用于搭载船舶除锈清洗器的爬壁机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用于搭载船舶除锈清洗器的爬壁机器人WCRSRR的主要功能是搭载船舶壁面除锈清洗器,使其在船舶壁面有效地进行除锈。近年来,世界上许多国家开始研制环保、安全、高效的各种WCRSRR机器人。
     本文针对该机器人负载大、本体重的特点,分析了WCRSRR机器人研究的关键技术,对WCRSRR机器人的理论特性进行了研究,对考虑真空负压和射流力的WCRSRR附壁特性、大负载履带式WCRSRR转向特性和考虑变负载变重心的WCRSRR驱动特性进行了研究。
     WCRSRR属于大负载且本体比较重的重载爬壁机器人,由于选择了履带式行走机构、永磁真空混合吸附方式,当爬壁机器人在船舶壁面上作业时,在真空抽吸力即真空负压压力一定的情况下,永磁吸附单元的吸附力越大,则爬壁机器人的吸附可靠性越高,其运动稳定性也越高,但灵活性却随之降低。在真空负压压力一定的情况下,在确保爬壁机器人可靠吸附和稳定运动的基础上,为了尽可能地提高机器人的运动灵活性,需要根据爬壁机器人所需的最小允许吸附力对磁吸附单元进行优化设计。本文提出了一种考虑吸附壁面法向真空负压和射流力的附壁性能分析方法,建立了永磁真空混合吸附的附壁力学模型,并进行了算例仿真分析,规划了永磁和真空负压的参数匹配。同时提出了大负载履带式WCRSRR转向特性分析方法,建立了大负载的转向特性摩擦的力学模型,并进行了算例仿真分析,通过有限元对比分析,设计了一种刚度和结构优化的行走永磁单元结构。
     驱动性能是爬壁机器人上爬动力的关键,本文研究了爬壁机器人在拖带较重的负载管路下的驱动能力,建立了爬壁机器人的动力系统模型,详细分析了机器人在船舶壁面上的运动状态和电机驱动转矩、减速机输出转矩与机构参数之间的关系,对驱动系统模型进行了优化,建立了驱动转矩与机器人爬壁作业高度及船舶壁面倾斜角的关系方程,通过对三者关系的分析,给出了机器人在各个作业高度下,机器人驱动转矩所允许的船舶壁面倾斜角,即机器人爬壁倾斜角,为WCRSRR的驱动系统设计、驱动元件选择和安全可靠驱动工作提供了理论依据。
     根据本文的理论分析,研制了一种履带式永磁真空混合吸附的WCRSRR机器人系统,并进行了同步行进、附壁性能、驱动性能、转向性能和横爬性能等现场试验。针对所研究的WCRSRR试验样机的不足,设计了一种改进的用于搭载船舶除锈清洗器的爬壁机器人配置方法,规划了改进的动力系统工作原理,分析了运动性能,设计了三角形摆动越障机构。
The wall climbing robot for ship rust removal (WCRSRR) is a new type wall climbing robot in recent years. The main function of WCRSRR is boarding a rust cleaner, which is a mechanical disc and can directly remove rust on the surface of hull wall by ultra-high pressure water. The rust cleaner can flush, scrub, scrape the wall surface and collect sewage automatically.
     The WCRSRR has the characteristics as big loading and heavy robot body, and there are water jet kick and vacuum negative pressure force in normal direction of wall surface. The key technology of the robot was analyzed, the theoretical characteristics were studied, such as the adsorption performance, turning performance and driving performance.
     Compared with the traditional wall climbing robot, the loading of the robot is very large, and the weight of the robot body is heaviest. But, when the loading ability is higher, the robot adsorption is larger. This paper presented a way with considering the vacuum negative pressure force and water jetting force for adsorption performance. The static models for glide and tip back were established. According to the three forced states in normal direction of wall surface, the glide and the tip back models were analyzed, and the forced state of permanent magnetic unit between glide and tip back were compared. The larger adsorption will cause some difficulties when the WCRSRR turns on the hull wall surface, such as the destruction about the magnetic sucking mechanism unit, which may lead to the robot fall off. From this argument, the turning model was set up, and the structure of magnetic sucking mechanism unit was optimized according to the finite element analysis.
