纳米填料混炼机理及新型转子的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶工业的发展,推动和促进了橡胶加工机械的发展,而各种新材料和新工艺的不断出现,则对橡胶加工机械提出了更高的要求。密炼机作为橡胶混炼的重要加工设备,也在不断的进行研究、开发和改进之中,利用密炼机对纳米填料与橡胶基体进行混炼,也是密炼机目前的重要任务。同步转子密炼机是目前剪切型密炼机中最先进的机型之一,其中,转子是密炼机的核心部件,因此,对同步转子密炼机的研究最重要的就是开发新型同步转子。
     本文在查阅大量密炼机混炼机理和混炼理论的基础上,对密炼机转子的设计理论进行了分析,并系统分析了密炼机转子截面几何形状和几何结构对纳米填料混炼效果的影响,提出了新型密炼机转子的设计思路,研制出了新型六棱同步转子及六棱VCMT同步转子。在综合分析了密炼机转子的常用造型方法后,运用扫描成型法建立了转子的三维实体模型,对模型的质量特性进行了分析计算,并对其进行了有限元结构分析和强度校核。
     本文重点分析了新型六棱同步转子及六棱VCMT同步转子的纳米填料混炼机理和混炼过程,并在不同的工艺条件下,对四棱同步转子、六棱同步转子、新型六棱同步转子及六棱VCMT同步转子进行了纳米碳酸钙和白炭黑两种代表性配方的对比实验,对新设计的转子性能进行了分析和实验验证。本实验研究所取得的主要成果有:
     1、针对纳米填料较难分散的特点,本次设计的新型六棱同步转子及六棱VCMT同步转子对纳米填料获得了较好的分散效果,可适用于纳米填料的混炼,其中,新型六棱VCMT转子效果更好。
     2、在相同的混炼工艺条件下,新型六棱同步转子与普通六棱同步转子和四棱同步转子相比,单位能耗降低,混炼胶分散度较高,门尼粘度低。六棱VCMT同步转子在新型六棱同步转子的基础上,可适当提高填充系数,并降低了对上顶栓压力的要求,从而降低了混炼成本。
     3、六棱VCMT同步转子可提高纳米填料的分散度以及胶料的各种物理机械性能,与四棱和普通六棱同步转子相比,能有效缩短混炼时间,提高密炼机的生产效率,因此,六棱VCMT同步转子可替代普通同步转子进行纳米填料混炼。
     实验研究表明,该新型六棱同步转子及六棱VCMT同步转子具有良好的分散混合和分布混合能力,能够使胶料在密炼室内的流动更加复杂,使纳米填料在橡胶基体内充分混合分散,大大改善了混炼效果,提高了生产效率。
With the development of rubber industry, rubber processing machinery has made a big progress. Higher demand for rubber processing machinery were put forward with new material and process appearance. Mixer is one of the most important machinery for rubber compound mixing and it has been studied, developed and improved all the time. Nano filler and rubber mixing with mixer is the most important task at present. Shearing mixer is one of the most advanced mixer and rotors are the core of it. Therefore, the most important research on synchronous rotors is developing the new type of rotors.Research on a amount of literatures about mixing mechanism, the theories of mixer rotors designing and the influences of geometrical configuration on nano filler mixing effects have been analyzed. A new designing method of synchronous rotors is developed and A new type of six-wing rotors and six-wing VCMT synchronous rotors are invented. After usual modeling methods of rotors have been generally analyzed, swept modeling, a new method is brought forward by the author with the introduction of 3-D CAD. The model of finite element analysis and structural analysis of strength check have been built.Particularly, the article focuses on the nano filler mixing mechanism and courses of new six-wing synchronous and VCMT synchronous rotors. And it also analyses the comparison experimental of nanocalcium carbonate and nano silica by using four-wing, six-wing, and VCMT synchronous rotors. Through these experiments, many useful datas have been got.The theoretical analyses and experiment results show that:1. For nano filler which is difficult to disperse, the new six-wing rotors and six-wing VCMT rotors have good dispersion, especially the VCMT rotors . Both of them are suitable for the nano filler mixing.
