一种紧急救援的带臂球形机器人的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球形移动机器人利用球形或类球形外壳作行走装置,将驱动机构和控制模块等都安装在全封闭的外壳内,以滚动运动为主要的移动方式。特殊的构型和运动方式使得球形机器人与传统移动形式的机器人相比具有很多独特的优势。
     目前已有球形机器人实现了移动性能,不具备对外操作能力,无法在一些特定环境中完成复杂任务,这大大限制了球形移动机器人的发展。针对此问题,在现有球形移动机器人的基础上,提出了一种用于紧急救援的可从高空抛撒的带臂球形机器人,其融合移动机械手的特点可执行对外操作,同时加装降速缓冲机构,在某些极端无人环境中,可以借由人力或飞机从高空布撒至工作区域,进而执行搜救工作。这种机器人不仅具有球形移动机器人运动灵活的特性,更因其可伸缩臂在特殊的场合可兼做手臂及足使用,扩大了球形移动机器人的应用范围。
     与传统的球形机器人相比,可从高空抛投的用于紧急救援的带臂球形机器人(BYQ-4)突破了全封闭结构,机构耦合度高,兼有非完整约束和欠驱动的特点,在理论研究上具有相当大的难度,球臂耦合的模型特点为球形机器人的建模及控制提出了新的挑战;而在高空布撒的工作需求下,其保护机构的保护能力成为机器人正常工作的前提。本论文的主要研究工作如下:
     (1)根据救援时某些极端环境下的高空布撒需求和带臂球形机器人的对外操作要求,制定带臂球形机器人和减震缓冲装置的结构设计方案,并分析其机构性能。
     (2)根据带臂球形机器人的结构特点和各部分约束关系建立球臂耦合系统的运动学模型,并基于凯恩方程建立该系统的动力学模型,为进一步的实施控制策略和优化设计提供理论基础;通过分析机器人构型特点和运动特性,提出BYQ-4的性能评价指标,利用改进的遗传算法进行机器人的优化设计。
     (3)分析带臂球形机器人的可控性,根据机器人的结构特点,将对外操作运动简化为“球体运动”和“抓取运动”的联合运动,详细分析这两部分的运动特点和控制方式,采用运动解耦式控制方法和“时间-状态”控制方法实现机器人本体的位置跟踪和姿态控制,进而实现机械臂末端的对外操作功能。
     (4)深入研究关节摩擦、滑动摩擦、滚动摩阻等非线性摩擦对球形机器人运动性能的影响,并针对实际情况中的球壳不圆度问题,利用分段建模方法建立更为接近实际情况的球形机器人动力学模型;针对非理想因素的不可精确测量性和未知性,采用自适应机制矫正控制系统参数,实现稳定控制,最后通过仿真和实验结果验证了非理想条件下球体的运动特性以及自适应控制方法对于这种非理想模型的有效性。
     (5)对作为载体和主要运动机构的球壳进行强度分析,针对地面行走和高空布撒两种工况,设计球形机器人的保护机构——网状球壳;借用牛顿-欧拉法分析网状球壳包覆下的球形机器人的运动特性,并进行样机实验,为改进球壳设计提供理论基础和实践经验。
The spherical mobile robot has a spherical shell or shell like sphere which can support the robot to walk on the ground. Both of the driving mechanism and controlling modules are fixed in the totally-enclosed spherical shell. Its primary movement is rolling on the ground. For its special construction and movement method, the spherical mobile robot has many advantages special compared with other traditional robots.
     At present, the spherical mobile robots with perfect performance of movement have been designed and made, but they cannot complete some complicated tasks in some special situations without the operability outside. In order to resolve these issues, a new high-altitude throwing spherical mobile robot with a telescopic manipulator used in emergency rescue has been designed firstly based on current spherical mobile robots. Integrating the advantages of robots with multi-arms and multi-feet makes this robot can complete some outside operating tasks. In the meantime, a buffer gear installed on the robot can protect the shell and the inner structures of the shperical robot while it is thrown from high altitude to the working field. This kind of robot not only achieves the flexible movement, but also enlarges the application field of spherical robots because it can do some special tasks by telescopic arm in some special situations.
