高动态环境捷联惯导算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题从提高捷联惯导系统姿态与速度输出精度的实际需求出发,分析了高动态环境下算法误差的产生机理,针对载体机动对姿态、速度计算的影响,设计了高性能的捷联算法。并对其中的关键技术展开深入的研究。论文的主要工作有:
     首先分析了高动态环境下姿态算法的误差源,包括:陀螺的频带宽度限制、陀螺安装误差、陀螺采样不同步、陀螺的量化误差和陀螺标度因数误差。给出了它们与陀螺测量角速度误差的关系式。从惯导系统的误差传播方程入手,推导出上述陀螺器件误差引入的姿态误差整流分量表达式。全面而系统得阐述了高动态环境下姿态误差的产生机理。
     论述了经典圆锥运动不同表述方式的一致性。由经典圆锥运动引申出伪圆锥运动。以机抖激光陀螺捷联惯导系统为例,研究了机械抖动偏频引入伪圆锥运动,推导出伪圆锥误差的表达式。分析了伪圆锥误差的起因、影响因素,研究了圆锥补偿算法在伪圆锥运动中的适用性。从姿态计算误差最小化的角度,提出了机械抖动频率的设计准则,并设计数字滤波器去除抖动信号噪声。分析结果表明:圆锥补偿算法的使用增加了伪圆锥运动造成的伪圆锥误差。合理设置抖动频率,结合低通数字滤波方案可以有效避免伪圆锥运动对于姿态计算的影响。
     证明了在典型圆锥运动中优化的姿态算法在载体其它机动环境中具有普遍适用性。提出了评价姿态算法的精度准则,并推导出采用四阶龙格库塔积分的四元数算法在典型圆锥环境中的算法误差。设计了角速度为输入的圆锥补偿算法,应用于陀螺输出为角速度的捷联惯导系统,有效地提高了姿态精度。设计了陀螺滤波信号作为输入的圆锥补偿算法,应用于机抖激光陀螺捷联惯导系统,避免了滤波信号畸变对姿态计算的影响,保证了系统的姿态输出精度。
     证明了在典型划船运动下优化算法在载体其它机动环境中具有普遍适用性。根据线性微分方程的叠加定理,在两时间尺度上对捷联惯导系统方程进行分析,重新编排了捷联速度算法。应用一种新的划船补偿算法应对比力转换过程中比力矢量的改变。分析结果表明:该算法与传统四子样速度算法精度近似,且具有数字离散形式,更适合在导航计算机上使用。
     最后以螺旋理论作为数学工具设计螺旋补偿算法。算法用惯性传感器输出值的叉乘项构造螺旋补偿项,并设置典型螺旋环境,优化了螺旋补偿项中的待定系数。对算法进行编排,给出了由螺旋矢量计算导航参数的具体步骤。证明了螺旋补偿算法与传统算法在导航微分方程上的一致性,并对两种算法的误差源进行了分析比较。仿真与分析看出:采用相同子样数,螺旋补偿算法的计算精度高于传统算法。
For the requirement of improving the attitude and velocity accuracy for strapdown inertial navigation system (SINS), this dissertation analyses the causes of algorithm error under high dynamic environments. The efficient SINS algorithms are designed and the key techniques of SINS algorithms are studied deeply, so that the SINS can deal with the infection of vehicle maneuvers. The main works are as follows:
     Firstly the causes of attitude algorithm error under highly dynamic environments are analyzed. Those are sample-bandwidth limitation, installation error, synchronous samples, quantization error and scale-factor error. The error of gyro measured angle velocity is given. According to the basic error equation for SINS, the expressions for DC portion of attitude error caused by gyro errors are deduced. The causes of attitude error under high dynamic environment are expatiated completely and systemically.