     2. In the same process conditions, compared with six-wing and four-wing synchronous rotor mixer, the new six-wing rotor mixer has less power consumption, higher dispersion of nano filler and low Mooney Viscosity. The new six-wing rotors are on the basis of six-wing rotors, can increase filled coefficient, lower the force of ram thrust and reduce the cost of mixing.
     3. The six-wing VCMT rotors can improve the dispersion of nano filler and the mechanical properties of the compound. Compared with the four-wing and six-wing rotors, the new six-wing VCMT rotors can reduce mixing time efficiently and greatly improve the productivity. So, the new six-wing VCMT synchronous rotors have the potential advantages in replacing the general synchronous rotors.
     The results have showed that the new rotors have made the flow of compound in the mixing chamber complicated and have the better mixing capabilities of dispersion and distribution. Mixing effects and the productivity are greatly improved.
引文
[1]、巫静安,李木松.橡胶加工机械,北京:化学工业出版社,2006:1-3
    [2]、陈维芳,伏利芝.我国橡胶机械行业现状及发展方向,橡塑技术与装备,2005,31 (5):13-17
    [3]、汪传生,同步转子密炼机混炼橡胶的理论和实验研究,[博士学位论文] 北京:北京化工大学,2000,3
    [4]、James, L. White, Development of Interal Mixer Technology of the Rubber Industry, Rubb. Chem. Tech, 1992, 65(3):527
    [5]、F. Kempter, German 279, 649(1914)
    [6]、F. Kempter, German 280, 757 (1914)
    [7]、F. Kempter, German 295, 431 (1916)
    [8]、J. E. Pointon, U. S. 1, 138, 410(May 4, 1915)
    [9]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 200, 070(0ct. 3, 1916)
    [10]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 227, 522(May 22, 1917)
    [11]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 234, 526, (July 24, 1917)
    [12]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 279, 220 (Sept. 17, 1918)
    [13]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 370, 398(March 1, 1921)
    [14]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 449, 930 (March 27, 1923)
    [15]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 516, 448 (Nov. 25, 1924)
    [16]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 498, 986 (June 24, 1924)
    [17]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 523, 387 (June 20, 1925)
