基于超高压纯水射流的船壁除锈除漆关键技术与爬壁试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶工业是我国支柱工业之一,它是高技术密集区,也是重体力密集区。除锈是船舶工业劳动强度最大、污染严重、涉及面广、技术水平落后的一道必不可少的工艺。船舶壁面超高压水射流爬壁除锈成套设备,是以环保无污染的自来水为除锈介质,通过超高压大功率泵机组获得除锈能量。超高压水射流除锈是利用高压水射流的冲击作用和水撬作用,破坏锈蚀和涂层对钢板的附着力,具有高质、高效、清洁等适合船舶维修除锈的技术特性。
     本文对超高压纯水射流的船舶壁面除锈机理、超高压纯水射流剥离冲击特性、及超高压纯水射流除漆除锈成套设备关键技术等方面进行研究,分析了锈层与船壁钢板之间的硬度关系,建立了超高压纯水射流喷射剥离冲击模型,并进行了剥离冲击射流流场的模拟和试验研究,设计了超高压水射流船舶壁面除锈设备试验台,进行了不同爬壁行进速度下的除漆试验对比分析,进行了实际除锈的显微研究,检测了除锈前后的钢质表面元素比例,分析了微观环境下超高压水射流的除锈效果,为船舶壁面除锈除漆的提供试验参考和依据。
     本文研究了超高压纯水射流除锈的原理,建立了锈蚀和涂层表面的基本结构,探讨了水射流的特性,分析了剥离冲击的力学原理,建立了基本的冲击力学模型,研究其剥离冲击的有效工作方法,应用旋转射流方法进行了实验。提出了一种超高压纯水射流剥离冲击的数值模拟方法,建立了超高压纯水射流喷嘴的剥离冲击模型,采用湍流模式对超高压纯水射流的喷嘴的流场特性进行了数值模拟,提出了一种用于水射流的剥离冲击的速度核概念。模拟在不同射流压力和典型的不同射流靶距下的流场性能变化,分析出了超高压纯水射流的喷嘴剥离冲击的冲击流场的特性,以及不同射流压力下对纯水射流剥离冲击力的影响。根据不同压力的仿真,表明射流压力在200MPa时除漆效果最好;根据不同喷嘴口径的仿真,表明口径0.3mm的喷嘴射流冲击速度较大;理想状态下,靶距越大,冲击速度越高。
     设计了船舶除锈超高压纯水射流成套系统,给出了系统的基本参数配置,论述了泵组系统、真空回收系统以及爬壁机器人等分系统的工作原理。分析了泵组系统能量损失和超高压密封技术,提出了一种试验台样机配置和基本元件布置,探讨真空吸干回收系统基本功能。应用所搭建的超高压纯水射流除漆除锈试验台进行不同行进速度下的除漆爬壁试验,并进行了对比分析,采用扫描电镜对真实除锈形貌进行了放大处理,进行了实际除锈的微观研究,并检测了除锈前后的钢质表面元素比例,分析了微观环境下超高压水射流的除锈效果。试验结果表明:在实际除锈试验中,采用超高压纯水射流除锈后,氧化物可以基本剥离干净,除锈效果达到除锈标准Sa2.5级。
Shipbuilding industry is one of the supporting industry in china, which is not only high-tech but also heavy workload concentrated regions. Rust removal is large labor intensity, serious pollution and covering a wide range, but it is the necessary process in shipbuilding industry. Complete equipment for ultrahigh pressure water jet hull rust removal uses pure water as medium, and gets the rust removal energy through ultrahigh pressure heavy power pump unit. Water hydraulics has advantages of environmental friendly, cleanness, safety, readily available, inexpensive, and easily disposable. Ultrahigh pressure water jet rust removal uses the impact action and water prying action to destructed the adhesive force between corrosion and ship wall, and it is suitable for hull rust removal with high quality, high efficient and clean.
     In this thesis, the ultrahigh pressure pure water jet rust removal mechanism, the stripping impact characteristics, and the key technology of complete equipment ship rust removal were studied by theoretical analysis, prototype development and experimental study. The ultrahigh pressure pure water jet rust removal mechanism was analyzed, the ultrahigh pressure pure water jet modeling was established. The test bench of the ultrahigh pressure pure water jet rust removal was designed. The coating removal effects in different roatation of nozzle and climbing velocity were analyzed, and the rust removal effects in microscopic method were studied.
