用户名: 密码: 验证码:
串并联数控机床伺服进给系统机电耦合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
串并联数控机床打破了传统机床结构的概念,兼有传统C型串联机床工作空间大、数控系统成熟的特点及并联机床加工精度高,刚性好的特点,大大提高了机床的刚度,适于复杂曲面的加工,提高了加工精度和加工质量。其伺服进给系统是一类高精密的复杂机电系统,具有结构稳定、运动高效、控制准确的特点。论文以设计的3-PTT串并联数控机床为研究对象,研究其伺服进给系统机电耦合特性,根本目的是探索耦合对机构运动的约束机制,分析耦合参数与系统运动及控制的相关机理,指导数控机床结构优化设计及伺服系统的参数匹配,解决数控机床由于机电耦合问题而产生加工精度不能充分满足要求、工作效率低、可靠性不高的问题,以提高数控机床综合性能及生产水平。
     设计了一种适用于复杂曲面加工的串并联数控机床伺服进给系统结构并采用分解与综合的方法对机床机构构型、运动副类型、连接元件、空间自由度进行分析,采用基于奇异约束条件和耦合因素的方法分析了机床工作空间,并进行了串并联的仿真分析,仿真结果能够准确反映机床实际加工范围,为研究串并联机构构型规律、运动学及动力学分析提供了参考,为数控机床机电解耦控制提供依据。
     研究了串并联数控机床伺服进给系统力学耦合特性。分别进行了机床力学耦合参数计算、静力学耦合建模、静力学耦合仿真、动力学耦合建模及动力学耦合仿真的研究工作。解决了力学平衡规律、机构刚度、驱动参数与外负载之间关系等耦合问题,为运动学耦合问题的分析提供参考和依据。其中静力学有限元仿真分析表明:机床伺服进给系统关键构件的刚度及受力变形符合机床工作需要。动力学计算实例及联合仿真分析表明:根据负载的运动规律可有效地分析动平台和加工工具的受力与运动的关系,为系统的设计和优化提供依据。
     研究了串并联数控机床伺服进给系统运动学耦合特性。采用正、逆解的方法分析了运动学特性,详细分析了运动学数学模型,采用数学计算分析软件对串并联机构的牛顿——欧拉方程进行数学分析,得出串并联机构中各运动副的轨迹曲线图,并进行运动学仿真。进一步得出伺服进给机构的运动曲线图,将两次仿真分析得出的结果进行对比分析,计算实例及仿真结果表明:设计的机床运动速度快且运行平稳,无较大奇异状态及耦合误差,受力与速度关系符合动力学规律。
     建立了串并联数控机床伺服进给系统机电耦合模型。阐述了串并联数控机床复杂机电系统耦合理论及建模方法,通过耦联关系建立了伺服系统的数学模型。建立伺服系统模型后,利用软件对该模型进行了仿真,验证了耦合参数对系统的影响。为串并联数控机床解耦控制奠定了基础。
     针对串并联数控机床伺服进给系统机电耦合建模分析提出的问题,运用遗传算法整定PID参数,强跟踪滤波器解决负载扰动和工况干扰对系统性能影响的方法,对串并联数控机床的伺服进给系统进行解耦控制,消除了耦合因素对串并联数控机床伺服进给系统的影响,提高零件的加工精度和表面质量,使机床的机械系统与控制系统更好的配合,解决了数控机床由于机电耦合问题而产生加工精度不能充分满足要求、工作效率低、可靠性不高的问题,提高了数控机床的使用性能及加工效率。同时,也为数控机床生产厂家其伺服系统优化设计及参数调节,提高国产数控机床出厂的调试效率和生产水平提供了参考依据。这对加速数控机床核心技术的自主发展,提升我国机床制造业的制造生产水平具有深远意义。
Series-parallel NC machine tools breaks up the concept of the traditional structure, and it has the features of the big working space and mature NC system of the traditional C-series machine, at the same time, it also has the features of high accuracy and good rigidity of the parallel machine tool, which greatly increases the stiffness of the machine, and improves processing accuracy and processing quality, so it is suitable for complex surface processing. The servo system is a high-precision complex electromechanical system with stability structural, efficient movement and accurate control.The electromechanical coupling characteristics of the servo system for 3-PTT series-parallel NC machine tools is studied in this paper, and the fundamental purpose is to explore the kinematic constraints on the coupling mechanism, and analysis the coupling parameters of this system and movement-related mechanisms. This study can guidance NC machine tools servo system design and optimization of the parameters match, and solve the problems of low machining accuracy ,efficiency, insufficient reliability, simultaneously, improve the overall performance and production levels of NC machine tools.
