低风速小型永磁风力发电机叶片及支承的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能是绿色可再生能源。在当今世界能源短缺,同时又突出强调环保的情况下,大力开发风能资源是普遍的趋势和潮流。降低风力发电机的启动风速可以更充分的利用风能资源,而叶片和主轴的支承是影响风力发电机启动风速的主要因素之一,由此开展对风力发电机叶片和主轴支承方式的研究具有重要的现实意义。
     介绍了几种叶片的设计理论,贝茨理论表明风力发电机的最大风能利用系数为0.593,至今都没有风力发电机能超过这个极限;介绍了叶素理论,通过叶素理论的假设条件推导出了叶素的受力情况和叶素上的轴向风轮转矩。介绍了涡流理论,涡流理论是经过风轮后以及风轮上方气流的漩涡与相似导线的磁场理论得到的,其结论和贝茨理论一致。
     在叶片的技术方面本文主要介绍了翼型的相关基本概念以及NACA系列翼型和风力发电机专用翼型,并利用CFD软件Fluent对两种NACA系列翼型进行了气动性分析,包括对压力场、速度场以及升阻比特性的对比分析,并对翼型进行了改进设计使其更能满足低风速启动的要求。将新翼型与原来的翼型进行对比分析,确定适合的翼型。根据贝茨理论,采用设计的翼型对叶片进行实体建模和有限元分析。
     为了降低风力发电机的启动阻力矩,在小型风力发电机中采用永磁轴承的支承方式。对永磁轴承进行有限元分析得到内外磁环之间的径向偏移对永磁轴承的径向力和轴向力的影响,根据分析结果对永磁轴承进行结构设计。通过两台采用不同支承方式的风力发电机的对比实验分析了磁悬浮支承对风力发电机启动阻力矩的影响。
     设计低风速小型磁悬浮风力发电机样机,主要分析了小型永磁悬浮风力发电机在装配时所遇到的问题和解决方法。装配永磁轴承时由于磁环产生的强大磁力,有必要设计出一套装配机构,并对永磁轴承的装配过程进行了详细介绍。简单介绍了整机的装配过程并对小型永磁悬浮风力发电机的结构特点进行了分析。
Wind energy is green and renewable energy. To develop wind energy resources vigorously was a common trend in the case of the world's energy shortages and emphasizing the environmental protection. Reducing the wind turbine's start-up wind speed can fully exploit the wind energy. The blade and the bearing of the shaft was one of the criticality factors which can expanded the utilization of wind resources, so it had practical significance to research the blade of the wind turbine and the supporting way of the shaft.
     Some design theories of blade was introduced. The Betz theory indicated that the maximum wind energy utilization coefficient of wind turbine was 0.593, Till now there was no wind turbine could exceed this limit. Introduced the blade element theory, derived the force distribution and the axial torque of the element blade by the assumptions. Introduced the vortex theory,vortex theory was derived by the magnetic field theory and the air vortex which through the wheel and above the wheel, the result was equal with the Betz theory.
     The basic conceptions of the airfoils and the NACA series airfoils and the dedicated airfoils was introduced. The aerodynamic of two kinds of NACA series airfoils was analyzed by the CFD software Fluent, included the comparative analysis of the pressure field, velocity field and the Lift-drag ratio characteristics. The airfoil was improved as to satisfy the requirements of low wind speed start. The appropriate airfoil was determined by the comparative analysis between the NACA airfoil and the improved one. According to the Betz theory, The blade was modeled and element analyzed by used the improved airfoil.
     The magnetic bearings was used in the small wind turbine to reduced the start moment of resistance of the wind turbine. The influences of the radial force and the axial force by the radial offset was analyzed, the structural design of magnetic bearings was carried on by the analysis results. The influences of the wind turbine start moment of resistance by the magnetic bearing was analyzed through the comparative experiment about two wind turbines which used different kinds of bearing ways.