     The impact modeling was established according to the mechanical principle, the rotation water jet experiment was shown. The ultrahigh pressure pure water jet modeling was established, and the stripping impact velocity field was simulated. The velocity experiment shows that the modeling is reliable. The flow field characteristics such as different pressure, different diameters and different target distance were analyzed. The analysis results show that, there is a velocity accumulation area with large energy in the velocity core, the best impact effect is the pressure 200MPa and the diameter 0.3mm, and the different target is bigger then the impact velocity is higher in the ideal state.
     An ultrahigh pressure water jet pump package system for hull rust removal was designed. The main function, main parameters and design index was discussed. The water treatment unit before pump and electric control system were described. The energy loss and ultrahigh pressure sealing technology were analyzed. And a prototype structure was given. It provides a design reference for the study of ultrahigh pressure water jet pump package system for hull rust removal. The performance of the prototype through the SEM experiments were made, the rust and coating removal results show that, the effects of rust and coating removal with ultrahigh pressure pure water jet may reach the standard Sa2.5.
引文
[1]顾正刚,李维博.船舶涂装工艺的发展方向.造船技术.2009,288(2):33-35.
    [2]孙志和.最新船舶涂装新技术新工艺与涂装质量检测评价实用手册.北京:中国知识出版社,2006.
    [3]Maia D. Alternatives to Conventional Methods of Surface Preparation for Ship Rcpairs. Journal of Protective Coatings and Linings.2000,17(5):31-39.
    [4]佐藤靖著.黄世督译.防锈、防蚀涂装技术.北京:化学工业出版社,1987.
    [5]Hashish M. Steel Cutting with Abrasive Waterjets. Proceedings of 6th International Symposium on Jet Cuttinq Technology.Bedford,1982:465-487.
    [6]何宝明,刘提敬,张洪志.高压水除锈设备在舰船维修中的应用.涂料工业.1998,28(8)34-38.
    [7]Tan D K M. A Model for the Surface Finish in Abrasive Waterjet Cutting. Proceedings of 8th International Symposium on Jet Cutting Technology. Bedford,1986:309-313.
    [8]张东亚,汪敬如,任润桃.手工除锈对WRZ型水性无机富锌涂料体系附着力的影响.材料开发与应用.2003,12(6):40-43.
    [9]姜修林,张奇刚.船舶腐蚀与涂装的特点.全面腐蚀控制.2003,9(4):6-8.
    [10]钱存双,宋平.滚装船货物甲板无污染磨料抛射除锈.造船技术.2004,258(2):38-40.
    [11]Foldyna J, Sitek L. Methodology of Evaluation of Nozzles for High-Speed Water Jet Generation. Proceedings of the 6th Pacific Rim International Conference on Water Jet Technology, Sydney,2000: 127-131.
    [12]庄静伟,王强,史亮等.高压水射流的发展与应用.木材加工机械.2007,4:47-49.
    [13]薛胜雄.高压水射流技术工程.合肥:合肥工业大学出版社.2006.
    [14]http://www.alibaba.com/product-gs/323823478/high_speed_water_jet_loom.html.
    [15]沈忠厚.水射流理论与技术.东营:中国石油大学出版社,1997.
    [16]杨林,唐川林,张凤华.高压水射流技术的发展及应用.洗净技术.2004,2(1):9-13.
    [17]薛胜雄.2001年国际水射流技术纵览.流体机械.2002,30(1):32-37.
    [18]Vala M. The Measurement of the Non-Setting Parameters of the High Pressure Water Jets. Proceedings of International Conference Geomechanics'93, Balkema,1993:333-336.
    [19]Puchal a R J, Vijay M M. Study of an Ultrasonically Generated Cavitating or Interrupted Jet:Aspects of Design. Proceedings of the 7th International Symposium on Jet Cutting Technology. Ottawa, 1984:69-82.
    [20]Foldyna J. Ultrasonic Modulation of High-Speed Water Jets. Ph.D. thesis. Ostrava:1996.