     This study designes a series-parallel NC servo system structure for complex surface machining, and analyzes machine body conformation, kinematic pair types, connected components, spatial degrees of freedom by using the method of decomposition and synthesis. And then, this study analyses the working space using singular constraints and couple factors, after analysing, the simulation is carried out, and the simulation results accurately reflect the actual range of machining. Reference basis for discipline of configuration and analysis of kinematics and dynamic has been provided.
     The mechanical coupling characteristics for series-parallel NC machine servo system is researched, which involves in the calculation of mechanical coupling parameters, model and simulation of statics coupling, model and simulation of dynamics coupling. The analysing of statics shows: the stiffness of the key componets of the NC machine servo system and the bearing forces and deformations conform to the needs of machine tool work. The calculation of Dynamics and simulation show: according to the movement regularity of loading, the relationship between bearing forces and movement of platform and processing tools can be analyzed, which can provide the basis for system design and optimization.
     It researches on kinematic coupling characteristics for series-parallel NC machine servo system. A detailed analysis of the kinematics mathematical model is shown based on the positive and inverse kinematics analysis .Using mathematical analysis software for series -parallel institutions Newton - Euler equations, it simulated as the kinematic pair trajectory curve. Further more, the servo kinematic curve and kinematic pair trajectory curve are analyzed and compared, and the simulation results are shown that: the designed machine can run fast and smooth movement, no larger singular state and coupling errors , and it accords with relations of force and velocity kinetics.
     This study establishes the electromechanical coupling model of series-parallel NC machine tool servo system, and explains electromechanical coupling theory .After the establishment of the electromechanical model, it verifies the impact of coupling parameters on the system for simulation model using of software. NC machine tools for the decoupling control of series-parallel basis. It lays on the foundation for decoupling control for series-parallel NC machine tool servo system.
     For the problems of electromechanical coupling for servo systems modeling, using of genetic algorithm to adjust PID parameters, and strong tracking filter to solve the load disturbance and interference conditions on the system performance, it eliminates coupling factors effects for decoupling control of series-parallel NC machine tool servo system, and increases the machining accuracy and surface quality. The mechanical system and control system can be better co-ordinated, and it solves the problems that machining precision can not fully meet the requirements, low efficiency, lack of reliability and improves the performance of NC machine tools and processing efficiency. Also reference based on optimization and parameter adjustment has been provided to increase the level of debugging efficiency and production for domestic NC machine tools. The core technology of NC machine tools accelerates self-development and enhances manufacturing standards for machine tool manufacturing industry, which has far-reaching significance.
引文
[1]廖道训,熊有伦,杨叔予.现代机电系统(设备)耦合动力学的研究现状和发展[J].机械设计,1996,7(2):44-46.
    [2]王文瑞.面向机床主轴箱生产的制造资源建模[D].长春:吉林大学,2007.
    [3]潘月斗,许镇琳,孙开发.数控机床交流伺服系统参数不匹配引起的故障及调整消除方法[J].组合机床与自动化加工技术,2005,11:38-39.
    [4] OSACA Work Group. OSACA Handbook Part II: how to develop OSACA application. 1996.
    [5] M.L.HUSTY. AN ALGORITHM FOR SOLVING THE DIRECT KINEMATICS OF GENERAL STEWART-GOUGH PLATFORMS[J]. Mech.Mach.Theory,1996,31(4):365-380.
    [6] M. Geldart,P. Webb,H. Larsson,M. Backstrom,N. Gindy,K. Rask. A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools. International Journal of Machine Tools & Manufacture,2003,43:1107-1116.
    [7]朱明星.研抛专用装备数控系统体系结构的研究[D].长春:吉林大学,2006.
    [8]周超群.伺服系统中精密传动系统机电耦合分析[D].重庆:重庆大学,2007.
    [9]高文华,苏宏志.模糊自适应PID在数控进给伺服系统的应用[J].机床电器2,2009:4-7.
    [10]杨濒泉,赵克定,吴盛林,曹健.飞行模拟器六自由度运动系统的关键技术及研究现状[J].系统仿真学报,2002,14(1):84-87.