     The weight of the loading pipe and the center of gravity position change with the climbing high. According to the climbing wall working principle, the kinematics models which contain the robot climbing and turning on the ship wall were established. The models were optimized by fuzzy optimization theory and analyzed by simulation, and the safe working range was planned. Then the kinematics climbing ability was analyzed, and the relation between climbing high and ship wall tilt angle was discussed with theoretical torque, maximum torque and rated torque. The fixed loading climbing and variable load climbing experiments were tested by a prototype. Finally, the result shows that the optimal model was reliable, the permanent magnetic adsorption force, vacuum force and water jet force had little effect on kinematics characteristics, but the robot body weight, climbing high and ship wall tilt angle had great effect on it, and the planned safe working range was reasonable.
     According to the three aspects of the basic analysis, the prototype was made,and the controller test, permanent magnet performance test and permanent magnetic and vacuum mixed adsorption test were conducted. Based on the disadvangtages, a design scheme of the improved WCRSRR was proposed, and the driving performance was optimized, and the walking obstacle negotiation performance was analyzed, and the graph of the comparison between the original and improved three sprocket obstacle negotiation performance was proposed.
引文
[1]王大为.方兴未艾的全球修船业.航海.2008,6:5-7.
    [2]王大为.中国修船市场的分析及应对措施.中国修船.2008,21(2):13-15.
    [3]马一群.中国修船行业现状分析与对策.中外船舶科技.2006,(4):29-30.
    [4]汤瑞良.中国修船业未来几年发展浅析.中国修船.2008,21(1):1-5.
    [5]全玉臣.船舶清洗市场趋势.清洗世界.2007,23(1):35-38.
    [6]鲍承昌.中国修船企业“斯佩克”第32次会议在秦皇岛召开.中国修船.2010,(4):3.
    [7]张成碧.穿越严冬、共渡难关、夯实基础、再次创业,积极迎接修船行业春天的到来——第28次“斯佩克”会议主题报告.中国修船.2009,(4):1-4.
    [8]张雄纠.中国内地修船市场.中国水运(学术版).2008,8(1):228-229.
    [9]陈爱国,叶家玮,高延增.对我国数字化修船发展的探讨.中国修船.2009,22(3)6-13.
    [10]戴敏,张风友,任皋.高压水射流喷砂技术的除漆应用.2006,22(12):15-17.
    [11]吴翔宇.高压水射流清洗在船舶修造行业的应用分析.清洗世界.2008,9(6):28-30.
    [12]姜修林,张奇刚.船舶腐蚀与涂装的特点.全面腐蚀控制.2003,9(4):6-8.
    [13]谷旭东.船体的腐蚀与保养.中国修船.2003(5):40-41.
    [14]汪国平.船舶涂料与涂装技术.北京:化学工业出版社,2006.
    [15]Maia D. Alternatives to Conventional Methods of Surface Preparation for Ship Rcpairs. Journal of Protective Coatings and Linings.2000,17(5):31-39.
    [16]郭铭.钢材表面除锈设备及发展.中国涂料.2003,2:21-24.
    [17]薛胜雄,王乐勤.超高压水射流除锈机理试验研究.中国机械工程.2004,15(20):1790-1793.
    [18]钱存双,宋平.滚装船货物甲板无污染磨料抛射除锈.造船技术.2004,258(2):38-40.
    [19]孙志和.最新船舶涂装新技术新工艺与涂装质量检测评价实用手册.北京:中国知识出版社,2006.
    [20]Xue S X., Equipment and Test Research of High Pressure Water Jet For Rust Removal, The The 7th Water Jet Technology Conference America, Seattle, USA.1993:653-662.
    [21]薛胜雄.2001年国际水射流技术纵览.流体机械.2002,30(1):32-37.
    [22]薛胜雄,王乐勤.超高压水射流在石化设备的清洗除锈应用.流体机械.2004,(8):28-31.
    [23]何宝明,刘提敬,张洪志.高压水除锈设备在舰船维修中的应用.涂料工业.1998,28(8):34-38.