    [21]Sitek L. Turning by High-Speed Abrasive WaterJet Our Experiences. Proceedings of the Int. Conf. Water Jet. UGN,2009:160-169.
    [22]Yong Z, Kovacevic R. Modeling of Abrasive Waterjet Machining. Jetting Technology.2003:78-97.
    [23]Mohamed H. Visualization of the Abrasive Waterjet Cutting Process. Experimental Mechanics.1988, 6:159-169.
    [24]袁建民,赵保忠.超高压射流钻头破岩实验研究.石油钻采工艺,2007,29(4):20-22.
    [25]Matsui S, Matsumura H. Ikemoto Y. Prediction Equations for Depth of Cut Made by Abrasive Water Jet. Proceedings of the Sixth American Water Jet Conference, Houston,1991:31-41.
    [26]Zeng J. Milling Ceramics with Abrasive Waterjets-An Experimental Investigation, The 9th American Waterjet Conference. Dearborn,1997:93-108.
    [27]Xue S X. Equipment and Test Research of High Pressure Water Jet For Rust Removal, The 7th Water Jet Technology Conference America. USA,1993:653-662.
    [28]薛胜雄.超高压水射流自动爬壁除锈机理与成套设备技术.(博士学位论文).杭州:浙江大学,2005.
    [29]Momber A W, Kwak H, Kovacevic R. Investigations in Abrasive Water Jet Erosion Based on Wear Particle Analysis. Trans ASME Tribology,1997:759-766.
    [30]http://exporter.gongchang.com/product/3789195.
    [31]Osman A H. Visual Information of the Mixing Process Inside the AWJ Cutting Head. The 9th American Water jet Conf.Michigan,1997:189-209.
    [32]陶彬.高压水射流加工理论与技术基础研究.(博士学位论文).大连:大连理工大学,2003.
    [33]汪庆华,李福援.三相磨料水射流试验工作台的研制.液压与气动.2006,8:29-31.
    [34]马飞,宋志辉.水射流动力特性及破土机理.北京科技大学学报.2006,28(5):413-416.
    [35]王步娥,舒晓晖,尚绪兰.水力喷射射孔技术研究与应用.石油钻探技术.2005,33(3):51-56.
    [36]Momber A, Kovacevic R. Energy Dissipative Processes in High Speed Water-Solid Particle Erosion. Proceedings ASME Heat Transfer and Fluids Engineering Division. New York,1995:243-256.
    [37]李根生,沈忠厚.高压水射流理论及其在石油工程中应用研究进展.石油勘探与开发.2005,32(1):96-99.
    [38]易灿,李根生.喷嘴结构对高压射流特性影响研究.石油钻采工艺.2005,27(1):16-19.
    [39]高激飞,胡寿根,宁原林.淹没磨料射流研究进展及冲击特性试验研究.力学季刊.2002,23(4):509-513.
    [40]宁原林,胡寿根,蒋旭平.水下高围压磨料射流模拟装置的设计及试验.流体机械.2002,30(3):6-8.
    [41]朱儒民,徐依吉,赵红香等.移动式高压水射流清洗油管技术.清洗世界.2008(10):15-18.
    [42]徐依吉,赵红香.钢粒冲击岩石破岩效果数值分析.中国石油大学学报(自然科学版).200933(5):68-71.
    [43]薛胜雄,王乐勤.超高压水除锈技术及其阶段性方程.高压物理学报.2004,18(3):283-288.
    [44]薛胜雄,王乐勤.超高压水射流除锈机理试验研究.中国机械工程.2004,15(20):1790-1793.
    [45]李江云,王乐勤.低压大自径喷嘴自激脉冲射流空化模型.工程热物理学报.2005,26(3)438-440.
    [46]侯健,韩育礼,吴粉祥.超高压水射流系统压力稳定性研究.弹道学报.2001,13(4):79-81.
    [47]周丹,王庆国.超高压水喷射技术在表面预处理中的应用.化学清洗.2000,16(1):34-38.
    [48]马飞,司毅民.水射流技术在多环扩孔中的应用及试验研究.金属矿山.2000,289(7):3-5.
    [49]张长海.磨料水射流光整加工及试验装置的研究.(博士学位论文).南京:南京理工大学,2003.