    [11]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [12]熊有伦,丁汉,刘恩沧.机器人学[M].北京:机械工业出版社,1993.
    [13]熊有伦等.机器人操作[M].武汉:湖北科学技术出版社,2002.
    [14]钟掘,陈先霖.复杂机电系统耦合与解耦设计3——现代机电系统设计理论的探讨[J].中国机械工程,1999,10(9):1051-1054.
    [15]陈武晖,何茂艳,毕天姝,杨奇逊,彭谦.机电耦合对轴系扭振动态特性的影响[J].中国电机工程学报,2010,30(4):50-55.
    [16]张庆,王华坤,张世琪.柔性铰链机构与驱动器的耦合特性及精度分析[J].机械设计,2003,12:47-49.
    [17]宋战培,侯勇俊,闫国兴.基于Matlab的两电机激振自同步振动系统机电耦合机理研究[J].设计与研究,2006,8(33):13-15.
    [18]李旭宇.复杂机电耦合系统的并行设计方法研究[D].湖南:中南大学,2004.
    [19]张曙,U.Heisel.并联运动机床[M].北京:机械工业出版社,2003.
    [20]苏玉鑫,段宝岩,南仁东.迭代初值对Stewart型平台位置正解精度的影响[J].机械科学与技术,2001,20(2):220-221.
    [21]朱玉祥.自由曲面虚拟轴混联研抛机床的开发研究[D].长春:吉林大学,2001.
    [22] PRABJOT NANUA,KENNETH J WALDRON,VASUDEVA MURTHY. Direct Kinematic Solution of a Stewart Platform[J]. IEEE TRANSACTIONS ON ROROTICS AND AUTOMATION,1990,6(04):438-444.
    [23] S.N.Yurt.E,Anli.I.Ozkol. Forward kinematics analysis of the 6-3 SPM by using neural networks[J]. Meccanica,2007(42):187-196.
    [24] Yuxin Su , Dong Sun , Chunhong Zheng. Forward Kinematics of General Parallel Manipulators Using Genetic Algorithms , Proceedings of 2003 Chinese Intelligent Automation Conference[C].
    [25]刘善增,余跃庆,杜兆才,杨建新.并联机器人的研究进展与现状(连载)[J].组合机床与自动化加工技术,2007(07):04-10.
    [26] J.-P.Merlet. Parallel Robots[M]. Kluwer Academic Publishers,2000.
    [27]刘平平.基于机器人的自由曲面自动研磨设备的研究[D].长春:吉林大学,2001.
    [28]韩霜.混联研抛机床开放式数控系统体系结构及其插补算法研究[D].长春:吉林大学,2007.
    [29] WANG Sun-an,WAN Ya-min. A Mixed Real-time Algorithm for the Forward Kinematics of Stewart Parallel Manipulator[J]. Journal of Electronic Science and Technology of China,2006,4(02):173-180.
    [30]汪满新,王攀峰,宋轶民,赵学满,黄田. 4自由度混联机器人静刚度分析[J].机械工程学报,2011,47(15):9-16.
    [31]王旭. JDYP51型虚拟轴研抛机床可视化运动仿真的研究[D].长春:吉林大学,2003.
    [32]潘飞.虚拟轴研抛机床并联机构机电耦合特性的研究[D].长春:吉林大学,2007.
    [33]陈岩会.虚拟轴研抛机床串联机构机电耦合特性的研究[D].长春:吉林大学,2007.
    [34] Reuven Katz,Zhe Li. Kinematic and dynamic synthesis of a parallel kinematic high speeddrilling machine. International Journal of Machine Tools & Manufacture,2004,44:1381-1389.
    [35] Dimiter Zlatanov,Clement M.Gosselin. Proceedings of the 11th World Congress in Mechanism and Machine Science.April 1-4,2004,Tianjin,China[C]. Beijing:China Machine Press,2004.
    [36] BHASKAR DASGUPTA,T.S.MRUTHYUNJAYA. CLOSED-FORM DYNAMIC EQUATIONS OF THE GENERAL STEWART PLATFORM THROUGH THE NEWTON-EULER APPROACH[J].Mech.Mach.Theory,1998,33(07):993-1012.
    [37] BHASKAR DASGUPTA,T.S.MRUTHYUNJAYA. A NEWTON-EULER FORMULATION FOR THE INVERSE DYNAMICS OF THE STEWART PLATFORM MANIPULATOR[J].Mech.Mach.Theory,1998,33(08):1135-1152.