    [18]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 512, 813 (Oct. 21, 1924)
    [19]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 513, 733 (Nov 4, 1924)
    [20]、F. H. Banbury(to Birmingham Iron Foundry), U. S. 1, 689, 990 (Oct. 30, 1928)
    [21]、R. T. Cooke, British 431, O12(1935);Francis Shaw and Company and R. T. Cooke, Germ-an 646, 308 (1937)
    [22]、A. Lasch and K. Frei, German 671, 213(1939)
    [23]、K. Frei, German 717, 687(1942)
    [24]、K. Frei, U. S. 2, 415, 091(Feb. 4, 1947)
    [25]、A. Lasch and K. Frei, German 738, 787(1943)
    [26]、A. Lasch and K. Frei, German 729, 739(1942)
    [27]、K. Frei, German 847, 201(1952)
    [28]、A. Lasch, German 908, 481(1954)
    [29]、N. O. Nortey(to Farrel Corporation),, U. S. 4,, 714,, 350(Dec. 22,, 1987)
    [30]、N. O. Nortey(to Farrel Corporation),, U. S. 4,, 744,, 668(May 17,, 1988)
    [31]、T. Asai and K. Hagiwara(to Rabushiki Kaishu Kobe Seiko Sho), U. S. 4, 718, 771(June, 12, 1988)
    [32]、Kuriyama, (to kabushiki Kaishu Kobe Seiko Sho), U. S. 4, 824, 259(April, 25, 1989)
    [33]、G. C. Passoni, (to Pomini Farrel S. P. A. ), U. S. 4, 775, 240, (Oct. 4, 1988)
    [34]、L. Pomini, S. Crespi. Mixer with Variable Intermeshing Clearnce, Rubb. World, 1992, 4:2
    [35]、赵嘉澍,李木松,詹茂盛,纪冰等.转子构型对密炼机混炼过程的影响,橡胶工业,1987,1:3
    [36]、赵嘉澍,詹茂盛,纪冰等.密炼机转子改造的新型转子——销钉转子,橡胶技术与装备,1987,1:19
    [37]、方浩庭.密炼机销钉转子在生产中的应用,橡胶技术与装备,1987,1:22
    [38]、赵嘉澍,詹茂盛,李木松等.销钉转子的混炼功率,橡胶工业,1988,2:95
    [39]、詹茂盛,赵嘉澍,纪冰等.销钉密炼室的混炼功率和排胶温度,橡胶技术与装备,1987,4:1
    [40]、詹茂盛,纪冰,赵嘉澍等.销钉密炼室的混炼特性”,橡胶技术与装备,1988,1:18
    [41]、詹茂盛,赵嘉澍,纪冰等.销钉密炼室密炼机的试验研究,特种橡胶制品,1988,1:41
    [42]、赵嘉澍,汪传生,纪冰等.同步转子的试验研究,橡胶技术与装备,1991,6:1
    [43]、刘安祥,汪传生,赵嘉澍等.对同步转子密炼机混炼各种胶料的性能的研究,橡胶技术与装备,1995,4:1
    [44]、纪冰,胡海明,汪传生等.同速同向转子密炼机的研究,合成橡胶工业,1997,4:207,CA,1997,9:644
    [45]、杨顺根.Pomini公司的密炼机及其新开发的HDM转子,橡机工业,1995,4:11
    [46]、祝卫国.三棱同步转子密炼机混炼机理及实验研究,[硕士学位论文],青岛:青岛科技大学,2003
    [47]、谢立.一种全新概念的密炼机,中国橡胶,2000,2:31
    [48]、涂学忠.新型密炼机,橡胶工业,2004,51:208
    [49]、Frank J.Borzenski(瞿光明译),间歇式混炼的相切型和啮合型密炼机(下),橡塑技术与装备,2004,30(3):35
    [50]、马舒文.适用于白炭黑胶料混炼的密炼机,世界橡胶工业,2003,31 (3):35-58
    [51]、方浩庭.密炼机销钉转子在生产中的应用,橡胶技术与装备,1987,1:22
    [52]、赵嘉澍,李木松,詹茂盛等.转子构型对密炼机混炼过程的影响,橡胶工业,1987,1:3
    [53]、赵嘉澍,詹茂盛,纪冰等.密炼机转子改造的新型转子—销钉转子,橡胶技术与装备,1987,1:19
    [54]、詹茂盛,赵嘉澍,纪冰等.销钉密炼室的混炼功率和排胶温度.橡胶技术与装备,1987,4:1