    [50]陈春,聂松林,吴正江等.高压水射流的CFD仿真及分析机床与液压.2006,2:103-105.
    [51]李根生,沈忠厚,徐依吉.超高压射流辅助钻井技术研究进展.石油钻探技术.2005,33(5)20-22.
    [52]王瑞和,曹砚锋,周卫东.磨料射流切割井下套管的模拟实验研究.西安石油大学学报(自然科学版).2001,25(6):35-37.
    [53]徐素国,梁卫国,赵阳升.钙芒硝岩盐水溶特性的实验研究.辽宁工程技术大学学报.2005,(1):5-7.
    [54]张芳.高压旋转水射流煤层钻孔喷头研究.(博士学位论文).阜新:辽宁工程技术大学,2002.
    [55]李静.水射流等离子弧推进模型研究.(博士学位论文).哈尔滨:哈尔滨理工大学,2004.
    [56]潘世维.化学除锈技术在储油罐防腐层大修中的应用.化学清洗.1996,2:20-21.
    [57]倪红坚,王瑞和,张延庆.高压水射流作用下岩石的损伤模型.工程力学.2003,5:59-62.
    [58]Chen W L, Geskin E S. A Correlation Between Particle Velocity and Conditions of Abrasive Water Jet Formation.1991 Proceedings of the 6th American Water Jet Conference.Louis:305-313.
    [59]Wang J, Guo D M. A Predictive of Penetration Model for Abrasive Waterjet Cutting of Polymer Matrix Compoisites. Journal of Materials Processing Technology.2002,(121):390-394.
    [60]郑永博,左明,彭博.高压水射流技术在设备清洗中的应用.石油和化工设备.2008,2:61-63.
    [61]http://www.cnc-waterjet.com/3-water-cleaning.html.
    [62]Crosby D G, Rahman M M, Rahman M K. Single and Multiple Transverse Fracture Initiation from Horizontal Wells. Journal of Petroleum Science and Engineering.2002 (35):191-204.
    [63]http://www.techniwaterjet.com/.
    [64]Anand, U. Prevention of Nozzle Wear Abrasive Water Suspension Jets(AWSJ) Using Porous Lubricated Nozzles. Tribology.2003,125 (1):168-180.
    [65]Shimizu S, Hiraoka Y, Nishiyama T. Instantaneous photographic observation of abrasive water suspension jets. Fluids and Engineering.2002,45(4):830-835.
    [66]Bulten N W H. Numerical Analysis of Waterjet Propulsion System. PhD thesis, Technical University of Eindhoven.2006.
    [67]Tam C K. Theoretical Model of Discrete Tone Generation by Impinging Jet. Fluid Mech.2000,21 (4):67-87.
    [68]http://www.universalminerals.com/cutting.shtml
    [69]马汝涛,徐义,祁万军等.高压水射流清洗油管旋转喷头的设计及应用.石油机械.2007,35:29-31.
    [70]Raverdy B, Mary I, Sagaut P. High-Resolution Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade. AIAAJournal.2003,41(3):390-397.
    [71]Marzio P, Enrico N, Thomas J. DNS study of turbulent transport at low prandtl numbers in a channel flow. Journal of Fluid Mechanics,2002,23 (4):419-441.
    [72]Wissink J G. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes. International Journal of Heat and Fluid Flow,2003,24 (4):626-635.
    [73]Kosovic B, Dale I P, Samtaney R. Subgrid-Scale Torque for Large-Eddy Simulation of Compressible Turbulence. Physics of Fluids.2002,14 (4):1511-1522.
    [74]http://ndea.jpl.nasa.gov.
    [75]http://www.tecpro.com.au/waterjet-abrasive.htm.
    [76]http://www.hammelmann.de/wEnglish/produkte/aws/index.shtml.
    [77]http://www.chinawj.com.cn/htm/info/2627/506627.shtml.
    [78]Kunapom S. Mathematical Modeling of Ultra High Pressure Waterjet Peening. American Waterjet Conference. Houston,2003:186-192.
    [79]张黎霞.金属表面高压水清洗机除锈技术.清洗世界.2005,21:26-28.