    [38]钟掘.复杂机电系统耦合设计理论与方法[M].北京:机械工业出版社,2007.
    [39]张代治.混联式虚拟轴研抛机床的运动及控制研究[D].长春:吉林大学,2005.
    [40] WANG Youyu,LIU Haitao,HUANG Tian,et.al. Stiffness modeling of the Tricept robot using the overall Jacobian matrix[J]. ASME Journal of Mechanisms and Robotics,2009,1(2):021002.1-021002.8.
    [41] Z.M. Bi,S.Y.T. Lang. Joint workspace of parallel kinematic machines. Robotics and Computer-Integrated Manufacturing,2007,7:201-205.
    [42]金鹰.虚拟现实与动感模拟器[J].机械设计与制造工程,2001,30(6):59-61.
    [43]丁华锋,黄真.平面机构统一拓扑描述模型的建立及同构判别[J].机械工程学报,2009,45(3):99-103.
    [44]李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究[J].机械科学与技术,1999,18(1):41-43.
    [45]黄真,王洪波.复杂多环空间机构动力分析的影响系数法[J].机械工程学报,1988,24(3):74-80.
    [46]鲁德泉,陈维山. 6-RSS并联机器人动力学模型的建立[J].机械工程师,2007(04):27-29.
    [47]陈丽. Stewart平台6-DOF并联机器人完整动力学模型的建立[J].燕山大学学报,2004,28(3):228-232.
    [48]韩佩富,王常武等.改进的6-DOF并联机器人Newton-Euler动力学模型[J].机器人,2000,22(4):315-318.
    [49]孔宪文.六自由度并联机器人动力学方程[J].机器人,1991,13(5):42-45.
    [50] Parthajit Mukherjee,Bhaskar Dasgupta,A.K.Mallik. Dynamic stability index and vibration analysis of a flexible Stewart platform[J]. Journal of Sound and Vihration,2007(307):495-512.
    [51]魏立新. 6-DOF并联机器人动力学建模及其控制策略研究[D].秦皇岛:燕山大学,2002.
    [52] Chen Xuesheng,Chen Zaili,Xie Tiao. The Synthesis of a Stewart Platform for a Specific Workspace with a Genetic Algorithm[J]. HIGH TECHNOLOGY LETTERS,2004,10(1):66-69.
    [53] Lu Yi,Tatu Leinonen. A computer simulation approach to machining complicated shapes,on an orthogonal 6-rod machine tool. International Journal of Machine Tools & Manufacture, 2002,42:441—447.
    [54] Dan Zhang,Fengfeng Xi,Chirs M.Mechefske, Sherman Y.T.Lang. Analysis of parallelkinematic machine with kinetostatic modeling method.Robotics and Computer-Integrated Manufacturing,2004,20:151—165.
    [55] R. Neugebauer,W.-G. Drossel,C. Harzbecker,S. Ihlenfeldt,S. Hensel. Method for the Optimization of Kinematic and Dynamic Properties of Parallel Kinematic Machines.
    [56] OSACA Work Group. Open System Architecture for controls within Automation System, EP6379&EP9115. OSACA I&II Final Report.
    [57]马文涛.自由曲面研抛机床并联机构的运动误差分析与补偿[D].长春:吉林大学,2003.
    [58]熊万里.机电耦合传动系统的非平稳过渡过程与系统广义同步特性研究[D].沈阳:东北大学,2000.
    [59]贺建军.复杂机电系统机电耦合分析与解耦控制技术[D].湖南:中南大学,2004.
    [60]林利红.永磁交流伺服精密驱动系统机电耦合动力学分析与实验[D].重庆:重庆大学博士学位论文,2009.
    [61] GM Powertrain Group Manufacturing Engineering Controls Council. Open,Modular Architecture Controller at GM Powertrain:Technology and Implementation. http://www.omac.org/techdocs/open_at_GM.pdf. 1996,5.
    [62] Mariella Consoni,Florenzano Souza,Marco Sacco. Analysis of electromechanical coupling facts of complicated electromechanical system[J]. Trans. Nonferrous Met. Soc. China,2002, 12(2):301-304.
    [63]柳耀阳.自由曲面研抛机床多轴运动控制器的研究[D].长春:吉林大学,2004.