    [55]、赵嘉澍,詹茂盛,李木松等.销钉转子的混炼功率,橡胶工业,1988,2:95
    [56]、詹茂盛,纪冰,赵嘉澍等.销钉密炼室的混炼特性,橡胶技术与装备,1988,1:18
    [57]、詹茂盛,赵嘉澍,纪冰等.销钉密炼室密炼机的试验研究,特种橡胶制品,1988,1:41
    [58]、赵嘉澍,汪传生,纪冰等.同步转子的试验研究,橡胶技术与装备,1991,6:1
    [59]、赵士杰,李慧君.密炼机四棱转子的设计实验与探讨,橡胶工业,1985,2:13
    [60]、纪冰,胡海明,汪传生等.同速同向转子密炼机的研究,合成橡胶工业,1997,4:207,CA,1997,9:644
    [61]、程源.密炼机转子最佳曲率分析,中国橡胶加工学会首届学术报告会议汇编,青岛,1979,7,286
    [62]、赵士杰.密炼机四棱转子的设计实验与探讨,特种橡胶制品,1984,6:48
    [63]、王传军.密炼机混炼效能及转子变革浅析,特种橡胶制品,1984,5:65
    [64]、刘安祥,汪传生,赵嘉澍等.对同步转子密炼机混炼各种胶料的性能的研究,橡胶技术与装备,1995,4:1
    [65]、赵嘉澍,李木松,詹茂盛等。转子构型对密炼机混炼过程的影响,橡胶工业,1987,1:3
    [66]、王传军.密炼机转子形状,特种橡胶制品,1990,2:53-56
    [67]、梁基照.Banbury密炼机转子突棱螺旋角的优化设计,机械开发,1995,1:17-21
    [68]、梁基照,密炼机转子的优化设计,橡胶工业,2000,47 (5):278-282
    [69]、张志荣,刘梦华.密炼机转子的有限元强度分析,橡胶技术与装备,1998,24 (2):23
    [70]、程源.密炼机转子的轴向力与最佳螺旋角,橡胶工业,1976,6:1
    [71]、程源,黄钟,汪惠鑫.密炼机转子的强度与刚度计算,北京化工学院学报,1976,3
    [72]、程源.密炼机转子造型的理论探讨,北京化工学院学报,1979,1:86
    [73]、纪冰,胡海明,汪传生等.啮合型密炼机转子的三维造型,橡胶技术与装备,1996,22 (5):26
    [74]、汪传生,胡海明,纪冰等.计算机在密炼机转子设计中的应用,特种橡胶制品,1997,18 (6):31
    [75]、汪传生,胡海明,解沛.密炼机转子三维造型设计的探讨,特种橡胶制品,1998,19(3):38
    [76]、蒙仕泽.对密炼机设计及使用中的一些问题的看法,橡胶技术与装备,1983,4:12
    [77]、陈忠烈.密炼机部件堆焊耐磨合金材料的选用与加工工艺,橡胶技术与装备,1983,4:25
    [78]、程源泽.国外密炼机专利评述,橡胶技术与装备,1985,2:9
    [79]、张子安,阎锦涛.密炼机传动电机容量的确定及校核,橡胶技术与装备,1987,3:32
    [80]、巫静安.翻转式密炼机的结构及设计特点,橡胶技术与装备,1988,3:27
    [81]、金民哲,张普义.浅谈密炼机转子端面液压式密封装置的试制,橡胶技术与装备,1988,3:32
    [82]、翟涂波,黄友发,关德怡.密炼机转子轴端密封机理剖析,橡胶技术与装备,1989,2:1
    [83]、金民哲,张子安.探索设计加压捍炼机中的几个问题,橡胶技术与装备,1991,5:15
    [84]、阎锦涛.XM—160/30密闭式炼胶机三种型号的技术特征,橡胶技术与装备,1992,2:67
    [85]、刘梦华.270密炼机的开发实践与体会,橡胶技术与装备,1997,23 (5):1
    [86]、白振华,焦海田.GK270密炼机的常见故障与改进方法,橡胶技术与装备,1997,23(6):48
    [87]、姚琳.密炼机和开炼机的可变摩擦传动装置,世界橡胶工业,2004,31 (2):25-27
    [88]、李善平.GK-270N密炼机下顶栓驱动装置的改进设计,特种橡胶制品,1996,2:35
    [89]、刘景新.密炼机转子端面密封控制系统改造,橡塑技术与装备 2001,27 (12):39
    [90]、贺刚.F270密炼机转子支承装置在大修中的改造,橡塑技术与装备,2002,28 (10):29
    [91]、刘丽,高巍,阎锦涛.XM-160×30密炼机的改型设计,橡塑技术与装备,2004,30(4):30-42
    [92]、刘畅.新技术在F270密炼机上的应用,橡胶技术与装备,1997,23 (1):14
    [93]、李萍.提高GK270密炼机混炼胶质量的途径,轮胎工业,1998,18 (2):106
    [94]、吕强等.混炼工艺对混炼胶中炭黑分散性的影响,轮胎工业,2001,21 (9):559-561
    [95]、程源,王传军.新型转子橡塑共混用密炼机,特种橡胶制品,1988,4:39
    [96]、杜永鹏,李亚明,徐富春.应用密炼机进行橡塑共混工艺实验,橡胶工业,1996,43 (11):686
    [97]、何炜恩,黄政杰.密炼机的模块化控制,电机电器技术,1997,4:29
    [98]、秋士,密炼机微机控制系统.中国橡胶,2000,5:16
