非开挖地下信息管线的三维曲线探测新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非开挖地下信息管线施工中的管线位置测量传统上使用的是电磁传感原理,这种测量方法的测量精度易受电磁干扰或埋深地质干扰影响。本论文从理论上研究获得基于曲线方位角信息的曲线重建方法和基于曲线曲率信息的曲线重建方法;从技术上研究开发了利用方位传感器的管道方位角测量技术和装置、利用位置敏感器件(PSD)的管道方位角测量技术与装置、利用光纤光栅传感器的管道曲线曲率检测技术与装置、以及管内行走机器人装置。在此基础上研究完成了一种介入式非开挖地下信息管线探测样机系统。论文主要通过以下几部分进行了叙述:
     在第一章中,论文针对现有非开挖地下管线检测手段存在的问题,提出了一种新的介入式传感装置获取空间曲线上离散曲率或斜率(切线方向角)信息和空间形态感知技术的研究目标;并以此技术为基础研究,发展一种新型非开挖地下管线三维探测技术及其测绘系统。该技术的主要特征是在探测原理上具有不受地质条件和管埋深度限制的优势,尤其适用于复杂地质条件下和深层地下空间进行管线检测,为实现该研究目标,本章中论文制定了介入式非开挖地下管线探测装置的研究内容和关键技术。
     在第二章中,论文通过对被测管道的几何尺寸和形状分析,制定了非开挖管线探测系统采用基于曲线的曲率或切线方向角测量的介入式管道探测新方法进行管道三维方位和形状的测量。为此,系统将由牵引与拖曳、介入式曲线的曲率或方向角探测头、以及控制与可视化等三个子系统构成。其中,牵引与拖曳子系统将完成介入式传感装置在管道中移动;介入式传感装置完成管道形状的曲率或方向角的探测;控制和可视化子系统完成管道的方位和形状探测的数据采集、管道基于曲线的曲率或切线方向角信息的重建和再现。
     在第三章中,论文介绍了地下管道形状和空间方位的基于曲率信息和切线方向角信息的三维重建拟合算法。首先,介绍了基于曲率信息的空间三维曲线的重建拟合算法,该方法是运用差分法和数值积分等技术实现管线中轴线曲线的形状重建,通过具体螺旋线实例的验证,结果证明了该算法在理论上是可行的。随后,介绍了基于曲线离散点上切线方向角的曲线形状拟合方法和对拟合方法的初步验证。该方法采用起始已知点的坐标位置值、弧长值和探测装置测得的切线方向角值递推之后点的坐标值,然后利用递推获得的离散点上的坐标值重建曲线方法。
     在第四章中,论文主要介绍了光纤光栅传感装置的设计,设计工作首先分析了光纤光栅测量管道中轴曲线曲率的原理,建立了光纤光栅的调制光波波长和管道中轴曲线曲率的关系表达式,提出了粘贴光纤光栅的柔性基材性能要求和实现将管道中轴曲线曲率向柔性基材传递的方法,根据这些性能要求和方法选择了聚胺脂为柔性基材、设计了具有变径和曲率传递功能的环形保持架,并对这些部件进行了集成,构建了基于光纤光栅的管道中轴曲线曲率的测量装置,对该测量装置进行测量验证实验。
     在第五章中,论文首先研究基于电子罗盘的切线方向角测量装置,通过设计可变径的定心机构实现电子罗盘在管道中轴曲线上定位,进而实现由电子罗盘测量管道中轴曲线离散点上的切线方向角,通过理论分析的方法,证明了该测量装置能够满足管道中轴曲线离散点上的切线方向角的测量。为解决电子罗盘的偏摆角测量易受磁性物体的影响,论文还研究了基于激光准直原理的管道中轴曲线离散点间的切线方向角测量,在该测量方法中采用了PSD敏感元件完成激光光斑的落点位置探测,建立了该测量方法中激光光斑的落点位置和切线方向角之间的关系公式,进行测量系统的结构设计,构建了切线方向角测量装置的实验样机,搭建试验平台,通过实验验证了该测量方法是可行性。
     在第六章中,论文对管道测量系统的实验平台进行了设计。完成了实现介入功能的管道牵引机器人,该牵引机器人采用“蜗杆-行星轮系”机构,能适合一定管径变化的一种新型的管道牵引机器人。论文研究了里程计模块,该模块通过编码器记录计程轮在管道中滚过的距离来获知管道的实际弧长参数。通过实验验证了该模块能够满足实际使用需要。论文采用上下位机的分级控制模式构建了测量系统的控制子系统。
     在第七章中,论文着重探讨了非开挖地下管线探测系统的在实验室和用户野外模拟管道的实验过程,并对实验获得的数据进行了分析,分析结果表明,系统能够实现非开挖地下信息管线的方位和形状的测量,并且系统工作时不易受电磁干扰和管道埋深的干扰。
     最后对本论文的研究工作进行了总结,论文的研究成果可望为开发新型的高精度的介入式地下信息管线探测实用系统提供理论和技术基础。
Traditional on-site measurement for trenchless information pipeline made use of the electro-magnetic sensing method, the accuracy of which will be interfered by electro-magnetic noises or the depth of earth above pipelines. This dissertation investigates on the theoretical method of spaticl curve reconstruction from either the tangeat angle of the curve or the curvature of the curve. The new techniques developed include measuremen devices of pipeline tangent angle based on either an angular sensor or a PSD component, a curvature sensing device based on FBG sensors, and a mobile robot inside piplines. And furthermore, a prototype of inserted-type detecting system for trenchless information pipelines is developed. The detailes of chapters are as follows.
     In Chaper 1, the research goal of a new method for obtaining spatial curvature or tangent angle information of pipeline curves is proposed. Based on this methed, a detecting system for 3D information of trenchless pipeline is to be developed. To reach is goal, the research contents and key techniques are listed briefly.
