshagiri S, Khalil H K. On introducing integral action in sliding modecontrol[C]∥Proceedings of the41st IEEE Conference on Decision and Control. LasVegas:IEEE Press,2002,12:1473~1478.
    [168]于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社,1997:63~79.
    [169] Slotine J J, Sastry S S. Tracking control of nonlinear systems using slidingsurfaces with application to robot manipulator [J]. International Journal of Control,1983,38(2):465~492.
    [170] Pascoal A, Oliverira P, Silvestre C, et al. MARIUS: an autonomousunderwater vehicle for coastal oceanography [J]. IEEE Robotics and AutomationMagazine,1997,4(4):46~59.
    [171]曹永辉,石秀华.水下航行器轨迹跟踪控制与仿真[J].计算机仿真,2006,23(7):19~21.
    [172] Fossen T I, Breivik M, Skjetne R. Line-of-sight path following ofunderactuated marine craft[C]∥Proceedings of the6th IFAC MCMC, Girona, Spain,2003:244~249.
    [173] Papoulias F A. Underwater Robotic Vehicle: Design and Control [M]. NM:TST Press,1995.
    [174] Kanayama Y, Hartman B. Smooth local path planning for autonomousvehicle [J]. International Journal of Robotics Research,1997,16(3):263~284.
    [175]王科俊,姚绪梁,金鸿章.海洋运动体控制原理[M].哈尔滨:哈尔滨工程大学出版社,2007:130~147.
    [176] Van S H, Kim W J. Flow measurement around a model ship with propellerand rudder [J]. Experiments in Fluids,2006,40(4):533~545.
    [177] Chou S K, Chau S W, Chen W C. Computations of ship flow aroundcommercial hull forms with free surface or propeller effect [C]∥A Workshop onNumerical Ship Hydrodynamics Proceedings, Gothenburg,2000:27~35.
    [178] Pankajakshan R, Arabshahi A, Whitfield D L. Turbofan flow field simulationusing Euler equations with body forces [C]∥AIAA/SAE/ASME/ASEE29th JointPropulsion Conference and Exhibit, Monterey,1993,28~30.
    [179]许晶,高秋新,周连第.实效伴流雷诺数影响的数值模拟[J].船舶力学,1999,3(1):13~20.
    [180]张志荣,李百齐,赵峰.螺旋桨/船体粘性流场的整体数值求解[J].船舶力学,2004,8(5):19~26.
    [181] Fluent Inc. Fluent User's Guide [M]. Shanghai:Fluent Inc,2003:848~857.
    [182] Issa R I. Solution of the implicitly discretised fluid flow equations byoperator-splitting [J]. J. Comput. Phys.,1986,62:40~65.
    [183] Bessho M, Komatsu M, Anjoh M. On motions of a high speed planning boatin regular head sea [J]. Journal of the Society of Naval Architects of Japan,1974,135:109~120.
    [184] Zarnick E E. A nonlinear mathematical model of motions of a planning boatin regular waves [R]. Maryland: David W. Taylor Naval Ship Research andDevelopment Centre,1978:1~77.
    [185]董艳秋.船舶波浪外荷和水弹性[M].天津:天津大学出版社,1991:4~24.
    [186]董文才,吴晓光,夏飞,等.一种能考虑动升力影响的高速艇迎浪纵向运动的数学模型[J].海军工程大学学报,2005,17(4):32~37.
    [187] Michio U, Yoshiaki T, Hiroshi S. A prototype of submersible surface shipand its hydrodynamic characteristics [J]. Ocean Engineering,2011,38:1686~1695.
    [188]曹洪建.基于FLUENT的滑行艇阻力计算研究[D].哈尔滨:哈尔滨工程大学,2008:44~53.
    [189] Guardone A, Isola D, Quaranta G. Arbitrary Lagrangian Eulerianformulation for two-dimensional flows using dynamic meshes with edges wapping [J].Journal of Computational Physics,2011,230:7706~7722.
    [190]韩占忠,王国玉,闫为革.两栖车辆航行粘性阻力数值分析[J].车辆与动力技术,2003,90(2):6~10.
    [191]徐国英,王涛,郭齐胜.基于CFD的两栖车绕流场模拟[J].船舶,2005,4(2):20~23.
    [192]李莉,毕小平,贾小平.履带式两栖车辆航驶阻力的数值模拟[J].船舶,2003,8(4):47~50.
    [193]陈长秋. WZ501步兵战车水上性能改进研究[D].北京:北京理工大学,2003:32~43.
    [194]刘加海,杨永全,张洪雨,等.二维数值水槽波浪生成过程及波浪形态分析[J].四川大学学报,2004,36(6):28~31.
    [195]高富东,姜乐华,潘存云.基于计算流体动力学的两栖车辆水动力特性数值计算[J].机械工程学报,2009,45(5):134~139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700