     The consistency of different representations for classical coning motion is discussed here. Referred to the classical coning motion, the pseudo coning motion is presented. Setting the example of dithered Laser gyro, the pseudo coning motion induced by dithered machine is studied. The expression of pseudo coning error is obtained, and the causes and influence factors of pseudo coning error are given. The applicability of conventional coning algorithms is studied under pseudo coning motion. In order to minimize the attitude error, the guide line for dithered machine design is provided. The digital filter is designed to demodulate gyro signal. The analysis and simulation show: using coning algorithm will increase the pseudo coning error made by pseudo coning motion. Setting the dithered frequency reasonably, using low-pass digital filter can avoid the effect of pseudo coning motion.
     The coning algorithms optimized under classical coning motion are applicable under other testing environments. The accuracy rule is provided to evaluate the attitude algorithms. The error expression for quaternion algorithm using Runge-Kutta integration is presented. The improved coning algorithm using angle velocity as input is designed to improve the accuracy for attitude compute. The modified coning algorithm using filter signal as input is designed to avoid the infection of filter-signal aberrance. The modified algorithm can improve the attitude accuracy for dithered laser gyro SINS.
     The sculling algorithms optimized under classical sculling motion are applicable under other testing environment. Based on the superposition theorem of linear differential equation, the SINS equation is analyzed. The strapdown algorithm is rearranged after predigesting the states equations in two-time scales. A new sculling compensation algorithm is designed to deal with the specific force variation during velocity updating interval. The simulation results show that the new algorithm and the conventional four-sample algorithm have the similar accuracy. The new algorithm expressed in digital discrete format is more suitable for SINS computer than conventional ones.
     In the end, the screw compensation algorithm based on screw theory is designed. The algorithm uses the cross products of the outputs from inertial sensors to compute the screw compensation term. Set the classical screw environment to optimize the undecided coefficients. The algorithm arrangement and the procedure using the screw vector to compute navigation parameters are listed. The differential equation consistency between screw compensation algorithm and conventional algorithm is verified. The causes of computation error for the two algorithms are analyzed. The analysis and simulations show that the screw compensation algorithm performs better than conventional algorithms with the same samples per update interval.
引文
[1]以光衢.惯性导航原理[M].北京:航空工业出版社,1987
    [2]陈哲.捷联惯导系统原理[M].北京:宇航出版社,1986
    [3]曲东才.捷联惯导系统发展及其军事应用[J].航空科学技术.2004,13(4):27-31
    [4]万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1998
    [5]谈振藩,李东明,郝颖.一种低成本的捷联惯导系统的初始对准方法[J].中国惯性技术学报.2005,13(6):28-32页
    [6]陈小刚.捷联惯导中的划船效应及其补偿算法[J].哈尔滨工程大学学报.2002,31(4):42-50页
    [7]张士貌.适合高动态环境的捷联惯导系统高精度算法研究[D].西安:西北工业大学,2002
    [8]杨畅.航天仪表40年与未来趋势[J].导弹与航天运载技术.2000,243(1):17-22页
    [9]王养柱.动态环境下捷联惯性导航系统的设计与研究[D].北京:北京航天航空大学,2001
    [10]王洪志,王彦国.新一代陀螺的发展及应用分析[J].光学仪器.2004,26(2):49-53页
    [11]张树侠,孙静.捷联式惯性导航系统[M].北京:国防工业出版社,1987