    [99]、张海,马铁军,麦均洪.MLJ-300型密炼机微机智能控制系统,弹性体,2001,11 (5):48-50
    [100]、李俊.实验用小型密炼机智能控制系统,橡胶工业,2004,51 (3):170-172
    [101]、A. Lasch and K. Frei, German 671, 213(1939)
    [102]、G. R. Gagliardi (to Farrel Corp. ), U. S. 3, 237, 241(March 1, 1966)
    [103]、E. H. Ahlefeld, A. J. Baldwin, P. Hold, W. A. Rapetski and H. R. Scharer (to Farrel Corp. )U. S. 3, 239, 878 (March 15, 1996)
    [104]、詹茂盛,赵嘉澍,纪冰等.销钉密炼室密炼机的试验研究,特种橡胶制品,1988,1:41
    [105]、Luigi Pomini. HDM Rotors-to Improve Distributive Mixing, Pomini News(Rubber and plastics Machinery Division), 1994, 21(4):4
    [106]、王传军.密炼机转子形状,特种橡胶制品,1990,2:53-56
    [107]、A. Lasch and E. Stromer (to Baker-Perkins), U. S. 1, 936, 248 (Nov. 21, 1933)
    [108]、A. P. Lohmann, U. S. 1, 406, 666(Feb. 14, 1922)
    [109]、吕百龄.橡胶工业用纳米材料现状及前景,中国橡胶,18(19):21-23
    [110]、严志云,贾德民.橡胶纳米复合材料研究进展,广东化工,2005,3:34-37
    [111]、崔明,刘振东,李立平.橡胶纳米填料应用研究进展.橡胶工业.2004,51(4):249-252
    [112]、王小萍,朱立新,贾德民.橡胶纳米复合材料研究进展,合成橡胶工业,2004,27(4):257-259
    [113]、任斌,黄河,余成.纳米复合材料的研究进展,信息记录材料,2004,5(2):44-48
    [114]、吕百龄,张惠丽.橡胶用各类填料的需求与市场,橡塑技术与装备,2004,30 (12):6-9
    [115]、杜鹃,王积悦.六棱转子密炼机,世界橡胶工业,2005,32 (12):26-31
    [116]、唐孝先编译.近期橡胶混炼装置及技术开发状况,世界橡胶工业,2002,29(5):30-31
    [117]、路波.新型六棱同步转子密炼机混炼机理及实验研究,[硕士学位论文],青岛:青岛科技大学,2005
    [118]、罗兵。新型连续混炼机转子几何造型及混炼机理的研究,[博士学位论文] 北京:北京化工大学,2003
    [119]、毕莲英译.间隙式橡胶密炼机转子叶片工作面半径的大小对胶料炼制过程的效率和胶料质量的影响,橡机工业,1997,1:5,原文(俄文)KUP,1996.3
    [120]、蒋修治.新型间歇式密炼机,世界橡胶工业,32 (7):33-37,
    [121]、毕莲英.密炼机转子棱峰的宽度对炼胶效率和胶料质量的影响,世界橡胶工业,32(1):27-29
    [122]、曹志奎,黄瑞清主编.机械CAD技术基础,上海:上海交通大学出版社,1996,5
    [123]、汪传生.解沛密炼机转子三维造型设计的探讨,特种橡胶制品,1998,19(3):38-41
    [124]、汪传生,胡海明.计算机在密炼机转子设计中的应用,特种橡胶制品.1997,18(6):31-34
    [125]、何煜琛.Pro/ENGINEER野火中文版建模基础技术,北京:清华大学出版社,2004.7
    [126]、张海,赵素合主编.橡胶及塑料加工工艺,北京:化学工业出版社,1997,163
    [127]、孟翠省.纳米技术在高分子材料改性中的应用.化工新型材料,2001,29(2):3-6.
    [128]、贺鹏,赵安赤.聚合物改性中纳米复合新技术.高分子通报,2001,51(1):74-81.
    [129]、郝爱.橡胶纳米复合材料研究进展.弹性体,2001,11(1):37-44.
    [130]、陈晓婷,唐旭东,王玉忠.聚合物纳米复合材料研究进展.合成树脂及塑料,2001,18(2):62-66.
    [131]、高琼芝,周彦豪,陈福林等.纳米技术在橡胶工业中应用的新进展.合成橡胶工业,2003,26(4):197-202.
    [132]、张立群,吴友平,王益庆等.橡胶的纳米增强及纳米复合技术.合成橡胶工业,2000,23(2):71-77
    [133]、PramanikM, SrivastavaSK, Samantaray B K. Rubber-clay nanocomposite by solution blending. J. Appl. Polym. Sci., 2003, 87(14):2216-2220.