    [64] P. K. Wright. Principles of Open-Architecture Manufacturing. Journal of Manufacturing Systems. 1995,14(3): 187-202.
    [65] G. Pritschow,Y. Altintas,F. Jovane. Open Controller Architecture-past,Present and Future. CIRP Annals-Manufacturing Technology. 2001,50(2): 463-470.
    [66] S. Birla,D. Faulkner,J. Michaloski,S. Sorenson,G. Weinert,J. Yen. Reconfigurable Machine Controllers using the OMAC API. Proceedings of the CIRP 1st International Conference on Reconfigurable Manufacturing,Ann Arbor,MI,2001 (5): 21-32.
    [67] W. Sperling. P. Lutz. Design Applications for an OSACA Control. Proceedings of the International Mechanical Engineering Congress and Exposition. USA,Dalles,1997 (12):16-21.
    [68] Eskola M,Tuusa H. Sensorless control of salient pole PMSM using a low-frenquency signal injection[A]. IEEE 11th European Conference on Power Electronics and Applications[C]. Dresden:IEEE Press,2004,10-14.
    [69]唐人远等.现代永磁电机理论与设计[M] .机械工业出版社,2000年4月第一版.
    [70]林利红,陈小安,周超群,周伟.精密传动系统的机电耦合建模及仿真分析[J].重庆大学学报(自然科学版),2007,11(30):14-18.
    [71]郭存良. 6_DOF并联机器人动力学建模、非线性解耦及控制[D].秦皇岛:燕山大学,2000.
    [72] Craig L. Horn,Steven M. Pilgrim,Natarajan Shankar,Keith Bridger,Mona Massuda,and Stephen R. Winzer. Calculation of Quasi-Static Electromechanical Coupling Coefficients for Electrostrictive Ceramic Materials[J]. IEEE TRANSACTIONS ON ULTRASONICS,FERROELECTRICS,AND FREQUENCY CONTROL,2002,41(4):542-551.
    [73] LI Qiang,WU Jianxin and SUN Yan. Dynamic Optimization Method on Electromechanical Coupling System by Exponential Inertia Weight Particle Swarm Algorithm[J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2009,22(4):602-607.
    [74] Shaoze Yan,Feng XU,Xiajie Liu and Jinhui Wang. Electromechanical Coupling Characteristics of SMA Wires under the Constraints of Stress and Strain[J]. Engineering Materials,280-283(2005):915-918.
    [75]武建新,李强,赵卫国,孙燕.并联机构机电耦合动力学计算[J].中国工程机械学报,2006,(4):1-15.
    [76]孙燕,李强,武建新,赵卫国.机电耦联整形机床主轴系统动力学仿真[J].机械设计与研究,2008,24(5):103-107.
    [77]林利红,陈小安,周超群等.精密传动系统的机电耦合建模及仿真分析[J].重庆大学学报(自然科学版),2007,30(11):14-18.
    [78]侯忠生.无模型自适应控制的现状与展望[J].控制理论与应用,2006,23(4):586-591.
    [79]侯忠生,晏静文.带由迭代学习前馈的快速路无模型自适应入口匝道控制[J].自动化学报,2009,35(5):587-595.
    [80]隋树林,孙静,池荣虎.直线电机的无模型周期自适应控制[J].青岛科技大学学报,2010,31(1):83-85.
    [81]张永春,霍伟.串并联微动机器人的鲁棒控制[J]. 1999中国控制与决策学术年会论文集[J],1999,24(10):1037-1050.
    [82]叶军.复合正交神经网络与CMAC在PID并行控制中的比较研究[J].机床与液压,2005,3:153-154.
    [83]陈正洪,王勇.混合驱动五杆机构的滑模变结构控制[J].机床与液压,2007,35(11).
    [84]张建,军高峰,李为民,金振林.新型6自由度并联微动机器人微运动学及其运动解耦性分析[J].机械设计,2003,20(12):23-25.
    [85] Li Bin,Zhou Yun-fei,Tang Xiao-qi. A research on open CNC system based on architecture/component software reuse technology. Computers in Industry. 2004 (55):73-85.
    [86] T.A.Dwarakanath,Bhaskar Dasgupta,T.S.Mruthyunjaya. Design and development of a Stewart platform based force-torque sensor[J]. Mechatronics,2001(11):793-809.