     In Chaper 2, after analysis of geometrical dimension and shape of pipelines to be detected, the configuration design of the pipeline detecting system is conducted based on either curvature or tangent angle information of the pipeline. The system is composed of a probe to detect curvature or a probe to detect tangent angle, a traction subsystem to pull the sensing probe along the pipeline, and a control/visnalization subsystem, which collects the information detected by the probe and calculates a 3D curve from the data of discrete curvatures or discrete tangent angles.
     In Chapter 3, a new algorithm is proposed for 3D curve reconstruction based on curvatures of discrete points of the curve. The variation method and numerial integration are employed in the algorithm, which is verified to be feasible by an example of helix. Furthermore, another new algorithm is put forward for 3D curve fitting from the discrete data of tangent angles from a curve. The method begins with the coordinates of a given point (starting point), length of curve segment, and the tangent angle on the curve, and deduces the coordinates of the next point, using recurrence formulae to calculate all points on the curve. It is also verified by examples.
     Chapter 4 deals with the design of a FBG sensing system for curvature data. After analysing the principles of curvature detection for the central axis of a pipeline using FBG sensor, a relationship formulae is established between the curvature of the central axis of a pipeline and the modulated wave length of FBG. The characteristics of a flexible core material for sticking FBG on and the method of transmitting the curvature of a pipeline to the flexible core are proposed. Polyurethane is selected for the flexible core, annular holding stands with diameter adaption for transmiting curvature are designed. The whole Set-up to detect the curvature of the central axis of a pipeline is integrated with its components and experiments are conducted.
     Chapter 5 deals with the design of two apparatus to detect tangent angle of pipeline, one is based on an electronic compass and the other on a PSD component. With an centering mechanism of diameter adaptation, the electronic compass will be located along the central axis of a pipeline, thus the tangent angle on discrete points of a pipeline will be obtained. To overcome the disadvantage of magnetic noise effect on the electronic compass, laser alignment method is used on tangent angle measurement with the help of the PSD component. The relationship is established between the tangent angle of pipeline and position of laser spot on PSD. Two prototypes of detecting systems based on the above principles are constructed and tested for technological feasibility.
     In Chapter 6, the design of the experimental platform is accomplished. A traction robot is developed to pull the sensing apparatus inside the pipeline, which employes worm-planet gear train for driving and adapting to the diameter of pipe. A dead-reckoning module is also developed to record the distance the robot covered, which is quite useful in the reconstruction of the pipeline curve. Control sub-system is established using two-layer control architecture.