     The small magnetic wind turbine was designed, the problems and the solutions when assembling the small magnetic wind turbine was analyzed. As the magnetic rings produced strong magnetic force when assembling, it was necessary to design an assembly mechanism, the assembly process of magnetic bearings was introduced in details. The assembly process of the general was introduced and the structural features of the small magnetic wind turbine was analyzed.
引文
[I]Arthouros Zervos, Christian Kjaer. Pure Power Wind energy targets for 2020 and 2030. European Wind Energy Association,2009:20-22
    [2]施鹏飞.2008年中国风电装机容量统计.2009.32(2):15~17
    [3]潘艺,周鹏展,王进.风力发电机叶片技术发展概述.湖南工业大学学报,2007.21(3):48~51
    [4]李祖华.风力发电现状和复合材料在风机叶片上的应用.高科技纤维与应用,2008.33(2):28~31
    [5]许英坚.美国低风速风电技术研究.热力发电,2005.11:64~65
    [6]M. Jureczko. M.Pawlak, A. Mezyk. Optimisation of wind turbine blades, Journal of Materials Processing Technology,2005.167:463~471
    [7]Paul S. Veers, Dayton A. Griffin, John F. Mandell. Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades. Wind Energy,2003.6:245~259
    [8]Onder Ozgener. A small wind turbine system (SWTS) application and its performance analysis. Energy Conversion and Management,2006.47:1326~1337
    [9]Rachid Younsi, Ismail El-Batanony, Jeur-Bernard Tritsch. Dynamic study of a wind turbine blade with horizontal axis. Mech A/Solids,2001.20:241~252
    [10]S. M. HABALI. Design and testing of small mixed airfoil wind turbine blades, Renewable Energy,1995.6 (2):161~169
    [11]K. J. Jackson, M. D. Zuteck, D. Berry. Innovative Design Approaches for Large Wind Turbine Blades. Wind Energy,2005.8:141~171
    [12]Xiaoping. Qian, Deba. Dutta. Design of heterogeneous turbine blade. Computer-Aided Design,2003.35:319~329
    [13]Korn. Saranyasoontorn, Lance. Manuel. A Comparison of Wind Turbine Design Loads in Different Environments Using Inverse Reliability Techniques. Journal of Solar Energy Engineering,2004.126:1061~1062
    [14]J. W. van Wingerden, A. W.Hulskamp.On the Proof of Concept of a'Smart'Wind Turbine Rotor Blade for Load Alleviation. Wind Energy,2008.11:265~280
    [15]T. F. Chan,Member, L. L. Lai.An Axial-Flux Permanent-Magnet Synchronous Generator for a Direct-Coupled Wind-Turbine System. IEEE Transactions on Energy Conversion,2007.22:86~93
    [16]F. M. Jensen, B. G.Falzon, J. Ankersen. Structural testing and numerical simulation of a 34 m composite wind turbine blade. Composite Structure.2006.76:52~61
    [17]Santiago. Basualdo. Load alleviation on wind turbine blades using variable airfoil geometry. Wind Engineering Volume,2005.29:169~182