    [12]王宇.机抖激光陀螺捷联惯导系统的初步探索[D].长沙:国防科技大学博士学位论文.2005
    [13]凌明祥.船用激光捷联惯性导航系统的关键技术研究[D].哈尔滨:哈尔滨工程大学博士学位论文.1999
    [14]Richard L.Inertial Navigation Technology From 1970-1995[J].Navigation,1995,42(1):165-186P
    [15]汤建勋.机械抖动激光陀螺抖动偏频系统的研究与设计[D].长沙:国防 科技大学博士学位论文.2000
    [16]Daniel D R,Johnson P.Frequency Domain Analysis for RLG System Design[J].Navigation,1987,34(3):179-189P
    [17]Matthews A,Welter H.Cost-Effective,High-Accuracy Inertial Navigation [J].Navigation,1989,36(2):157-172P
    [18]Levinson E.Accuracy Enhancement Techniques to the Marine Ring Laser Inertial Navigaton[J].Navigation,1987,34(1):64-87P
    [19]龚云鹏,刘宁平.法国环形激光陀螺惯性技术[R].出国考察技术报告.1997
    [20]孙红军.基于FOG捷联式罗经系统的研究与设计[D].哈尔滨:哈尔滨工程大学硕士学位论文.2006
    [21]Sanders G A,Fiber optic gyros for space,marine and aviation application [J].SPIE,1996,2837:61-67P
    [22]张兴周.Sagnac效应光纤陀螺[J].传感器技术.1998,17(1):59-62页
    [23]时德刚,刘哗,邹建龙等.光纤传感技术发展及军需分析[J].计算机测量与控制.2002,10(9):561-563页
    [24]曾杜林.光纤陀螺技术发展及军需分析[J].应用光学.2001,21(1):1-4页
    [25]胡卫东.光纤陀螺发展评述[J].红外技术.2001,23(5):29-33页
    [26]宋凝芳,杨功流.光纤陀螺捷联式惯性系统的研究与设计[J].中国惯性技术学报.2002,10(1):10-19页
    [27]孙立宁,周兆英,龚振邦.MEMS国内外发展状况及我国MEMS发展战略的思考[EB].http://www.mie.gov.cn/paper/mems.htm
    [28]丁衡高.微米纳米技术-面向21世纪的军民两用技术[J].中国惯性技术学报.1995,16(1):1-7页
    [29]Mettler E,Hadaegh F.Micro Guidance and Control synthesis:New Components,Architectures and Capabilities[C].Proceedings of the National Aeronautics and Space Administration.USA,1993
    [30]吴峻,程向红,万德钧.光纤捷联惯性系统的发展与关键技术的研究[R].惯性技术发展动态发展方向研讨会.2004
    [31]Connelly J H,Gilmore M S.Micro-Electromechanical Instrument and Systems Development at the Charles Stark Draper Laboratory[C].Charles Stark Draper Lab,Inc.,Cambridge.MA.1995
    [32]Kuehnel W,Sherman S.A Surface Micro machined Silicon Accelerometer with On-Chip Detection Circuitry[J].Sensors and Actuators,1994,45(7):7-16P
    [33]Peshekhonov V G.Integrated Navigation Systems Based on Miniature Inertial Modules[C].Proceedings of the 2nd International Symposium on Inertial Technology,1998
    [34]孟军,茅投松.微硅加速度传感器的发展[J].电子器件.1999,1(4):293-298页
    [35]Barbour N,Schmidt G.Inertial sensor technology trends[J].IEEE Sensors Journal 2001,1(4):332-339P
    [36]Stringer J.The air force institute of technology(AFIT) micro electro-mechanical systems interferometer gyroscope[D].The Faculty of the Graduate School of Engineering and Management,2000
    [37]林恒,刘惠兰,杨德伟,张春熹.微光机电(MOEMS)陀螺的技术及发展[J].中国惯性技术学报.2005,13(2):85-90页
    [38]Ford C,Ramberg R.Cavity element for resonant micro optical gyroscope[J].IEEE AES Systems Magazine,2001,56(1):33-36
    [39]Norgia M,Donati S.Hybrid opto-mechanical gyroscope with injection-interferometer readout[J].Electronics Letters,2001,37(12):756-758
    [40]杨艳娟,黄德鸣,张延顺.一种适合工程实用的捷联航姿算法[J].中国惯性技术学报.2001,45(2):12-15页
    [41]黄吴,邓正隆.旋转矢量航姿算法的一种新的表达式.宇航学报.2001,27(5):92-98页
    [42] P G Savage. Strapdown inertial navigation integration algorithm design,part 1: attitude algorithms[J]. Journal of Guidance, Control, and Dynamics.1998,21(1):208-221P
    [43] P G Savage. Strapdown inertial navigation integration algorithm design,part 2: velocity and position algorithms[J]. Journal of Guidance, Control and Dynamics. 1998, 21(2):208-221P
    [44] J G Lee, Y J Yoon. Extension of strapdown attitude algorithm for high-frequency base motion[J]. Journal of Guidance, Control, and Dynamics. 1990, 27(4):738-743P
    [45] P G Savage. A new second-order solution for strapped-down attitude computation[C]. AIAA/JACC Guidance and Control Conference. 1966.