     Chapter 7 discusses the experiments of the detecting system of pipeline both in lab or on the field. Experimental data shows the system can do its job quite well, with less electro-magnetic noise interruption.
     Finally conclusions are given for the whole dissertation, and further research aspects are discussed.
引文
1. J.S.Lueke, S.T.Ariaratnam, S.M.Abourizk. Application of Simulation in Trenchless Renewal of Underground Urban Infrastructure. Proceedings of the 1999 Winter Sumulation Conference: 929-936.
    2. E.N.Allouche, S.T. Ariaratnam, K.W.Biggar, et al. A new direction in site characterization.Trenchless Techol.Research,1998,12(1-2):17-27
    3. V. M. Mostkov. Trenchless Technologies for the laying of service lines-New construction technologies.Hydrotechical Construction, 2001,3(5):269-274
    4.窦斌,蒋国盛.我国非开挖施工技术的发展概况及差距.岩土工程界[J],2001,4:47-48
    5.罗聚生,张东江.推广非开挖铺设地下管线技术保护城市优美环境.广西地质[J],1999,12(4):85-87
    6. B.S.Ma, M.Najafi. Development and applications of trenchless technology in China. Tunnelling and Underground Space Technology, 2007,8: 623-628
    7.王兰锟.发展中的非开挖产业.西部探矿工程[J],2003,91(12):172-174
    8.颜纯文.持续发展的非开挖技术.地质装备[J], 2005,6(1):3-9
    9.侯树刚,陈静.非开挖技术的发展研究.科技进步与对策[J],2003(增刊):232-233
    10.李粮纲,乌效鸣,史晓亮.非开挖导向钻进铺管技术应用研究.地质科技情报[J],1999,18(增刊):27-31
    11.杨明友,陆万雨,刘飞.非开挖技术在21世纪中国管道建设中的地位和作用.探矿工程[J],2002,1:49-51
    12.付宏达.城市现有地下管线探查及数据处理方法探讨.勘察科学技术[J],2002 ,5:25-27
    13.田瑛.物探技术在地下隐蔽物探测中的应用初探.地质灾害与环境保护[J], 2003,14(4):46-50.
    14.城市地下管线探测技术规程.建设部行业标准,编号:CJJ61—2003
    15. W. N. Tan, J. S. Ma. Trenchless technology alternative to traditional. District Energy, 1994,1:1-18.
    16. H. S. Baik. A decision support system for horizontal directional drilling. Tunnelling and Underground Space Technology, 2003,18: 99-109
    17.张杨.高新技术在地下管线测量中的应用.工程建设与档案[J],2002,1:26-27
    18. F. C. Peter, F. C. Mora. Application of drillhole vector magnetic measurements to resolve the position of existing underground structures. NDT&E International, 2005,38: 231-236
    19.尹国耀,梁建青.电磁法在探查地下管道中的应用.油气储运[J] , 2001,20(4):40-43
    20.王佩军,缪建文.电磁技术在城市地下管线探测中的应用.测绘信息与工程[J],2000,3:29-32
    21. D. H. Koo, S. T. Ariaratnam. Innovative method for assessment of underground sewer pipe condition. Automation in Construction, 2006, 15: 479– 488
    22. K. Yoneda, H. Tetsuya, K. Yoshida. An electromagnetic sensing technique to detect metallic objects for microtunneling system Industrial Electronics, Control and Instrumentation, 1997. IECON 97. 23rd International Conference on Volume 3(9-14). 1997,3(9-14): 1265 - 1268
    23. S. B. Costello, D. N. Chapman, C. D. F. Rogers, et al. Underground asset location and condition assessment technologies. Tunnelling and Underground Space Technology, 2007,22: 524–542
    24. D. S. Vorontsov, A. M. Petreev. Improvement of air-distributing system of the pneumatic impact machines for trenchless technologies. Science of mining machines-Journal of mining science, 2002, 38(5): 481-487
    25.汤洪志,黎正根,贺小军.探地雷达在管线探测与工程勘察中的应用.华东地质学院学报[J],1999,22(2):57-60
    26. L. Jim, L. E. Bernold. Innovative process to characterize buried utilities using Ground Penetrating Radar. Automation in Construction, 2007, 16: 546-555
    27. L. E. Bernold, L. Venkatesan, S. Suvarna. A MULTI-SENSORY APPROACH TO
    3-D MAPPING OF UNDERGROUND UTILITIES. Construction Automation Robotics Laboratory (CARL), North Carolina State University.