     Compared with other traditional spherical robots, the high-altitude throwing spherical robot with telescopic manipulator used in emergency rescue, named by BYQ-4, makes a breakthrough innovation of totally-enclosed spherical shell. It has some special properties, such as high coupling rate of mechanism, nonholonomic constraint and underactuated characteristic. So it's very difficult to set up the theoretical and control model. At the same time, on the high-altitude throwing request, the protecting ability of the buffer gear becomes the premise of robot to work normally.The following aspects are the main research work and achievements:
     (1) According to the application request of high-altitude throwing and outside operating in some special rescue environment, the physical design proposals are drawn up, and then theirs structure performance is analyzed.
     (2) According to the characteristics of mechanism and constraint relationship of different parts, the kinematic model of spherical mobile robot with telescopic manipulator is built. The dynamical model of BYQ-4 is also given based on Kane equation. These two models set up the theoretical foundation for control strategy and optimization design. The performance evaluation indexes of BYQ-4 are proposed based on the analysis of its mechanism characteristics and motion characteristics. The improved Genetic Algorithm is applied to optimize the design of the robot.
     (3) Based on the analysis of the controllability and the mechanism characteristics of BYQ-4, the motion of BYQ-4 operability outside is predigested to an associated movement composed of ball movement and capture motion. The movement characteristics and control mode of every motion are analyzed. The decoupled coordinating control method and time-state control method are used to track the positions and control the posture of BYQ-4 to complete the outside operating function.
     (4) The motion performance of BYQ-4 impacted by joint friction, sliding friction and rolling resistance is studied in the paper. As for the out of roundness of real spherical shell, the segmentation modeling method is applied to build the dynamical model. As for poor measurement precision and unknown characteristics of the non-ideal factors, the adaptive control method is also applied to rectify the system parameters to realize stable control of BYQ-4. In the end, the motion performance and the validity of the adaptive control method applied to the non-ideal model under the non-ideal situation are verified by comparing the results of simulations and experiments.
     (5) The intensity analysis of the spherical shell which acts as the carrier and a main part of robot is done. The protection mechanisms of netlike shell are designed for two situations, walking and falling from high position. Using the Newton-Euler method, the motion performance of the spherical robot with netlike shell is analyzed. At the same time, the prototype testing of network shell finishes, the experiment results are very valuable for the theoretical basis and practical experience of the analysis of improved design of spherical shell.
引文
[1]Halme A., Schonberg T., Wang Y. Motion Control of a Spherical Mobile Robot[A].4th IEEE International Workshop on Advanced Motion Control[C]. Mie University, Japan,1996:259-264.
    [2]Bhattacharya S., Agrawal S.K. Spherical Rolling Robot:a Design and Motion Planning Studies[J]. IEEE Transactions on Robotics and Automation,2000, V16(6):835-839.
    [3]F. C. Bruhn, K. Pauly and V. Kaznov. Extremely Low Mass Spherical Rovers for Extreme Environments and Planetary Exploration Enabled with Mems. Proc. of The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space,2005:347-354.
    [4]www.rotundus.se
    [5]Michaud F., Laplante J. F., Larouche H., et al. Autonomous Spherical Mobile Robot for Child-Development Studies [J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans,2005, V35(4):471-480.
    [6]Mukherjee R., Minor M. A., Pukrushpan J. T. Simple Motion Planning Strategies for Spherobot:A Spherical Mobile Robot[A]. Proceedings the 38th Conference on Decision& Control[C]. Arizona, USA,1999:2132-2136.
    [7]A. H. Javadi. A, Puyan Mojabi. Introducing August:A Novel Strategy for An Omnidirectional Spherical Rolling Robot, Proc. IEEE Int. Conf. on Robotics and Automation, Washington, DC, May 2002. pp:3527-3533.
    [8]A. Bicchi, A. Balluchi, D. Prattichizzo, and A.Gorelli. Introducing the sphericle:An experimental testbed for research and teaching in nonholonomy. Proc. IEEE Int. Conf. on Robotics and Automation,1997. pp:2620-2625.
    [9]J. Alves and J. Dias. Design and Control of a Spherical Mobile Robot[J]. Proc. of the IMechE Parti:Journal of System & Control Engineering,2003, Vol.217, No.6:457-467.
    [10]Antol, P. Calhoun, J. Flick, G. A. Hajos, R. Kolacinski,D. Minton, R. Owens, and J. Parker. Low cost mars surfaceexploration:The mars tumbleweed. August 2003. NASALangley Research Center. NASA/TM-2003-212411.