    
    [46] J W Jordan. An accurate strapdown direction cosine algorithm. NASA TN-D-5384, 1969
    [47] J E Bortz. A new mathematical formulation for strapdown inertial navigation, IEEE Transactions on Aerospace and Electronic Systems[J].1971, 7(1):61-66P
    [48] R Miller. A new strapdown attitude algorithm[J]. Journal of Guidance,Control and Dynamics, 1983, 6(4):287-291P
    [49] Y F Jiang. Improved strapdown coning algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems. 1992, 28(2):484-490P
    [50] V Z Gusinsky, V M Lesyuchevsky, Y A Litmanovich, H Musoff and G T Schmidt. New procedure for deriving optimized strapdown attitude algorithm[J]. Control and Dynamics. 1997, 20(4): 673-680P
    [51] J G Mark and D Tazartes. Application of coning algorithms to frequency shaped data[C]. presented at the 6rd, St. Petersburg International Conference on Integrated Navigation Systems, Central Scientific and Research Institute. Petersburg, Russia, 1996
    [52] G A Harasty. Computational requirements for a digital analytic inertial platform system[C]. presented at the 12th Fast Coast Conf. on Aerospace and Navigational Electronics, 1965
    [53] I Y Bar-Itzhack, Navigation computation in terrestrial strapdown inertial navigation systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, 13(6): 679-689
    [54] M Yachter. A novel computational technique for no-gimbal inertial guidance system [A]. Amer. Bosch Arma Crop Interim Eng. Rep.1 AD-345568, 1966
    [55] J C WilcoY, A new algorithm for strapdown inertial navigation,Transactions on Aerospace and Electronic System, 1967(3): 796-802P
    [56] Y A Litmanovich, V M Lesvuchevslcy and V Z Gusinslcv, Two new classes of strapdown navigation algorithms[J]. Journal of Guidance,Control, and Dynamics, 2000,27(1):34-44P
    [57] P G Savage, Analytical modeling of sensor quantization in strapdown inertial navigation error equations, Journal of Guidance, Control, and Dynamics, 2002, 25(5): 833-812P
    [58] A Soloviev. Investigation into performance enhancement of integrated global positioning/inertial navigation Systems by frequency domain implementation of inertial computational procedures[D]. in College of Engineering and Technology: PhD thesis, Ohio University, 2002
    [59] Y X Wu, Strapdown inertial navigation system algorithm based on dual quaternion[J]. IEEE Transactions on aerospace and electronic systems.2005, 41(1):110-131P