    [87] Ilian A.Bonev,Jeha Ryu. A new method for solving the direct kinematics of general 6-6 Stewart Platforms using three linear extr sensors[J]. Mechanism and Machine Theory,2000(35):423-436.
    [88]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [89]张培晓.串-并混联研抛机床运动控制器的研究[D].长春:吉林大学,2006.
    [90]侯勇俊,闫国兴.三电机激振自同步振动系统的机电耦合机理[J].振动工程学报,2006,19(3):355-358.
    [91] Chan T F,Borsje P,Wang W M. Application of unscented kalman filter to sensorless permanent-magnet synchronous motor drive. 2009 IEEE International Electric Machines&Drives Conference[C].Miami:IEEE Press,2009,631-638.
    [92]张猛,肖曦,李永东.基于扩展卡尔曼滤波器的永磁同步电机转速和磁链观测器[J].中国电机工程学报,2007,27(36):36-40.
    [93]丁华锋,黄真,邹婷.并联机构的结构描述[J].燕山大学学报,2007,31(1):1-5.
    [94]黄真.并联机器人及其机构学理论[J].燕山大学学报,1998,22(1):1-15.
    [95] O.Company,F.Pierrot. Modelling and design issues of a 3-axis parallel machine-tool. Mechanism and Machine Theory,2002,37:1325-1345.
    [96]丁华锋,黄真,邹婷.并联机构的结构描述[J].燕山大学学报,2007,31(1):01-05.
    [97]黄真.空间机构学[M].北京:机械工业出版社,1991.
    [98]白师贤等.高等机构学[M].上海:上海科学技术出版社,1988.
    [99]罗建国,何茂艳,陆震,黄真. 2PPPPS_R_2PPPPS新型串并联机构研究[J].机械设计,2007,24(10):10-14.
    [100]朱煜,汪劲松,张华,张永忠.并联机床构型及其设计方法初探[J].中国矿业大学学报,2005,32(3):297-303.
    [101]丁华峰.运动联的环路理论与同构判别及图谱库的建立[J].工学博士学位论文,2007:1-129.
    [102] Hernández-Martínez E.E,Facultad de Ingeniería. Calibration of Parallel Manipulators and their Applicationto Machine Tools. A State of the Art Survey[J]. Ingeniería Investigación y Tecnología.,2010 XI (2):141-154.
    [103] HUANG Zhen,LIU JingFang and ZENG DaXing. A general methodology for mobility analysis of mechanisms based on constraint screw theory [J]. Science in China Series E:Technological Sciences,2009,52(5):1337-1347.
    [104] LI Qiang,WU Jianxin and SUN Yan. New concept and new theory of mobility calculation formulti-loop mechanisms[J]. SCIENCE CHINATechnological Sciences,2010,53(6):1598-1604.
    [105] XIE Fugui,LIU Xinjun,WANG Liping and WANG Jinsong. Optimum Kinematic Design of the 4R 2-DOFParallel Mechanism[J]. TSINGHUA SCIENCE AND TECHNOLOGY,2009,14(5):663-668.
    [106]李宁宁,赵铁石,边辉.双重驱动四自由度并联机构型综合[J].机械设计与研究,2007,24(1):51-57.
    [107]罗建国,韩建友.空间机构奇异分类新方法研究[J].机械设计,2010,27(4):1-8.
    [108]李秦川,武传宇,沈卫平,胡旭东,朱祖超,黄真.新型一街球面自由度并联机构[J].机械工程学报,2006,42(11):45-48.
    [109]郭盛,方跃法.并联机器人机构综合方法比较研究[J].北京交通大学学报,2007,31(1):41-45.
    [110]曲海波.少自由度串联机器人构型综合与奇异分析[D].北京:北京交通大学机械与电子控制工程学院,2008.
    [111]陈红亮,罗玉峰,石志新,杨廷力.五自由度并联机器人机构设计[J].机械设计与制造,2008(12):10-11.
    [112]卢强,张友良.面向工作空间的Stewart型并联机床结构参数优化[J].机械科学与技术,2002,21(4):585-587.
    [113]方浩,周冰,任路,冯祖仁. 3-6 Stewart平台安全机构设计[J].机械科学与技术,2001,20(6):875-877.
    [114]刘辛军,吴超,汪劲松.类并联机器人机构姿态描述方法[J].机械工程学报,2008,44(10):19-23.