    [134]、Zhou S X, Wu L M, Sun J. Effect of nanosilica on the properties of polyester-based polyurethane. J. Appl. Polym. Sci., 2003, 88(1):189-193.
    [135]、Kim T H, Lim S T, Lee C H. Preparation and theological characterization of intercalated polystyrene/organophilic montmorillonite nanocomposite. J. Appl. Polym. Sci., 2003, 87(13):2106-2112.
    [136]、徐国财,张立德.纳米复合材料,北京:化学工业出版社,2002,29-30
    [137]、崔明,刘振东,李立平.橡胶纳米填料应用研究进展.橡胶工业.2004,51(4):249-252
    [138]、Daniel S, Deepak S, Emmanuel P. New advances inpolymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6(2): 2052212
    [139]、Amass W, AmassA, Tighe B. A review of biodegradable polymers, uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recen tadvances in biodegradation studies. Polymer International, 1998, 47(2): 89
    [140]、Ratto J A, Stenhouse P J, Auerbach M. Processing performance and biodegradability of a thermoplastic aliphatic polyester/starch system Polymer, 1999, 40(24): 6777—6788
    [141]、Liang L, Liu J, Gong X Y. Thermosensitive poly(N—isopropylacrylamide)—clay nanocomposites with enhanced temperature respons. Langmuir, 2000, 16(25): 9895—9899
    [142]、Gilman J W, Jackson C L, Morgan A B. Flammability properties of polymer layeredsilicate (clay) nanocomposites polypropylene, polystyrene and polyamide—6 claynanocomposites. FlameRetard, 2000(9): 49268
    [143]、Voulgaris D, Petridis D. Emulsifying effect of dimethy tadecylammonium-hectorite inpolystyrene/poly(ethylmethacrlate) blends. Polymer, 2002, 43(8): 2213—2218
    [144]、熊传溪,闻荻江,皮正杰.高分子材料科学与工程,1994,10(4):69
    [145]、Shang S Williams J W. Journal of Materials Science, 1995, 30:4323
    [146]、井上公雄.最近混炼装置技术开癸.日本协会言志,2001,74(2).75-81.
    [147]、Robin K. Connelly, Jozef L. Kokini, The effect of shear thinning and differential viscoelasticity on mixing in a model 2D mixer as determined using FEM with particle tracking, J. Non-Newtonian Fluid Mech., 123 (2004) 1-17
    [148]、J. J. Cheng, I. Manas-Zloczower, Hydrodynamic analysis of a Banbury mixer—-2-D flow simulations for the entire chamber, Polym. Eng. Sci. 29 (1989) 1059.
    [149]、近期橡胶混炼装置及技术开发状况,唐孝先,世界橡胶工业,2002,05
    [150]、杜平安,甘娥忠,于亚婷.有限元法一原理、建模及应用,国防工业出版社,2004,8
    [151]、邢福生.结构有限元技术及其发展水科学与工程技术,2005,增刊,46-47
    [152]、黎西亚,李成刚,胡于进.车架有限元分析技术发展综述,专用汽车,2001,1:13-15
    [153]、胡忠.材料加工过程计算机模拟的现状与未来,塑性工程学报,1998,5 (2):1-8
    [154]、陈建辉.圆柱齿轮的三维参数化建模与应力分析,硕士学位论文,西北工业大学,2005
    [155]、张海,鲍舟波,陈截.橡胶混炼过程功率曲线新的物理意义,橡胶工业,1998,45(12)707-710
    [156]、张志荣,刘梦华.密炼机转子的有限元强度分析,橡胶技术与装备,1998,24(2):23[2]
    [157]、荀兵,带式输送机重型传动滚筒的有限元分析,起重运输机械,2003,(2):13-15
    [158]、俞世春,张玉红,试论在整机状态下用焊接法修复密炼机转子断裂的可靠性,新疆化工,2001,(2):10-11
    [159]、李忠涛,苏献政,宋强,引进GK270N密炼机的大修,橡胶技术与装备,1998,24(4):42-43
    [160]、王锡平,逢渤.F270密炼机组的拆迁大修·改造,橡胶技术与装备,1999,25(4):48-49
    [161]、彭志深等.F270密炼机的大修与改造,橡胶技术与装备,2000,26 (3):42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700