    [60] Gilmore J P. Modular Strapdown Guidance Unit with Embedded Microprocessors[J]. IEEE Transactions on aerospace and electronic systems. 1980, 3(1):201-205P
    [61]Robin B.A New Strapdown Attitude Algorithm[J].Journal of Guidance.1983,3(1):287-290P
    [62]Musoff H.Study of Strapdown Navigation Attitude Algorithms[J].Journal of Guidance,Control,and Dynamics.1995,18(2):287-290P
    [63]Jiang Y F,Lin Y R On the Rotation Vector Differential Equation[J].IEEE Transactions on Aerospace and Electronic Systems.1991,27(1 ):181 - 183P
    [64]Brett Van Sreenwyk.Using the Matrix Exponential solution to the Direction Cosine Differential Equation[J].PLANS,1996:626-630P
    [65]Jiang Y F,Lin Y R Error Analysis of Quaternion Transformations[J].IEEE Transactions on Aerospace and Electronic Systems.1991,27(4):634-638P
    [66]Park C G.Formalized Approach to Obtaining Optimal Coefficients for Coning Algorithms[J].Journal of Guidance.1999,22(1):165-169P
    [67]薛祖瑞.关于捷联惯导系统圆锥误差的诠释[J].中国惯性技术学报.2000,8(4):46-49页
    [68]华宇清,于国宏.捷联系统姿态算法比较及研究[J].航天控制.2000,8(3):10-16页
    [69]刘巧光,杨海军,郭美凤,腾云鹤,章燕申.捷联惯性导航系统的姿态算法优化设计[J].中国惯性技术学报.1999,7(2):1-5页
    [70]秦永元,张士邀.捷联惯导姿态更新的四子样旋转矢量优化算法研究[J].中国惯性技术学报.2001,9(4):1-7页
    [71]张士邀,刘放,秦永元.捷联惯导姿态算法若干问题的研究[J].中国惯性技术学报.2002,10(2):1-6页
    [72]聂水茹.高动态环境下捷联惯导的优化算法研究[D].西安:西北工业大学硕士学位论文.2003
    [73]高伟.捷联惯导系统的数据采集技术及初始对准研究[D].哈尔滨:哈尔滨工程大学硕士学位论文.2002
    [74]张岩.激光陀螺捷联惯导系统的数据采集电路分析与设计[D].长沙:国 防科学技术大学硕士学位论文.2002
    [75]潘献飞.激光陀螺控制电路小型化数字化技术研究[D].长沙:国防科学技术大学硕士学位论文.2002
    [76]周顺林.以光衙.抑制动态环境误差的算法研究[J].中国惯性技术学报.1996,4(1):22-27页
    [77]顾东晴,秦永元.捷联惯导量化误差建模研究[J].中国惯性技术学报.2004,12(6):13-18页
    [78]凌明祥,张树侠.激光陀螺随机噪声分析及其性能评价[J].中国惯性技术学报.1998,6(4):51-55.
    [79]张延顺,陈家斌,杜丽辉等.单光纤光纤陀螺误差分析[J].中国惯性技术学报.2003,29(4):458-463页
    [80]王纪南,鲁浩.激光陀螺测试方法的研究和误差模型的建立[J].航空兵器.2004;32(4):9-13页
    [81]吴美平.陆用激光陀螺捷联惯导系统误差补偿技术研究[D].长沙:国防科学技术大学博士学位论文.2000
    [82]许高雁.基于DSP和CPLD技术的激光陀螺捷联惯导系统小型化导航CPU板的研制[D].长沙:国防科学技术大学硕士学位论文.2005
    [83]缪玲娟,林丽.减小动态误差的捷联系统姿态算法研究[J].兵工学报.2000,21(3):229-232页
    [84]袁信.导航系统[M].北京:航空工业出版社,1993
    [85]Edwards A.The State of Strapdown Inertial Guidance and Navigation[J].Navigation,1971,18(4)
    [86]周江华,王峰等.多子样旋转矢量捷联姿态算法的一般结果[J].航天控制.2002,24(2):18-22页
    [87]张朝霞,凌明祥等.捷联惯导系统姿态算法的研究[J].惯性技术学报.1999,7(1):13-16页
    [88]吴俊伟,黄德鸣.捷联惯导系统的捷联算法误差补偿[J].中国惯性技术学 报.2001,15(6):7-11页
    [89]张玲霞.基于对偶性原理捷联惯导划船误差补偿优化算法[J].中国惯性技术学报.2003,24(10):33-38页