    [115]黄真,丁华锋.多环运动链环路代数基础理论的建立及其应用[J].中国科学,2007,37(7):904 -913.
    [116]丁华锋,黄真.特性的运动链拓扑图及特征描述的自动生成[J].机械工程学报,2007,43(11):40-43.
    [117]黄真,刘婧芳,曾达幸.基于约束螺旋理论的机构自由度分析的普遍方法[J].中国科学,2007,24(10):10-14.
    [118]高金莲,韩英强等.并联机器人球铰链的仿真设计[J].机械设计,2007,24(2):53-55.
    [119]魏永庚,石勇,刘文涛.六自由度并联机床结构参数设计与仿真的研究[J].哈尔滨工业大学学报,2007,39(1):55-58.
    [120] Dragan S.Milutinovic,Milos Glavonjic,Vladimir Kvrgic,Sasa Zivanoic. A New 3—DOF Spatial Parallel Mechanism for Milling Machine with Long X Travel.
    [121]陆晶,高国琴,朱彩红,牛雪梅.新型三平移并联机构的运动分析和工作空间分析[J].机械设计,2007,11(11):164-165.
    [122] Zhe wang,Zhixing wang,Wentao liu,yucheng lei. A study on workspace,boundary workspace analysis and workspace positioning for parallel machine tools. Mechanism and machine theory,2001,36:605-622.
    [123] J.Hesselbach,M.B.Helm. Workspace Enlargement for Parallel Kinematic Machine.
    [124]曹毅,黄真. Stewart机构姿态奇异及姿态工作空间的研究[J].中国机械工程,2005,16(12):1095-1099.
    [125]赵迎祥,鲁开讲等. 6-SPS并联机床工作空间分析[J].机械设计,2005,22(8):37-38.
    [126]刘文涛,李兵,王知行.并联杆系机床工作空间逆向问题研究[J].机械科学与技术,1999,18(6):953-955.
    [127]姜虹,贾书海,王小椿. 6自由度并联机器人的结构参数对活动空间的影响[J].机械科学与技术,1999,18(2):259-261.
    [128] Chen Hua,Chen Weishan,Liu Junkao. Optimal Design of Stewart Platform Safety Mechanism[J]. Chinese Journal of Aeronautics,2007(20):370-377.
    [129]范守文,徐礼钜.新型混联虚拟轴机床的位置正解与工作空间分析[J].机械设计,2002,27(3):27-29.
    [130]徐礼钜,范守文.一种混联型虚拟轴机床奇异位形分析的解析法[J].四川大学学报(工程科学版),2002,34(2):10-12.
    [131]于晖,孙立宁等.虎克铰工作空间研究及其在6-HTRT并联机器人中的应用[J].中国机械工程,2002,13(21):1830-1834.
    [132]李鹭扬,吴洪涛.并联机构正运动学一维搜索法[J].扬州大学学报(自然科学版),2000,3(1):66-70.
    [133]郭宗和,段建国,郝秀清,孙磊. 4-PTT并联机构位置正反解与工作空间分析[J].农业机械学报,2008,39(7):144-148.
    [134]尹小琴,马履中,杨启志,谢俊.并联机构静力学分析[J].农业机械学报,2007,38(2):201-207.
    [135] FANG Qiang,Akikazu Nishikido and Jianwu. Feedforward Control of a 3-D Physiological Articulatory Model forVowel Production[J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2009,14(5):617-622.
    [136] Chrysler,Ford Motor Co.,and General Motors. 1994. Requirements of Open,Modular,Architecture Controllers for Applications in the Automotive Industry. Chrysler,Ford Motor Co.,and General Motors. White Paper-Version 1.1.
    [137] Ji-Gang Chen,Hai-yang An,Xin-jun Liu. Inverse and Forward Kinematics Problems of a New Parallel Mechanism for a Parallel Kinematics Machine[J]. Machine Design and Research,CCMMS 2008:254-256.
    [138] ZHI Hong-Yant,ZHANG Hong-Qing. New Formal Solutions of Davey-Stewartson Equation via Combined tanh Function Method with Symmetry Method[J]. Commun.Theor.Phys.,2007,47(04):587-593.
    [139]孙玉霞.虚拟轴研抛机床工作性能及其仿真分析[D].长春:吉林大学,2007.