    [18]A. J. Eggers, Jr, R. Digumarthi, K. Chaney. Wind Shear and Turbulence Effects on Rotor Fatigue. Transactions of the ASME,2003.125:402~408
    [19]A. K. Wright, D.H. Wood. The starting and low wind speed behaviour of a small horizontal axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 2004.92:1265~1279
    [20]Scott J. Schreck, Michael C. Robinson. Horizontal Axis Wind Turbine Blade Aerodynamics in Experiments and Modeling. IEEE Transactions on energy conversion, 2007.22:245~259
    [21]陈培,杜绵银,刘杰平.风力机专用翼型发展现状及其关键气动问题分析.电网与清洁能源,2009.25(2):36~40
    [22]盖晓玲,田德,王海宽等.风力发电机叶片技术的发展概况与趋势.农村牧区机械化,2006.69(4):53~56
    [23]Timmer W A, van Rooij R P J O M. Summary of the delft university wind turbine dedicated airfoils [R]. USA:AIAA 2003-0352,2003-1
    [24]黄晓东,孙正军,江泽慧.风机叶片的发展概况和趋势.太阳能,2007.4:37~38
    [25]张维智,贺德馨,张兆顺.低雷诺数高升力翼型的设计和实验研究.空气动力学学报,1998.16(3):363~365
    [26]孔繁美,华俊,向锦武等.高升力与失速特性缓和的翼型设计研究.北京航空航天大学学报,2002.28(2):235~237
    [27]张才文.一种改进的翼型设计方法.南京航空学院学报,1991,23(1):125~129
    [28]叶枝全,黄继雄,陈严等.风力机新系列翼型气动性能研究[J].太阳能学报.2002,23(2):211~216
    [29]乔志德.自然层流超临界翼型的设计研究.流体力学实验与测量.1998,12(4):23~30
    [30]李军向.大型风机叶片气动性能计算与结构设计研究:[博士学位论文].武汉:武汉理工大学材料学院,2008
    [31]张果宇,冯卫民,刘长陆等.风力发电机叶片设计与气动性能仿真研究.能源研究与利用,2000,(1):21~25
    [32]朱春建,胡丹梅,杜朝辉.水平轴风力机三维气动特性实验.能源技术,2005,26(3):93~95
    [33]刘晓燕.风力机叶片设计和稳定性分析:[硕士学位论文].西安:西北工业大学人机与环境工程,2004
    [34]孙珊霞.风力发电机叶片结构及铺放性能研究:[硕士学位论文].武汉:武汉理工大学机电工程学院,2007
    [35]马昊旻.水平轴风力机桨叶结构动力学特性研究:[硕士学位论文].汕头:汕头大学机械电子工程系,2001
    [36]常明飞.风力机桨叶动力学特性研究:[硕士学位论文].沈阳:沈阳工业大学,2006
    [37]张承东.风力机叶片的动力学特性分析及分形特征研究:[硕士学位论文].天津:天津工业大学,2007
    [38]刘翠.风力机叶片的优化设计及其动力学特性分析:[硕士学位论文].长春:吉林大学,2004
    [39]谢晓芳(译),陈余岳(校).自适应性风力发电机叶片的设计概念评估.玻璃钢,2006,(1):32~42
    [40]李晟.基于FLUENT软件的轴流风机设计初步研究:[硕士学位论文].西安:西北工业大学,2004
    [41]Tony Burton等著,武鑫等译.风能技术[M].北京:科学出版社,2007,9
    [42]苏绍禹.风力发电机设计与运行维护[M].北京:中国电力出版社,2002:89--110
    [43]J.L.Tangler, D.M.Somers. NREL Airfoil Families for HAWTs. Updated AWEA.1995
    [44]Peter. Fuglsang, Christian. Bak. Development of the RISφ Wind Turbine Airfoils. Wind Energy,2004.7:145-162
    [45]Kazumasa Ameku, Baku M, Nagai, Jitendro Nath Roy. Design of a 3 kW wind turbine generator with thin airfoil blades. Experimental Thermal and Fluid Science,2008.32: 1723-1730
    [46]冀润景.风力机叶片设计方法的发展[J].中国电力教育,2006;129—131.
    [47]吴建民,陈则霖,吴文正.高等空气动力学[M].北京:北京航空航天大学出版社,1992:310
    [48]倪受元.风力发电机讲座.中国科学院电工研究所.2007
    [49]陈晓东,孙永平,郭志平等.复合材料纵向模量有效预测方法.纤维复合材料,2008.4:47~48
    [50]胡业发,周祖德等.磁力轴承的基础理论及应用[M].北京:机械工业出版社,2006.3
    [51]李国坤,闻淑英,李珂.微摩擦力全永磁悬浮轴承在风力发电机中的应用

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700