    28. P. M. Gracia. Buried pipeline mapping from satellite images. Electronics & Communication Engineering [J], 2002, 14(4):143-154
    29.王以法,管志川.新一代地下定位系统.石油学报[J],2002,23(1):8-14
    30. A. Teruhisa, Y. Koichi, H. Hidenori. Intelligent Driving Control System -Automated Driving Management and Control System Using Optimum ControlTheory. NIPPON TELEGRAPH AND TELEPHONE CORPORATION Access Network Service Systems Laboratories
    31.杨兴其,赵伟,张世明.地震波映像法在援厄下水道改造工程中的应用.西部探矿工程[J],2000,66(5):4-5.
    32. S. G. Schock, A. Tellier, J. Wulf,et al. Buried object scanning sonar.Oceanic Engineering, IEEE Journal of Volume 26 Issue 4. 2001,26(4): 677 -689
    33. B. Jouvencel, T. S. Jimenez. A new method of pipeline detection in sonar imagery using Self-Organizing Maps. Laboratoire Iaformatique, de Robotique et de Microelectronique de Montpellier-LIRMM University of Montpellier.
    34.陈书旺,王明时,陆守权,等.红外传感技术在地下管道寻迹中的应用.传感技术学报[J],2006,19(1):212-214
    35.张伦伟.基于光纤光栅传感的智能内窥镜形状感知系统.上海大学博士学位论文,2005
    36. L. W. Zhang, J. W. Qian. Shape Sensing System for Intelligent Colonoscope Based on Fiber Bragg Grating.2nd Japan-China Workshop on Multidisciplinary Researches in Engineering.2003,10: 154-160
    37.金成柱,李江雄,柯映林.空间曲线型微细管道局部几何性质检测.光电工程[J],2004,31(8):49-52
    38.毛一添,柯映林,李江雄.空间曲线形微细管孔检测系统设计.机械科学与技术[J],2005,24(6):11-15
    39.刘刚,柯映林.管道机器人全程定位理论和方法研究——基于光纤光栅空间曲率传感器.浙江大学学报(工学版) [J],2004,38(6):65-70
    40.金成柱,李江雄,柯映林.潜入式微细管道机器人的全程定位方法.中国机械工程[J],2004,15(16):1418-1421
    41. Patent Number(s):JP2004361285-A. Angle sensor for position measurement of power pipeline buried in earth,has optical fiber Bragg grating whose reflected wavelength is changed according to expansion-contraction of elastic structure
    42.单夫惟,马乐梅.光纤陀螺发展及应用.光电子技术与信息[J],2004,4:12-14
    43. G. Taubin, R. Ronfard. Implicit simplicial models for adaptive curve reconstruction [J]. Transactions on Pattern Analysis and Machine Intelligence , 1996, 18(3): 324-332.
    44.专利号:CN200510027070.7.小口径地下管道测量系统.
    45.袁少杰.基于空间方向角的非开挖地下管线探测方法研究.上海大学硕士论文,2006
    46. H. R. Choi, S. M. Ryew. Robotic System with Active Steering Capability for Internal Inspection of Urban Gas Pipeline. Mechatronics[J], 2002,12(5):713-736
    47.许冯平,邓宗全.管道机器人在弯道处的通过性研究.机器人[J],2002,26(2):155-160
    48.钱晋武,孙流川,沈林勇,等.非开挖地下管线探测中的弯曲变形检测装置研.光学精密工程[J],2005,13(2):179-184
    49.朱浩,方宗德,胡鑫.离散数据点的B样条曲线精确拟合.机械科学与技术[J],2000,19:199-121.
    50.陈建军,沈林勇,钱晋武,吴家麒.已知离散点曲率的曲线拟合递推方法[J].上海大学学报(自然科学版),2003,9(2):123-126.