    [11]T. Otani, T. Urakubo etc. Position and Attitude Control of a Spherical Rolling Robot Equipped with a Gyro. AMC'06-Istanbul, Turkey,2006. pp:416-421.
    [12]Camicia C, Conticelli F and Bicchi A, "Nonholonomic kinematics and dynamics of the spherical," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Takamatsu, Japan,2000, 1:805-810.
    [13]Shen J, Schneider D A and Bloch A M, "Controllability and motion planning of multibody systems with nonholonomic constraints," IEEE Conf. on Decision and Control, Maui, Hawaii, USA,2003,5:4369-4374.
    [14]Qiang Zhan, Zhou T.,Chen M.,ect. Dynamic Trajectory Planning of a spherical Mobile Robot[C], IEEE Int. Conf. on RAM,2006.
    [15]Evangelos P, John P. Planning and model based control for mobile manipulators. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,2000:1810-1815.
    [16]Sheng L, Goldenberg A A. Neural network control of mobile manipulators. IEEE Transactions on Neural Networks,2001,12(5):1121-1133.
    [17]Sheng L, Goldenberg A A. Robust damping control of mobile manipulators. IEEE Transactions on Systems, Man and Cybernetics, Part B,2002,32(1):126-132.
    [18]Chung Jae H, Velingsky S A. Interaction control of a redundant mobile manipulator. International Journal of Robotics Research.1998,17(12):1302-1309.
    [19]Tan J D, Xi N. Unified model approach for planning and control of mobile manipulators. Proceeding of IEEE International Conference on Robotics and Automation,2001:1-8.
    [20]Jagannathan S. Discrete-time fuzzy logic control of a mobile robot with an onboard manipulator. International Journal of Systems Science,1997,28(12):1195-1209.
    [21]Yamamoto Y, Yun X P. Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE Transactions on Robotics and Automation,1996,12(5):816-824.
    [22]Sastry S., Li Z., "Robot motion planning with nonholonomic constraints", Proceedings of the 28th Conference on Decision and Control, Tamps, Florida,1989:211-216.
    [23]Brochett R. W.. Asymptotic stability and feedback stabilization[M], Differential geometric control theory, edited by R. W. Brockett, R. S. Millman and H. J. Sussman, Birkhauser,1983: 181-191.
    [24]Liu Daliang, Sun Hanxu, Jia Qingxuan. Stabilization and path following of a spherical mobile robot[C], IEEE Int. Conf. on CIS & RAM, Chengdu. China,2008:676-682.
    [25]Urakubo T.. Discontinuous feedback stabilization of a class of nonholonomic systems based on lyapunov control[C], Proceedings of the 5th International Workshop on Robot Motion and Control,2005:91-96.
    [26]Tsuchiya K., Urakubo T. and Tsujita K.. Motion control of a nonholonomic system based on the lyapunov control method[J], Journal of Guidance, Control, and Dynamics,2002,25(2): 285-290.
    [27]Oriolo G., Vendittelli M.. A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism[J], IEEE Trans. on Robotics,2005,21(2): 162-175.
    [28]Qiang Zhan, Tingzhi Zhou, Ming Chen, Sanlong Cai, "Dynamic trajectory planning of a spherical mobile robot", Robotics, Automation and Mechatronics,2006 IEEE Conference, Bangkok, June 2006:1-6.
    [29]B. Armstrong, D. Neevel, T. Kusik. New result in NPID control:Tracking, integral control, friction compensation and experimental result[C], Proceedings of the 1999 IEEE International Conference on Robotics and Automation,1999,37(1):837-842.
    [30]S. Lee, S. M. Meerkow. Generalized dither[C], IEEE Trans. On Information Theory,1991, 37(1):50-56.
    [31]K. D. Young. A variable structure control approach to friction force compensationfC], Proceedings of the American Control Conference,1998:3138-3142.
    [32]戈新生.多体航天器姿态运动建模和非完整运动控制[D].上海:上海大学,2004.
    [33]于涌川,原魁,邹伟等.全驱动轮式机器人越障过程模型及影响因素分析[J].机器人,2008,30(1):1-6.
    [34]戴武城.球形行走机器人的设计和运动学、动力学分析及运动学计算机仿真[D].上海:上海交通大学机械与动力工程学院,2001.
    [35]战强,贾川,马晓辉,陈明.一种球形机器人的运动性能分析[J].北京航空航天大学学报,2005,31(7):744-747.