    [24]邓义斌,钟骏杰,范世东.船舶除锈机器人驱动系统设计.船海工程.2006,170(1):87-90.
    [25]杜泽生,王晓勇,张栋.高压水射流扩孔技术在丁集矿的应用.煤矿安全.2010,8:26-28.
    [26]刘增文,黄传真,朱洪涛.高压磨料水射流加工中材料去除机理研究.金刚石与磨料磨具工程.2010,30(4):21-25.
    [27]Meng P. Cleaning with High Pressure Drected Waterjets. The Japan-USA Symposium on flexible Automation, New York, USA.1996:217-224.
    [28]Wang X R, Yi Z Y, Gong Y J, et al.:Ultra-high Pressure Water Jetting Removal Rust Model and Analysis of Removal Rust Capability, The 7th ICFP.HangZhou.2009:503-506.
    [29]Luk B L, Cooke D S, Gait S. Intelligent Legged Climbing Service Robot for Remote Maintenance Applications Inhazardous Environments. Journal of Robotics and Autonomous Systems.2005,53(2):142-152.
    [30]http://www.flowcorp.com.
    [31]http://www.flowcorp.com/waterjet-products.
    [32]Cohen Y.Residue Detection for Real-Time Removal of Paint From Metallic Surfaces Ship Hull Maintenance Robot. Annual International Symposium on Smart Structures and Materials.Newport C A.2001:1-7.
    [33]http://www.flowcorp.com/newsite/Products/hydrocat. html.
    [34]Coste M, Simmons R. Architecture, the Backbone of Robotic System. The 2000 IEEE International Conference on Robotics& Automation. San Francisco, USA.2000:505-513.
    [35]http://www.broadbentsinc.com/hydrocrawler.html.
    [36]http://www.robot striping.NASA SPINOFF 2000.html.
    [37]Cohen Y,Bao X,Marzwell N.Ultrasonic Paint Loosening and Real-Time Thickness Gauging (UPL-RTG) System for Enhancement of Waterjet Paint Stripping. Submitted. Item No. 0664B.
    [38]Bill R, John B, Chris F. A Semi-Autonomous Robot for Stripping Paint from LargeVessels. The International Journal of Robotics.2003,22 (7):617-626.
    [39]Krosuri S P, Minor M A. A Multifunctional Hybrid Hip Joint for Improved Adaptability in Miniature Climbing Robots. The IEEE International Conference on Robotics and Automation, HongKong.2003:312-317.
    [40]http://ndea.jpl.nasa.gov.
    [41]Francisco O, Diego A, Juan P. A Reference Control Architecture for Service Robots as applied to a Climbing Vehicle. Bioinspiration and Robotics:Walking and Climbing Robots, Vienna, Austria,2007:544.
    [42]http://www.ecospheretech.com/htm/e_rov.htm.
    [43]Hillenbrand C, Berns K, Weise F. Development of a Climbing Robot System for Non-destructive Testing of Bridges. The 8th IEEE Conference on Mechatrinics and Machine Vision in Practice.2001:399-403.
    [44]http://www.kamatpump.com/ap13.htm.
    [45]http://www.space.com/businesstechnology/technology..
    [46]Tso S K, Zhu J, Luk B L. Prototype Design of a Light-Weight Climbing Robot Capable of Continuous Motion. The 8th IEEEConference on Mechatrinics and Machine Vision in Practice. HongKong.2001:235-238
    [47]http://www.hammelmann.de/wEnglish/produkte/aws/index.shtml.
    [48]Hammehnann.Inc.2002.http://www.hammelmann.de/english/600.html.
    [49]Sattar T P, Alaoui M, Chen S. A Magnetically Adhering Wallclimbing Robot to Perform Continuous Welding of Long Seams Andnon-Destructively Test the Welds on the Hull of a Container Ship. The 8th IEEE Conference on Mechatrinics and MachineVision in Practice.HongKong.2001:408-414.
    [50]http://www.accessmylibrary.com/coms2/summary_0286-26845550_ITM.
    [51]Alvarez B,Sanchez P,Pastor J A.. An Architectural Framework for Modeling Teleoperated Service Robots. International Journal of Information Education and Research in Robotics and Artificial Intelligence Cambridge.2006,(04):441-418.