    51.同济大学数学教研室.高等数学.高等教育出版社:357
    52.吴家麒,杨东英,沈林勇,等.基于曲率数据的曲线拟合方法研究.应用科学学报[J],2003,21( 3):258-262.
    53.李兰友. Visual C++.NET图形图像编程.电子工业出版社,2002:247.
    54.吴家麒,杨东英,沈林勇,等.空间曲率检测中的标定误差分析和标定方法.光学精密工程[J],2003 ,11 (2) :166-170
    55.袁绍杰,沈林勇,钱晋武,等.一种新型地下管线方位测量与重建方法.上海大学学报[J],2006,12(6): 552-556
    56. J.Q.Wu, D.Y.Yang, J.W.Qian. Research on Visualization of Robotic Endoscope Body in Examination[A],Proc. of the 11th International Conference on Advanced Robotics[C],2003: 901-905
    57.王惠文.光纤传感技术与应用.国防工业出版社,72-74,210-214
    58.杨大智.智能材料与智能系统.天津大学出版社,2000:76-80
    59.刘鸿文.材料力学.高等教育出版社,1979:170.
    60.钱晋武,郑庆华,张伦伟,等.渐进式内窥镜形状的感知和重建,光学精密工程[J],2004,12(5):518-524
    61.董新永,张颖,关柏鸥,等.光纤光栅曲率传感的实验研究.光子学报,2000,19 (9):806-809.
    62.刘云启,郭转运,刘志国,等.光纤光栅传感测量中的交叉敏感机制及其解决方案.光电子激光,2003,10:172-182
    63.刘正,章亚男,沈林勇,等.光纤光栅传感器旋转扭转时管道曲率的检测方法.上海大学学报(自然科学版),2006,12(5):450-456
    64.张伦伟,钱晋武,沈林勇,等.光纤光栅大曲率传感器的试验研究[J].传感器技术,2003,8:1-5
    65.张伦伟,钱晋武,章亚男,等.基于FBG传感网络的新型内窥镜形状实时检测系统.机械工程学报,2006,42(2):177-182
    66.刘正.非开挖地下管线探测光纤光栅传感技术研究.上海大学硕士论文2006
    67.李均瑶,章亚男,沈林勇,等.电子罗盘在非开挖三维探测系统中的应用.上海大学学报,2008,14(2):136-141,147
    68.陆麒.基于方位测量的地下管线探测系统总体设计与装置研究.上海大学硕士论文2007
    69. B. M. De, P.W.Verbeek, G.K.Steenvoorden, et, al. The PSD transfer function [J]. Electron Devices, 2002 , 49(1):202-206.
    70.李云飞,司国良,郭永飞.科学级CCD相机的噪声分析及处理技术[J ].光学精密工程,2005,13(增):159-163.
    71. Y. F. Li, G.L.Si, Y.F.Guo. Noise analyzing and processing for scientific grade CCD camera [J]. Opt. Precision Eng.,2005,13 (Supp.):159-163
    72. G.K.S.Myun, S.Y.Hee, H.P.Kyi.Study on comparing the signal processing of a linear CCD with a PSD for displacement measurement[J].IEEE Conference Publishing,2004,11(18-19): 762-766.
    73.张岳,郝丽,柳华,等.激光显示的原理与实现.光学精密工程[J],2006,14 (3):402-405.
    74.曾超,李锋,徐向东.光电位置传感器PSD特性及其应用.光学仪器,2002,1:35-38
    75.唐九耀,黄梅珍,陈钰清.二维PSD的结构和性能分析.功能材料与器件学报,2000,3:18-23
    76.沈林勇,李亚旻,章亚男,等.基于PSD的地下管线探测装置设计与分析光学精密工程,2008,16(8):1429-1435
    77.陆麒,章亚男,沈林勇,等.适应管径变化的管道机器人.机械设计,2007,24(1):16-18
    78.张明威,钱晋武,章亚男,等.地下管线形状检测中的缆线收放新机构设计[J].机电工程,2006,23(6):1-4
    79.金洪日,沈林勇,章亚男,等.基于方位传感的地下管线探测系统的研制上海大学学报(自然科学版),2008,14(1):26-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700