    [36]李团结,朱超.一种具有稳定平台可全向滚动的球形机器人设计与分析[J].西安电子科技大学学报(自然科学版),2006,33(1):53-56.
    [37]王佳,胡侠,柳洪义.球形管道机器人设计[J].机械设计与制造,2006,12:133-135.
    [38]岳明.球形运动器的研究[D].哈尔滨,哈尔滨上业大学,2004.
    [39]金康进,施光林.基十DSP的新型球形机器人控制器设计[J].微型机与应用,2005,7:30-31.
    [40]马保离.非完整机器人系统的控制[D].北京航空航天大学博士学位论文,1997.
    [41]邓宗全,岳明等,“球形运动器动力学分析及控制系统设计,”机器人,2006,28(6):565-570.
    [42]工越超,景兴建.非完整约束轮式移动机器人人工场导向控制研究[J],自动化学报,2002.28(5):777-784.
    [43]王喜明.基于LuGre模型的摩擦力矩补偿研究[D],中国科学院硕士学位论文,2007.
    [44]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45-52.
    [45]谭跃刚,倪菲,吴鹏.基于非完整约束的机械手及其运动学的研究[J].机械设计与研究,2004,20(4):18-21
    [46]林风云,迟琨,吕恬生生,宋立博.从动轮式移动机器人结构及运动学分析[J].机械设计与研究,2003,19(2):19-21.
    [47]莫海军,朱文坚.履带式移动机器人越障稳定性分析[J].机械科学与技术,2007,26(1): 65-71.
    [48]信建国,李小凡,王忠,等.履带腿式非结构环境移动机器人特性分析[J].机器人,2004,26(1):35-39.
    [49]李金良,吕恬生,孙友霞.腿轮式机器人的运动原理及参数优化[J].机械设计,2003,20(8):27-29.
    [50]吉爱红,戴振东,周来水.仿生机器人的研究进展[J].机器人,2005,(03):284-288.
    [51]邓宗全,岳明.球形机器人的发展概况综述[J].机器人技术与应用,2006,3:27-31.
    [52]王亮清.球形移动机器人的动力学和静态稳定研究[D],北京航天航空大学博士学位论文,2007.
    [53]孙汉旭,王亮清,贾庆轩等.BYQ-3球形机器人的动力学模型[J].机械工程学报,2009,45(10):8-14.
    [54]李团结,刘卫刚.风力驱动球形机器人动力学[J].航空学报,2010,31(2):426-430.
    [55]Katsuhiko Ogara. Modern control engineering[M], Fourth Edition, USA:Pearson Eduation, Inc.2003.
    [56]战强,贾川,马晓辉,陈明.一种球形机器人的运动性能分析[J],北京航空航天大学学报,2005,31(7):744-747.
    [57]岳明,邓宗全.基于坐标变换下的球形机器人稳定平台控制[J],机械工程学报,2009,45(5):271-275.
    [58]罗自荣,尚建忠,丛楠等.可抛掷多运动态球形机器人移动机构[J],机械设计,2009,26(9):30-33.
    [59]熊有伦.机器人学[M],北京:机械工业出版社,1992:77-88.
    [60]梅凤翔.非完整系统力学基础[M],北京:北京工业学院出版社,1985:5-46.
    [61]郑一力.一种新型球形机器人的控制策略与路径规划方法研究[D],北京邮电大学博士学位论文,2009.
    [62]梅凤翔.关于非完整系统的Lagrange型方程——分析力学札记之十[J].力学与实践,2002:64-66.
    [63]陈文良,洪嘉振,周鉴如.分析力学[M].上海:上海交通大学出版社,1990:51-54.
    [64]赵凯亮.BYQ-4球形机器人运动特性分析及操作任务研究[D],北京邮电大学硕士学位论文,2009.
    [65]丘宣怀等.机械设计[M],北京:高等教育出版社,2002:18-23.
    [66]李元科.工程最优化设计[M],北京:清华大学出版社,2006:1-22.
    [67]王国强,赵凯军,崔国华.机械优化设计[M],北京:机械工业出版社,2009:104-114.
    [68]陈伦军等.机械优化设计遗传算法[M],北京:机械工业出版社,2005:1-95.
    [69]Ryu Y. S., Park K. B., Kim J. T, et al. Application of Metropolis genetic algorithm for the structural design optimization [A]. Proceedings of the Third China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems[C]. Kanazawa, Japan,2004:71-76.