    [52]http://www.cybernetix.fr.
    [53]付宜利,李志海.爬壁机器人的研究进展.机械设计.2008,25(4):1-5.
    [54]姜勇,王洪光,房立金等.一种用于反恐侦察的爬壁机器人系统.机器人.2006,28(5):530-535.
    [55]姜勇,王洪光,房立金.基于主动试探的微小型爬壁机器人步态控制.机械工程学报.2009,45(7):56-62.
    [56]刘爱华,王洪光,房立金.一种轮足复合式爬壁机器人机构建模与分析.机器人爬壁机器人的研究进.2008,30(6):486-490.
    [57]吴善强,李满天,孙立宁.爬壁机器人的力学分析与实验 光学精密工程.2008,16(3):478-483.
    [58]钱志源,付庄,赵言正.一种在驱动轮打滑情况下爬壁机器人动力学建模方法.上海交通大学学报.2007,41(6):857-860.
    [59]Shao H, Zhao Y Z, Wang Y. Climbing Robot Mechanism & its Control System. The 3rd International Symposium on Fluid Power Transmission and Control.Haerbin.1999:614-616.
    [60]桂仲成,陈强,孙振国.爬壁机器人的轮式移动机构的转向功耗.清华大学学报(自然科学版):2008,48(2):161-164.
    [61]桂仲成,陈强,孙振国.多体柔性永磁吸附爬壁机器人.机械工程学报.2008,44(6):177-182
    [62]刘荣,田林.影响负压爬壁机器人性能的关键因素分析.北京航空航天大学学报,2009,35(5):608-611.
    [63]Wang Y, Liu S L, Xu D G, et al. Development & Application of Wall-climbing Robots IEEE International Conference on Robotics & Automation Detroit, Michigan,1999.
    [64]Zhang H X, Zhang J W, Liu R. Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning. International Journal of Advanced Robotic Systems.2007,4(4):437-446.
    [65]Zhang H X, Zhang J W, Liu R.. Realization of a Service Robot for Cleaning Spherical Surfaces. International Journal of Advanced Robotic Systems.2005,2(1):53-58.
    [66]于今,李绍军,田蔚.自攀爬壁面清洗机器人机构设计研究.机械设计与制造.2008,8:189-192.
    [67]张兴悟,章永华,杨杰.高机动性小型清洁爬壁机器人的研究.机械研究与应用.2007,20(2):28-31.
    [68]薛胜雄.超高压水射流自动爬壁除锈机理与成套设备技术.(博士学位论文).杭州,浙江大学,2005.
    [69]王兴如,衣正尧,弓永军等.船舶除锈超高压水射流泵组系统设计.船海工程.2009,38(3):44-47.
    [70]杨林,唐川林,张凤华.高压水射流技术的发展及应用.洗净技术.2004,2(1):9-13.
    [71]冉小东,陈世利,曾周末.一种用于热媒炉炉膛内清灰爬壁机器人设计.化工自动化及仪表.2010,37(8):78-81.
    [72]徐泽亮,马培荪.爬壁机器人履带多体磁化结构吸盘的设计及优化.机械工程学报.2004.40(3):169-172.
    [73]谈士力,张海洪,龚振邦.爬壁机器人全方位移动机构研制.上海大学学报(自然科学版).2000.6(2):95-99.
    [74]张国平,杨杰,高蜻宇.爬壁机器人真空吸附及运动方式探讨.液压气动与密封.2007,1:11-13.
    [75]吴善强,李满天,孙立宁.爬壁机器人负压吸附方式概述.林业机械与木工设备.2007,2:10-11.
    [76]Krosuri S P, Minor M A, A Multifunctional Hybrid Hip Joint for Improved Adaptability in Miniature Climbing Robots.The IEEE International Conference on Robotics and Automation. 2003:312-317.
    [77]桂仲成,陈强,孙振国.爬壁机器人永磁吸附装置优化设计.电工技术学.2006(11):40-46.
    [78]孟宪超,王祖温,包钢.一种多吸盘爬壁机器人原型的研制.机械设计.2003,20(8):46-48.