    [140] G.Q.Cai,Q.M.Wang,M.Hu,M.C.Kang,N.K.Kim. A study on the kinematics and dynamics of a 3—DOF parallel machine tool. Journal of Materials Processing Technology,2001,111:269-272.
    [141]赵昌龙.虚拟轴研抛加工中力、位置、姿态、速度的综合控制[D].长春:吉林大学,2005.
    [142]冯志友,李永刚,张策,杨廷力.并联机器人机构运动与动力分析研究现状及展望[J].中国机械工程,2006,17(9):979-984.
    [143] Antonio M.Lopes. Dynamic modeling of a Stewart platform using the generalized momentum approach[J]. Commun Nonlinear Sci Numer Simulat,2009(14):3389-3401.
    [144]王旭. JDYP51型虚拟轴研抛机床可视化运动仿真的研究[D].长春:吉林大学硕士学位论文,2005.
    [145]李庆龄. 5_UPS_PRPU并联机床的动态特性分析[D].秦皇岛:燕山大学,2006.
    [146]林福国. 6_PRRS并联机器人运动控制方法的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [147] HUANG Zhen,DING HuaFeng. Calibration of 3-dof. Translational ParallelManipulators Using Leg Observations[J]. Parallel Manipulators,New Developments,Jee-Hwan Ryu (Ed.) (2008) 225-240,2009,11(1):1-16.
    [148]张庆功,马晓丽,杨旭.一种新型3P21R并联平台机构的机型设计与三维建模[J].机械设计,2007:119-121.
    [149]关立文,汪劲松,王立平.并联机床虚拟样机的概念设计[J].清华大学学报(自然科版),2003,43(8):102021023.
    [150]侯延星.自由曲面的分片研抛及其轨迹规划理论的研究[D].长春:吉林大学,2003.
    [151]车林仙,罗佑新.并联机构位置正解的基于Henon混沌映射的Newton迭代法[J].机械设计,2009,26(1):19-21.
    [152]黄昔光,廖启征,魏世民,李端玲.一般6-6型平台并联机构位置正解代数消元法[J].机械工程学报,2009,45(1):56-61.
    [153]赵新华,彭商贤,张伟军,李春书.一种分析并联机器人位置正解的高效算法[J].天津大学学报,2000,33(2):134-137.
    [154]董彦良,吴盛林.一种实用的6-6 Stewart平台的实时位置正解法[J].哈尔滨工业大学学报,2002,34(1):116-119.
    [155]孔令富,苑玉峰等.改进的SVD方法在并联机器人影响系数矩阵计算中的应用[J].燕山大学学报,1998,22(4):290-292.
    [156]刘延斌,金光,张炜.基于MATLAB轨迹规划的模型建立与数值仿真[J].计算机仿真,2004,21(1):59-60.
    [157]倪建斌,王聚. Matlab在Stewart平台正解中的应用[J].机械工程师,2005(11):92-94.
    [158]董德发,王娟,刘得军.基于神经网络的Stewart型并联机床位置正解[J].计量技术,2006(02):03-06.
    [159]刘德庸,黄真.平面连杆机构运动分析的影响系数法[J].东北重型机械学院学报,1992,16(4):310-316.
    [160]励映群,王润杰,陈蕾.六自由度运动平台可视化软件的设计与实现[J].计算机仿真,2004,22(5):212-215.
    [161]孙恒辉,刘正士,陈恩伟. 6-SPR并联机构运动学的一种分析方法[J].农业机械学报,2009,40(1):194-197.
    [162]翟方超.研抛自由曲面专用机床嵌入式控制系统的研究[D].长春:吉林大学,2005.
    [163]郭上峰.自由曲面分片研抛与专家系统研究[D].长春:吉林大学,2005.
    [164]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社. 2000.
    [165]周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报. 2009,35(6):748-758.
    [166] Andreescu G D. Adaptive observer for sensorless control of permanent magnet synchronous motor drive[J]. Electric Power Components and Systems,2002,30:107-119.
    [167] Jang J H,sul S K,Ha J I,et.al. Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injuction based on magnetic saliency[J]. IEEE Transactions on Industry Applicatins,2004,40(6):1595-1604.
    [168]陈敏泽,周东华.一种基于强跟踪滤波器的自适应故障预报方法[J].上海海运学院学报. 2001,22(3):35-40.
    [169]于骏一,周晓勤.切削颤振的预报控制[J].中国机械工程,1999,10(9):1028-1032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700