    [70]玄光男,程润伟,于歆杰等.遗传算法与工程优化[M],北京:清华大学出版社,2004.
    [71]彭昭旺,杨洪柏,钟廷修.实值编码遗传算法的行星齿轮传动优化[J],上海交通大学学报,1999,33(7):533-535.
    [72]理查德·摩雷,李泽湘,夏卡恩.机器人操作的数学导论[M],徐卫良,钱瑞明译.北京:机械工业出版社,1998:139-175.
    [73]肖爱平.一种新颖的球形运动机器人的研究[D],北京邮电大学博士学位论文,2005.
    [74]Hassan K.Khalil.非线性系统[M],北京:电子工业出版社,2005.
    [75]邵丹,邵亮,郭紫等.李群[M],北京:科学出版社,2008.
    [76]Date H., Sampei M., Ishikawa M. Koga. Simultaneous control of position and orientation for ball-plate manipulation problem based on time-State control form[J], IEEE Transactions on Robotics and Automation, June,2004,20(3):465-480.
    [77]谭跃刚.基于非完整约束的欠驱动机械手及其运动控制的研究[D],武汉理工大学博士学位论文,2005.
    [78]岳明,刘荣强,邓宗全.库仑摩擦力对球形机器人运动状态影响的分析[J],哈尔滨工业大学学报,2007,39(7):1050-1053.
    [79]谈开孚.分析力学[M],哈尔滨:哈尔滨工业大学出版社,1985:402-468.
    [80]刘国平.机械系统中的摩擦模型及仿真[D],西安理工大学,2007.
    [81]哈尔滨工业大学理论力学教研室.理论力学(第П册)[M],第六版.31-47.
    [82]Krstic M., Kanellakopoulos I., Kokotovic P. V.. Nonlinear and adaptive control design[M], New York:Wiley,1995.
    [83]王银河,单荣立,韩东方.基于状态反馈的一类非线性系统动态输出反馈镇定[J].控制与决策,2007,22(2):238-240.
    [84]王强德,井元伟,张嗣瀛.一类不确定非线性系统的鲁棒自适应ε输出跟踪控制[J],控制与决策,2004,19(6):711-713.
    [85]刘大亮.一种球形移动机器人的运动分析与控制技术的研究[D],北京邮电大学博士学位论文,2009.
    [86]Jean-Jacques E. Slotine, Weiping Li.应用非线性控制[M].北京,机械工业出版社,2006:210-263
    [87]Pogorelov A V.. Geometrical method in nonlinear of elastic shells[M], Moscow:Izd, Nauka, 1967.
    [88]宁建国,杨桂通.弹塑性球形薄壳在刚性柱体冲击下的破坏分析[J].北京理工大学学报,1997,17(5):545-551.
    [89]王银河,单荣立,韩东方.基于状态反馈的一类非线性系统动态输出反馈镇定[J].控制与决策,2007,22(2):238-240.
    [90]Ning Jianguo, Liu Haiyan, Wang Yunyan, et al. Analysis of dynamic failure of plastic spherical shells under local impact[J], Journal of Beijing Institute of Technology,1999,8(1): 36-41.
    [91]宋卫东,刘海燕,宁建国.塑性球壳在局部冲击载荷作用下的破坏分析[J].北京理工大学学报,2002,22(5):556-559.
    [92]陈金宝,聂宏,柏合民,赵启龙.月球探测器软着陆缓冲机构发展综述[C].中国宇航学会深空探测技术专业委员会第三届学术会议,2006,11月:56-60.
    [93]徐灏等.机械设计手册(第3卷)第2版[M].机械工业出版社,2006:26.31-26.39.
    [94]Murray R M. Nilpotent bases for a class of non-integrable distributions with applications to trajectory generation for noholonomic systems. Technical Report CIT/CDS 92-002, California Institute of Technology, October 1992.
    [95]Murray R M and Sastry S S. Nonholonomic motion planning:steering using sinusoids. IEEE Transactions on Automatic Contrlo.1993,38(5):700-716.
    [96]钱伟长,叶开源.弹性力学[M].北京:科学出版社,1980.
    [97]丁长安,张雷,周福章等.线接触弹性接触变形的解析算法[J].摩擦学学报,2001,21(2):135.138.
    [98]宁建国.弹塑性球壳在冲击载荷作用下的动力大变形及贯穿分析[D].太原:太原工业大学应用力学所,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700