    [90]许刚,陆恺等.船用捷联惯导系统的姿态算法研究[J].中国惯性技术学报.1997,5(4):15-18页
    [91]侯青剑,缪栋,彭云辉.激光陀螺随机漂移数据建模与滤波[J].中国惯性技术学报.2005,13(4):39-42页
    [92]张树侠.激光陀螺漂移的数据建模和滤波[J].中国惯性技术学报.1999,7(4):70-72页
    [93]郑露滴,汤全安,章燕申.环形激光陀螺误差测试及估计[J].航空学报.2001,22(1):57-60页
    [94]李文秀,赵乃真.数字控制系统[M].哈尔滨:哈尔滨工程大学出版社,1991
    [95]王翼.离散控制系统[M].北京:科学出版社,1987
    [96]谢列金,库库利耶夫.激光陀螺及其应用[M].北京:科学出版社,1992
    [97]张岩,李延志.基于FPGA的抖动偏频激光陀螺高精度信号解调[J].计算机测量与控制.2006,14(7):950-952页
    [98]徐丽娜,谢青.捷联系统航姿算法分析[J].自动化技术与应用.2000,19(1):6-9页
    [99]缪玲娟,林丽.减小动态误差的捷联系统姿态算法研究[J].兵工学报.2000,21(3):229-232页
    [100]凌明祥,张树侠.激光陀螺随机噪声分析及其性能评价[J].中国惯性技术学报.1998,6(2):51-55页
    [101]汤巍.关于陀螺信号处理中小波基选取的研究[J].中国惯性技术学报.2002,10(5):28-30页
    [102]胡广书.数字信号处理[M].北京:清华大学出版社,2003
    [103]V Z Gusinsky,V M Lesuchevslcy,Y A Litmanovich.Optimization of a strapdown attitude algorithm for a stochastic motion[J].Journal of the Institute of Navigation,1997,44(2):163-170P
    [104]M B Ignagni.Optimal strapdown attitude integration algorithms[J].Journal of Guidance,Control,and Dynamics.1990,13(2):363-369P
    [105]刘柱.捷联导航算法的研究与实现[D].哈尔滨:哈尔滨工程大学,2001
    [106]黎娜.角速率输入下捷联航姿算法研究[J].弹箭与制导学报.2005,25(4):6-8页
    [107]陈勇.一种多时间尺度电力系统奇异摄动模型的推导[J].广东电力.2006,2(19):9-14页
    [108]Mark J G.On Sculling Algorithms[J].3~(rd) St.Petersburg International Conf.on Integrated Navigation System.1996
    [109]石宏,郭建烨.基于位移螺旋与Chasles定理的机器人轨迹规划研究[J].机械与电子.2004(10):40-44页
    [110]V N Branets and I P Shmyglevsky,Introduction to the theory of strapdown inertial navigation system[M].Moscow,1992
    [111]J Funda,R H Taylor and R P Paul.On homogeneous transformations,quaternions and computational efficiency[J].IEEE Transaction on Robotics and Automation,1990(3):382-388P
    [112]K Daniilidis.Hand-eye calibration using dual quaternions[J].International Journal of Robotics Research,1999(18):286-298P
    [113]朱大昌,方跃法.应用螺旋理论对并联机器人形位的分析与综合[J].机器人.2005,27(6):539-544页
    [114]Olson D K.Calculation of geodetic coordinates from Earth-fixed coordinates[J].Journal of Guidance Control and Dynamics,1998,11(2):188-190P
    [115]J M Mccarthy,Introduction to Theoretical Kinematics[M].Massaclittsetts,MIT Press,Cambridge,1990
    [116]O S Salychev,Inertial Systems in Navigation and Geophysics[M].Mc,scow:Bauman MSTU Press,1998
    [117]O S Salychev,Applied Inertial Navigation:Problems and Solutions,BMSTU Press.Moscow.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700