    [79]潘雷,赵言正等.具有双负压吸盘的爬壁机器人吸附特性.上海交通大学学报.2005,39(6):873-876.
    [80]张俊强,张华,万伟民.履带式爬壁机器人磁吸附单元的磁场及运动分析.机器人.2006,28(2):218-222
    [81]仝建刚,马培荪,陈俊梅.履带式磁吸附爬壁机器人壁面适应能力的研究.上海交通大学学报.1999,33(7):851-854
    [82]Liu S L, Zhao Y Z, Gao X S. A Wall Climbing Robot with Magnetic Crawlers for Sandblasting Spray-painting and Measurement. High Technology Letters.2000:86-88.
    [83]Tummala R L, Mukherjee R, Xi N. Climbing the Walls Robots. IEEE Robotics and Automation Magazine(R&A).2002,9 (4):10-19.
    [84]杨志斌,毛志伟,周少玲等.真空吸附型爬壁机器人多路压力检测系统设计.传感器与微系统.2010,29(4):78-80.
    [85]Nishi A. Development of Wall Climbing Robots. Computer Elect.1996.22(2):123-149.
    [86]毛志伟,杨志斌,周少玲等.双足移动型爬壁机器人吸盘力学性能研究.机械设计与制造.2010,8:159-161.
    [87]Shen W M, Gu J, Shen Y J.:Proposed Wall Climbing Robot with Permanent Magnetic Tracks for Inspecting Oil Tanks.2005 IEEE International Conference on Mechatronics and Automation.2005,4:2072-2077.
    [88]Sadegh A, Elliot M, Calle A. Design of Mobile Robots with Wall Climbing Capability.The 2005 IEEE/ASME Conference. on Advanced Intelligent Mechatronics.2005:438-443.
    [89]Fortuna L, Gallo A, Giudice G. A Mobile Walking Robot for the Semi-Autonomous Inspection of Industrial Plants. Robotics and Manufacturing:Recent Trends in Research and Applications.New York.1996:223-228.
    [90]Angel C, Ali Sa, Matthew E. Modular Wall Climbing Robots with Transition Capability. 2005 IEEE International Conference on Robotics and Biomimetics. Shenyang.2005:246-250.
    [91]Gao X S and Koki K. Study on a Kind of Wall Cleaning Robot.2005 IEEE International Conference on Robotics and Biomimetics. Shenyang.2005:391-394.
    [92]Schraft R D, Simons F, Schafer T, et al. Concept of a Low-Cost, Window-Cleaning Robot. The 6th International Conference on Climbing and Walking Robots. Professional Engineering Publishers. Italy Catania,2003:785-792
    [93]Menon C, Murphy M, Sitti M. Gecko Inspired Surface Climbing Robots. IEEE International Conference on Robotics and Biomimetics, Shenyang.2005:402-405.
    [94]Armada M, Gonzalez P, Nieto J. On the Design and Control of a Self-Propelling Robot for Hazardous Environments.21st Symposium on Industrial Robots. Chicago.1990:159-166
    [95]Wang Y, Liu S L and Xu DG. Development and Application of Wall-Climbing Robots. IEEE Conference on Robotics and Automation.Haerbin.1999:1207-1212.
    [96]Xiao J. Modeling Control and Motion Planning of a Climbing Microrobot. Integrated Computer-Aided Engineering.2004,11(4):289-307.
    [97]Santos D, Kim S, Spenko M. Directional Adhesive Structures for Controlled Climbing on Smooth Vertical Surfaces. International Conference on Robotics and Automation.Roma. Italy, 2007:10-14.
    [98]周丹,王庆国.超高压水喷射技术在表面预处理中的应用.化学清洗.2000,16:34-36.
    [99]李海军,何远航,段卓平.超高压水射流形成过程中的压力损失研究.高压物理学报.2004,18:139-143.
    [100]王科社,海龙,顾瑞龙.高压水射流喷嘴特性研究.液压与气动.2007,6:76-78.
    [101]杨国来,周文会,刘肥.基于FLUENT的高压水射流喷嘴的流场仿真.兰州理工大学学报.2008,34:49-52.