    [80]杨晓军,陈璐,兰箭.浅谈环保除锈技术及设备.中国修船.1999,3:29-31.
    [81]Soyama H. Improvement in Fatigue Strength of Silicon Manganese Steel SUP7 by Using aCavitating Jet. JSME International Journal,2000,43(2):173-177.
    [82]宋波,王栋梁,宋方臻.新型高压水射流清洗机的设计.机床与液压,2006,7:171-173.
    [83]Chen L, Siores E, Patel K. Improving the Cut Surface Qualities Using Different Controlled Nozzle Oscillation Techniques. International Journal of Machine Tools&Manufacture,2002,42:712-722.
    [84]Senne T. Effect of Helium Atmospheres on Abrasive Suspension Water Jets. Advanced Manufacturing Technology.2005,26 (11):1246-1254.
    [85]胡伟,闫清文.封闭式喷砂系统在施工现场中的应用.全面腐蚀控制.2008,22(2):40-41.
    [86]廖振方,陈德淑,邓晓刚.脉冲空化射流清洗船壳.清洗世界.2003,19(12):21-23.
    [87]Daniewicz S R, Cummings S D. Characterization of Water Peening Process.Transaction of the ASME, 1999:336-340.
    [88]Jumah R Y, Mujumdar A S. Free convection Heat And Mass Transfer of Non-Newtonian Power Law Fluids with Yield Stress from a Vertical Flat Plate in Saturated Porous Media. Int Comm Heat Mass Transfer.2000,27 (4):485-494.
    [89]Zhang Q. Effects of Acceleration on Turbulent Jets. Physics of Fluids.2001,8 (8):2185-2195.
    [90]Zhu J. A Numerical Study on Confined Turbulent Jets. Journal of Fluids Engineering,2004,16(1): 702-706.
    [91]Grigoriadis D E G, Bartzis J G, Goulas A. Efficient Treatment of Complex Geometries for Large Eddy Simulations of Turbulent Flows.Computers and Fluids.2004,33 (2):201-222.
    [92]刘兵.浅析超高压水射流清洗机国产化研究中的几个问题.清洗世界.2004,20:29-31.
    [93]John W. Lead-Pigmented Paints Their Impact on Bridge Maintenance Strategies and Costs. Public Roads.1992,52(4):47-51.
    [94]http://www.flowcorp.com/waterjet-products.
    [95]Behringer P, Catherine A. Waterjet Cutting A Technology Afloat on a Sea of Potential. Manufacturing Engineering.1987,99(8):37-41.
    [96]http://www.hammelmann.de/english/600.html.
    [97]Maniere E, Simmons R. Architecture, The Backbone of Robotic System.2000 IEEE International Conference on Robotics& Automation, San Francisco,2000:505-513.
    [98]He H Q, Hu Q F. The Technique of Water Jet Deep-Penetrationreforming the Near Well-Bore Area. Proceedings of 8th Pacific RimInternational Conference on Water Jet Technique held in Qingdao, 2006:230-237.
    [99]ALVAREZ B, SANCHEZ P, PASTOR J A, et al. An Architectural Framework for Modeling Teleoperated Service Robots. International Journal of Information, Education and Research in Robotics and Artificial Intelligence ISSN 0263-5747,2006,24(4):411-418.
    [100][2008-06-26]. http://www. eftcor.com.
    [101].http://www.waterjet.com.cn/waterjet/introduction_e.htm.
    [102]邓义斌,钟骏杰,范世东.船舶除锈机器人驱动系统设计.船海工程.2006,170(1):87-901.
    [103]薛胜雄,王永强,于雷.超高压大功率水射流技术在中国的工程应用.清洗世界.2005,21:4-9.
    [104]薛胜雄,黄汪平.我国高压水射流设备的发展方向.流体机械.1999,27:34-36.
    [105]Nevin O, Ayse A, Nurfer G. Adsorption of Polyethyleneimine from Aqueous Solutions on Bentonite Calys. Materials Letters.2002,55 (9):73-76.
    [106]Kawatra S K, Ripke S J. Developing and Understanding the Bentonite Fiber Bonding Mechanism. Minerals Engineerin.2001,14 (6):647-659.