    [102]Xu Z L, Ma P S, A Wall-Climbing Robot for Labelling Scale of Oil Tank's Volume, Robotica.2002,20(2):209-212
    [103]Liu S X, Zhao Y Z, Wang Y. Design on Wall-climbing Robot for High Building Cleaning and the Relatively Technology. Automation Panorama.1999:22-25.
    [104]Zhang Z J. Research on Mechanical Problems of High Building Cleaning Robot System. PhD thesis. Beijing University of Aeronautics&Astronautics.China.2004.
    [105]Asbeck A, Kim S, Cutkosky M.Scaling Hard Vertical Surfaces with Compliant Microspine Arrays. InternationalJournal of Robotics Research.2006:1165-1179.
    [106]Tso S K, Fung Y H, Chow W, et al. Design and Implementation of a Glass-Wall Cleaning Robot for High-Rise Buildings. The World Automation Congress Eighth International Symposium on Robotics with Applications. Maui, Hawaii,2000:123.
    [107]Balaguer C, Gimenez A, Pastor J. A Climbing Autonomous Robot for Inspection Applications in 3d Comple Environments. Robotica.2000,18(3):287-297.
    [108]徐泽亮,马培荪.永磁吸附履带式爬壁机器人转向运动灵活性分析.上海交通大学学报,2003,37(11):58-61,65.
    [109]乔凤斌,谢箫鹏,杨汝清.反恐机器人SUPER-01转弯性能分析.上海交通大学学报.2005,39(6):895-898,904.
    [110]Pan-H, Zhao YZ, Gao XS. Structure Design of Climbing Robot Used in Water-cooling Wall of Boiler. Machine Design and Manufacturing Engineering.2000,29(5):7-10.
    [111]王军波,陈强.爬壁机器人变磁力吸附单元的优化设计.清华大学学报(自然科学版).2003,43(2):214-217.
    [112]刘金国,李斌.链式可重构机器人单模块结构设计与运动实验.机械设计与制造.2005,(8):94-98.
    [113]高学山.壁面清洗机器人及实用技术的研究.(博士学位论文).哈尔滨:哈尔滨工业大学,2002.
    [114]徐祯祥,刘荣.面向复杂曲面的爬壁机器人机构及运动学分析.北京航空航天大学学报.2005,31(7):718-721.
    [115]邵浩.爬壁机器人在弧面上爬行时的吸附稳定性分析.机器人,2000,.22(1):60-63.
    [116]杨来伍,梅凤翔.变质量系统力学.北京:北京理工大学出版社,1989.
    [117]徐芸,刘宝生.自动扫查爬壁机器人系统及调整运动.上海交通大学学报.2005,39(6):884-887.
    [118]王旭亮,聂宏.基于模糊理论的疲劳寿命估算方法.中国机械工程.2008,19(17):2095-2097.
    [119]刘建,王益群,孙福等.基于粒子群理论的板形模糊模式识别方法.机械工程学报,2008,44(1):173-177.
    [120]潘焕焕,赵言正.多功能履带式磁吸附爬壁机器人的姿态控制研究.哈尔滨工业大学学报.2000,32(2):5-9.
    [121]Xu Z. and Ma P. A Wall-Climbing Robot for Labeling Scale of Oil Tank'S Volume. Robotica.2002,20(2):203-207.
    [122]Jun X, X Ning. Fuzzy System Approach for Task Planning and Control of Micro Wall Climbing Robots. IEEE International Conference on Robotics and Automation. Barcelona Spain.2004:5033-5038.
    [123]蒋志坚,徐殿国.交流伺服清洗爬壁机器人的姿态控制.哈尔滨工业大学学报.2002,34(4):581-584.
    [124]吴善强,孙立宁.基于DSP的爬壁机器人控制系统硬件电路设计.林业机械与木工设备,2007(3).
    [125]李开生.通用擦窗机器人控制系统体系结构的研究和实现.(博士学位论文).北京:北京工业大学,2001.
    [126]尚建忠,张新坊,周济.主动自适应悬架机器人概念样机及其配置模型与方法.国防科技大学学报.2004,26(5):90-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700