    [107]Longmire E K, Eaton J K. Structure of a Particle-Laden Round Jet. Fluid Mech.2001,23 (6): 217-257.
    [108]H M Blackburn. Three-Dimensional Instability and State Selection in an Oscillatory Axisyhmmetic Swirling Flow. Physics of Fluids,2002,11 (4):3983-3996.
    [109]Vijay M M. Advances in the Applications of High Speed Fluid Jets. Proceeding of the 4th Pacific Rim International Conference on WaterJet Technique, Shimizu,1995:27-46.
    [110]刘会霞,丁圣银,王霄.水射流切割模型及其性能分析.农业机械学报.2006,37:122-124.
    [111]王科社,海龙,顾瑞龙.高压水射流喷嘴特性研究.液压与气动.2007,6:76-78.
    [112]万宏强,李福援.基于LabVIEW的磨料水射流试验台测试系统.机械工程师.2006,4:74-76.
    [113]诸雪征,孙逊,王明威.龙门式高压水射流快速洗消装置的研究.中国安全科学学报.1999,9:60-64.
    [114]Li G S, Huang Z W, Niu J L, et al. Productivity Enhancing Technique of Deep Penetrating Perforating with High Pressure Water Jet. Petroleum Science and Technology.2007.25(3):289-297
    [115]D G Crosby, M M Rahman, M K Rahman. Single and multiple transverse fracture initiation from horizontal wells. Journal of Petroleum Science and Engineering,2002 (35):191-204.
    [116]Li G S, Shen Z H, Zhou C S, et al. Investigation and Application of Selfresonating Cavitating Water Jet in Petroleum Engineering. PetroleumScience and Technology.2005.23(1):1-15
    [117]RichardF, Schmid著,孙万俊译超高压水喷射表面处理技术.国外油田工程,1999.
    [118]Su X L, Li G S, Huang Z W, et al. Continuous Coiled Tubing Drilling Technique Research and Application Development. Natural GasIndustry.2008.28(8):55-57,66.
    [119]廖华林,李根生,罗学钊.超高压水射流冲击应力分布规律的数值分析.石油钻采工艺.2004,26:8-12.
    [120]胡鹤鸣,陈永灿,李玲.旋转水射流冲击压强的实验分析.长江流域资源与环境.2007,16:42-47.
    [121]李海军,何远航,段卓平.超高压水射流形成过程中的压力损失研究.高压物理学报.2004,18(4):139-143.
    [122]范旭军.超高压水射流在电厂汽轮机叶片清洗中的应用.清洗世界.2004,20(8):13-15.
    [123]林府进,夏永军,周卫东.高压水射流冲击压力分布规律的研究.矿业安全与环保.2008,35(3):8-12.
    [124]马飞,张文明.水射流扩孔喷嘴内部流场的数值模拟.北京科技大学学报.2006,28(6):576-580.
    [125]杨国来,周文会,刘肥.基于FLUENT的高压水射流喷嘴的流场仿真.兰州理工大学学报.2008,34(4):49-52.
    [126]李江云,薛胜雄,周其源.超高压纯水射流除锈机的数值模拟.武汉大学学报(工学版).2007, 40(4):48-52.
    [127]雷玉勇,宋清俊,杨桂林.基于SIMULINK的水射流动态特性仿真.机床与液压.2007,35(1):125-128.
    [128]邓松圣,沈银华,李赵杰.空化射流喷嘴流场的数值模拟.2008,24(5):42-46.
    [129]J S Marshall, M L Beninati. Analysis of subgrid-scale torque for large-eddy simulation of turbulence. AIAA Journal,2003,41(10):1875-1881.
    [130]王洪伦,龚烈航,武光华.前混合磨料高压水射流切割喷嘴的数值模拟.解放军理工大学学报.2007,14(8):387-390.
    [131]Wang J. An Analysis of the Cutting Performance in Multipass Abrasive Waterjet Machining. Advances in Abrasive Technology.2000,23(3):444-449.
    [132]高岩,赵晓利,高鲁.高压水射流除锈设备模糊综合评判.腐蚀与防护.2005.26(6):503-506.
    [133]陈玉凡.高压水射流打击效率理论分析.清洗世界.2006.22(10):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700